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Endosperm transfer cells (ETC) are one of four main types of cells in endosperm. A
characteristic feature of ETC is the presence of cell wall in-growths that create an enlarged
plasma membrane surface area. This specialized cell structure is important for the specific
function of ETC, which is to transfer nutrients from maternal vascular tissue to endosperm.
ETC-specific genes are of particular interest to plant biotechnologists, who use genetic
engineering to improve grain quality and yield characteristics of important field crops. The
success of molecular biology-based approaches to manipulating ETC function is dependent
on a thorough understanding of the functions of ETC-specific genes and ETC-specific
promoters. The aim of this review is to summarize the existing data on structure and
function of ETC-specific genes and their products. Potential applications of ETC-specific
genes, and in particular their promoters for biotechnology will be discussed.
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INTRODUCTION
Transfer cells are highly specialized plant cells responsible for the
transport of solutes and nutrients from source to sink organs
(Offler et al., 2003; Olsen, 2004). They can be found at many
plant exchange surfaces, including phloem loading zones within
the root, and unloading zones for transfer of nutrients to the
endosperm in developing seeds. Endosperm transfer cells (ETC)
have easily recognizable structural features, including an elongated
shape and numerous cell wall in-growths, which greatly increase
the surface area of the cell membrane and consequently enhance
transport of solutes (Olsen, 2004). In maize seeds, transfer cells
are located at the base of the endosperm. By contrast, in wheat
and barley they are positioned along the crease (Figure 1; Olsen,
2004; Monjardino et al., 2013). Various molecular markers based
on genes that are specifically or preferentially expressed in ETC,
have been identified and isolated from maize, wheat, barley, and
rice (Hueros et al., 1995, 1999a; Doan et al., 1996; Serna et al.,
2001; Cai et al., 2002; Gutierrez-Marcos et al., 2004; Li et al., 2008;
Kovalchuk et al., 2009). Initially, some of these markers were used
by cytologists to localize ETC and determine their fate at different
stages of grain development. For instance, it was discovered that
ETC are not a part of maternal tissues, but rather a modification of
part of the aleurone cell layer(s), which is located near to maternal
vascular tissues. The identity of ETC is defined irreversibly during
syncytium development and cellularization, the earliest stages of
endosperm development (Costa et al., 2003; Olsen, 2004).

More recently, the function of some ETC-specific marker genes
was elucidated, and their involvement in ETC differentiation and
function established (Carlson et al., 2000; Weschke et al., 2003;
Wang et al., 2008b; Muñiz et al., 2010). All currently known ETC-
specific genes and those predominantly expressed in ETC cells,
can be classified into one of the five groups (Table 1): (1) signal
receptors and transducers, forming the basis of a two-component
signaling system for ETC differentiation and development; (2)

transcriptional regulators and co-factors; (3) genes responsible
for sugar conversion and transport; (4) genes encoding lipid trans-
fer proteins (LTPs); and (5) genes encoding proteins with as yet
unknown functions. Since the grain filling process is dependent on
ETC structure and function, there is a high level of interest from
biotechnologists in genes involved in the formation and function
of ETC. This review will summarize current knowledge of the
function of ETC-specific genes and the molecular structure of their
products, focussing on commercially important grass species (i.e.,
maize, wheat, and barley), but also including relevant molecular
evidence from the model plant Arabidopsis. Potential applications
for some ETC-specific genes in genetic engineering for improved
grain size, quality, and yield under favorable conditions and also
under environmental stresses, will be discussed.

TWO COMPONENT SIGNALING PLAYS AN IMPORTANT ROLE
IN DIFFERENTIATION OF ETC
Two component signaling (TCS) was initially discovered in 1981
for bacteria (Hall and Silhavy, 1981), and its involvement in nearly
all signal transduction events has been demonstrated. Existence
of TCS in plants was revealed for the first time in 1996 (Kaki-
moto, 1996). The first type of TCS components described in plants
are membrane-localized receptor histidine kinases (HK), respon-
sible for the perception of signals transferred by ligand molecules,
usually hormones. The binding of a ligand molecule leads to
auto-phosphorylation of the receptor domain and intra-molecular
transfer of the phosphoryl residue to the receiver domain of the HK
(Hwang and Sheen, 2001). This is followed by phosphate trans-
fer to a small soluble histidine phospho-transfer protein (HP),
which is able to move to the nucleus. The structural character-
istics of the AHK5RD-AHP1 complex from Arabidopsis thaliana
(Bauer et al., 2013), suggest the process for transfer of the phospho-
ryl group from AHK5RD to AHP1 (Figure 2). HP proteins from
maize (Sugawara et al., 2005), Medicago truncatula (Ruszkowski
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FIGURE 1 | GUS expression in wheat grain directed by the ETC-specific

TdPR60 promoter. (A) Histochemical GUS assay counterstained with
safranin in 10 μm thick transverse sections of transgenic wheat cariopsis at
31 DAP. (B) A detailed view on ETC at larger magnification. Bars = 200 μm.

et al., 2013) and rice (Wesenberg et al., unpublished data, PDB
1YVI) superimposed over the AHP1 protein from Arabidopsis
indicate that HP acceptor proteins from diverse plant species fold
similarly, and that interfaces between HP and kinases are highly
conserved (Figure 2). Further, comparison of the level of con-
servation of residues at the binding interface region of 22 HP
proteins from 16 plant species including those from Arabidop-
sis, reveals a remarkably high level of preservation of architecture
in HP proteins; in particular the spatial positions of a key His
residue. It is therefore expected that the mode of action of the
AHK5RD-AHP1 complex serves as a paradigm to understand the
function of TCS in higher plants at the molecular level (Bauer
et al., 2013). Analogous machineries of intermolecular phospho-
transfers are likely to operate in both mono- and dicotyledonous
plants. In the nucleus, HP activates type-B response regula-
tors (RR), which are a subfamily of MYB transcription factors
(TF). Members of this MYB subfamily in turn activate target
genes, including genes encoding the type-A RR, which are usually
negative regulators of hormone signaling pathways (Hwang and
Sheen, 2001).

Two component signaling is involved in a range of plant
developmental processes and responses to stresses and other
stimuli, such as the development of meristems (Kim et al.,
2006), maintenance of circadian rhythms (Mizuno, 2005), senes-
cence (Riefler et al., 2006), phosphate and nitrogen availability
responses (Sakakibara et al., 1998; Coello and Polacco, 1999;
Takei et al., 2001, 2002), sulfur metabolism processes (Fernandes
et al., 2009), responses to heavy metals (Srivastava et al., 2009),
and other abiotic (Chefdor et al., 2006; Jain et al., 2008a; Karan
et al., 2009) and biotic (Jolivet et al., 2007) stresses. Recently,
many TCS components were identified in ETC, confirming
ETC as the primary mediator of signal transduction between
maternal tissue and developing grain (Muñiz et al., 2006, 2010;
Thiel et al., 2012).

The first TCS components identified in cereal grains were the
maize genes Transfer Cell Response Regulators 1 and 2 (ZmTCRR-1
and ZmTCRR-2; Table 1). These encode members of the type-A
RR of the TCS, which are responsible for phospho-transfer-based
signal transduction (Muñiz et al., 2006, 2010). The TCRR genes
were found to be expressed exclusively in the ETC layer 8–14 days
after pollination (DAP), when transfer-cell differentiation is most
active. However, the ZmTCRR-1 protein was also detected in con-
ductive tissue deep inside the endosperm, where transcription
of the gene was not observed (Muñiz et al., 2006). This finding
suggests that TCS is involved in intercellular signal transduction.
A possible role of TCRR proteins is to integrate external signals
with seed developmental processes (Muñiz et al., 2006, 2010). The
promoter of ZmTCRR-1 was strongly trans-activated in heterol-
ogous systems by the transfer cell-specific TF ZmMRP-1, which
is a MYB type TF (Muñiz et al., 2006, 2010; Gomez et al., 2009;
Figure 3).

Recently, the ETC layer was isolated by laser micro-dissection
and pressure catapulting (LMPC) from barley grains at different
stages of development (Thiel et al., 2012). Sequence analysis of
the barley ETC transcriptome revealed a large number of TCS
components. Practically all known components of the TCS were
identified and in some cases several types of each component were
evident. For example, among the HK identified were six putative
ethylene receptors, two putative cytokinin receptors and three HK
of unknown function with high similarity to kinases from rice
and Arabidopsis (Thiel et al., 2012). Six genes encoding HPs were
also found to be expressed in the ETC layers. Two of these con-
tained no His residue in the HP domain. All types (A, B, and C)
of RRs were found in barley ETC. Three type-A RRs had higher
levels of sequence similarity to rice RRs than to either ETC-specific
ZmTCRR-1 or ZmTCRR-2 from maize (Muñiz et al., 2010), which
cluster separately in phylogenetic analyzes. 11 sequences of type-B
RRs and four isoforms of type-C RRs were also present in the bar-
ley ETC transcriptome (Thiel et al., 2012). The high number and
high mRNA abundance of TCS components in developing ETC
suggests that TCS is crucial for ETC development and consequently
for grain filling.

TRANSCRIPTIONAL REGULATION OF ETC FORMATION AND
FUNCTION
ZmMRP-1 is so far the only transfer cell-specific TF to have been
identified and characterized in cereals (Table 1). It is proposed to
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FIGURE 2 |Three-dimensional structure of the AHK5RD-AHP1 complex

from Arabidopsis thaliana (PDB 4EUK), consisting of the

histidine-containing phosphotransfer (AHP1, green) and kinase

(AHK5RD, yellow) region, is shown in two orthogonal orientations. The
structure of the complex in panel A is rotated by approximately 90 degrees to
produce a view shown in panel B. The mechanism of intermolecular
phosphotransfer mediated by the Arabidopsis AHK5RD-AHP1 complex. Maize
ZmHP2 (PDB 1WN0, smudge green), Medicago truncatula MtHPT1 (PDB
3US6, limon green) and rice OsHPT (PDB 1YVI, forest green) are superposed

over the Arabidopsis AHP1. The His in AHP1 and Asp in AHK5RD residues that
respectively donate and accept a phosphoryl group are shown in sticks in
atomic green and yellow colors, respectively. The octahedral coordination
geometry of Mg2+ (green sphere) participating in the phosphotransfer
reaction is indicated by black dashes (atomic distances between 1.9 Å
and 2.0 Å), where Mg2+ is coordinated by Asp from AHK5RD, three water
molecules (red spheres) and two other residues (Asp and Cys) of AHK5RD.
The distance of 3.4 Å between His from AHP1 and one of the water
molecules is also shown.

FIGURE 3 | Domain analyses of selected DNA binding proteins

containing MYB domains that are involved in the two component

system (TCS). A multiple sequence alignment of ZmMRP-1 involved in
TCS with three MYB domain-containing proteins ARR10-B of the GARP
family from Arabidopsis thaliana (PDB 1IRZ, chain A), a telomeric
repeat-binding protein from Arabidopsis thaliana (PDB 2AJE, chain A),
and a MYB domain of the RAD transcription factor from Antirrhinum

majus (PDB 2CJJ, chain A). Protein sequences were aligned with
ProMals3D (Pei et al., 2008) and analysed for domain boundaries using
ProDom (Bru et al., 2005). The predicted and consensus secondary
structures (ss) are shown in red (α-helices, h) and black (loops) types.
Conservation of residues on a scale of 9–5 is shown at the top of the
diagram. The absolutely conserved and similar residues are highlighted
in brown and black, respectively.

play a central role in the regulatory pathways controlling transfer
cell differentiation and function (Gomez et al., 2009). ZmMRP-1
is a single-copy gene that encodes proteins with a MYB-related
DNA binding domain (Figure 3) and a nuclear localization sig-
nal. Analysis of domain boundaries in the ZmMRP-1 protein
reveals the location of a MYB-like domain sequence (Figure 3).
The MYB-like domain in ZmMRP-1 shows significant similar-
ity to secondary structural element distributions in known MYB
domain-containing proteins, including ARR10-B of the GARP
family from A. thaliana (Hosoda et al., 2002), a telomeric repeat-
binding protein from A. thaliana (Sue et al., 2006) and a MYB
domain of the RAD TF from Antirrhinum majus (Stevenson et al.,
2006; Figure 3). In developing maize grain, ZmMRP-1 transcript
was detected in the cytoplasmic region of the basal endosperm
coenocytes as early as 3 DAP. Because the transfer cell layer devel-
ops from this part of maize coenocytes, it is reasonable to propose
a role for ZmMRP-1 in ETC formation. However, the strongest
ZmMRP-1 expression was observed in transfer cell layers from 3
to 16 DAP and peaked at 11 DAP, when formation of ETC was
already completed, suggesting an additional role of this TF in ETC
function (Gomez et al., 2009).

To evaluate the level of conservation of ETC formation and
function in different plant species, spatial expression patterns of
ZmMRP-1 were studied in transgenic lines of maize, Arabidopsis,
tobacco and barley which were transformed with a ZmMRP-
1 promoter-GUS reporter construct (Barrero et al., 2009). GUS
signal was detected in several plant organs in regions of active
transport between source and sink tissues and at vascular con-
nection sites between developing organs and the main plant
vasculature. Promoter induction was observed in all tested species
at early developmental stages of transport-to-sink tissues, includ-
ing in the ETC layer (Barrero et al., 2009). Based on these results
it was proposed that ETC differentiate in a similar way in diverse
plant species, and that this differentiation is initiated by conserved
induction signals. Using both in planta and yeast experiments it
was demonstrated that ZmMRP-1 promoter activity is modulated
by different carbohydrates. Glucose was found to be the most
effective inducer of the ZmMRP-1 promoter (Barrero et al., 2009).

Several target genes of ZmMRP-1 have been identified (Gómez
et al., 2002; Costa et al., 2004; Gutierrez-Marcos et al., 2004;
Barrero et al., 2006; Muñiz et al., 2006, 2010). The activation of
BETL (Basal Endosperm Transfer Layer) gene promoters was
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initially demonstrated by co-transformation of two constructs in
tobacco protoplasts. In these experiments, constitutive expres-
sion of ZmMRP-1 led to the activation of a co-transformed
GUS gene driven by the promoter from the Basal Endosperm
Transfer Layer (BETL-1) gene (Barrero et al., 2006). In whole
plants, it was also shown that ectopic expression of ZmMRP-
1 under the control of the ubiquitin promoter in BETL-1:GUS
transgenic maize led to activation of ETC-specific gene expres-
sion (Gómez et al., 2002). In a separate study, the promoter of
MATERNALLY EXPRESSED GENE1 (MEG1) was found to be acti-
vated by ZmMRP-1, when the transcriptional MEG1 promoter-
GUS fusion construct and a transcriptional 35S:MRP1 construct
were co-transformed into tobacco protoplasts (Costa et al., 2004;
Gutierrez-Marcos et al., 2004). Since MEG1 is expressed in maize
basal transfer cells from 10 to 20 DAP, it can potentially be
activated by ZmMRP-1 in maize plants. The promoter of the
ETC-specific gene encoding a type-A RR, ZmTCRR-1, was
also strongly activated in heterologous systems by ZmMRP-1
(Muñiz et al., 2006, 2010).

Interaction between ZmMRP-1 and the promoter of the trans-
fer cell specific gene BETL-1, led to activation of the BETL-1
promoter in various cell types (Barrero et al., 2006). Although
the reporter construct containing the BETL-1 promoter was silent
in all tested types of cells when transformed alone, transient
co-expression of ZmMRP-1 led to significant activation of the
reporter gene. This suggests that ZmMRP-1 does not require the
help of ETC-specific factors for promoter activation. The tran-
sient expression system was used to find specific cis-elements in
the BETL-1 promoter. A cis-element consisting of a 12 bp motif
containing two consecutive repeats (2 × TATCTC) was situated
approximately 100 bp upstream of the TATA box of the BETL-
1 promoter. Specific binding of ZmMRP-1 to this cis-element
was confirmed in vitro using electrophoretic mobility shift exper-
iments (Barrero et al., 2006). Similar cis-elements were found in
several other transfer cell-specific promoters and were designated
as “transfer cell box” elements. However, the “transfer cell box”
was not identified in ETC-specific promoters from wheat or rice
(Li et al., 2008; Kovalchuk et al., 2009). In these species, a single
copy of the TATCTC motif was found in a number of ETC-specific
promoters, suggesting that there has been degeneration of trans-
fer cell box sequences during evolution of some grass species. It
cannot be excluded that ETC-specific expression of some genes is
regulated by other, as yet unidentified TF(s), or at least requires
the presence of other factors for specific interaction with promoter
sequences.

It has been shown that ZmMRP-1 TF binds not only to gene
promoters, but it may also bind other proteins (Royo et al.,
2009). Two proteins were isolated in a yeast 2-hybrid screen
using full length ZmMRP-1 as bait; these were designated as
ZmMRP-1 Interactors 1 and 2 (ZmMRPI-1 and ZmMRPI-2;
Table 1). Binding of ZmMRP-1 to ZmMRPI-1 and ZmMRPI-
2 was confirmed in planta by co-localization of the proteins in
transfer cell nuclei. ZmMRPI-1 and ZmMRPI-2 are very similar
proteins, both belonging to the C(2)H(2) zinc finger protein
subfamily of nuclear proteins. Members of this subfamily inter-
act with MYB-related TF through their C-terminal conserved
domains (Royo et al., 2009). In ZmMRPI-1 and ZmMRPI-2

proteins, a Zinc finger domain of the C2H2-type and a C-terminal
DNA-binding domain are highly conserved both in disposition
and in sequence identities at the amino acid level, which are 89
and 97% for the Zinc finger and DNA-binding domains, respec-
tively (Figure 4). In both proteins the Zinc finger (Figure 4A)
and C-terminal DNA-binding (Figure 4B) domains fold into
α-helices, and β-sheets, respectively. Although the full-length
sequences of ZmMRPI-1 and ZmMRPI-2 share very high sequence
identity (85%) and similarity (94%), analysis using the SMART
database (Letunic et al., 2012) identified an ATPase, central
region-like domain in ZmMRPI-1, but a glycoprotein E1-like
domain and putative Raf-like Ras-binding domain in ZmMRPI-2
(Figure 4C). These domains were positioned in different loca-
tions of the protein sequences, reflecting localized differences in
amino acid sequence that may be important for specific regulatory
functions.

It was shown that MRPI proteins can modulate activation
of ETC-specific promoters by interacting with ZmMRP-1 (Royo
et al., 2009). In addition, the expression of MRPI genes in maize
and Arabidopsis are found to be expressed at the same nutrient
exchange surfaces, where the expression of ZmMRP-1 has been
previously detected. MRPI-orthologs genes have been identified
in the rice and Arabidopsis genomes (Royo et al., 2009).

Although there are no reports of other types of TF which are
specifically or predominantly expressed in ETC and participate
in the regulation of ETC development and function, the exis-
tence of such TFs cannot be excluded. Most members of the
HD-Zip IV TF subfamily, for example, are expressed in grain tis-
sues (Yang et al., 2002; Javelle et al., 2011; Kovalchuk et al., 2012a),
and are involved in regulation of LTP expression (Javelle et al.,
2010; Lopato et al., unpublished data). It has been reported that
at least three wheat LTPs (TaLtp7.2a, TaLtp9.1a, and TaLtp9.3e)
are specifically expressed in the main vascular bundle of wheat
scutellum (Boutrot et al., 2007), which plays a major role in sugar
transport from endosperm to embryo during seed germination.
Recently, it was demonstrated that the wheat HD-Zip IV TF
TdGL9H1 is also predominantly expressed in the scutellar vascular
bundle and thus is potentially a regulator of these LTPs (Kovalchuk
et al., 2012b). Since several LTPs have been found to be specifically
expressed in ETC layers (Hueros et al., 1995, 1999a; Doan et al.,
1996; Li et al., 2008; Kovalchuk et al., 2009), it would be reason-
able to predict that at least one member of HD-Zip IV subfamily is
also specifically or predominantly expressed in ETC and involved
in the transcriptional regulation of at least some ETC-specific
LTPs.

GENES RESPONSIBLE FOR SUGAR TRANSPORT TO
ENDOSPERM
Sucrose is the main carbohydrate transported from photosyn-
thetically active tissues to sinks such as root, flower, and seed
(Ruan et al., 2010; Lemoine et al., 2013). However, sucrose does
not enter in this form, but is converted into the hexoses glucose
and fructose. These reactions are catalyzed by sugar invertases
(INVs), which are reported also to have regulatory roles in plant
growth and development (LeClere et al., 2008, 2010; Chourey
et al., 2010). INVs can be classified into three groups according to
their localisation in cells: vacuolar (VIN), cytoplasmic (CIN) and
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FIGURE 4 | Domain analyses of ZmMRPI-1 and ZmMRPI-2 proteins

involved in the two component system (TCS) contain a highly conserved

Zinc finger domain in nearly the same location. (A) A sequence alignment
of the Zn finger domains, which fold into α-helices. (B) A sequence alignment
of the C-terminal DNA-binding domains, which fold into sheets. Protein
sequences were aligned with ProMals3D (Pei et al., 2008) and analysed for
domain boundaries using SMART (Letunic et al., 2012) and ProDom (Bru et al.,
2005). The predicted and consensus secondary structures (ss) are shown in
panels (A) and (B) in red (α-helices, h), blue (β-sheets, e) and black (loops)

types. Conservation of residues (brown and black types) on a scale of 9–5 is
shown at the top of the diagram. (C) Schematics of domain organization of
ZmMRPI-1 and ZmMRPI-2, as analysed by SMART (Letunic et al., 2012) and
ProDom (Bru et al., 2005). A position of the ATPase, central region-like domain
is shown in ZmMRPI-1, while in ZmMRPI-2, glycoprotein E1-like and Raf-like
Ras-binding domains are schematically represented. In both entries Zn finger-
(light gray) and C-terminal DNA-binding (dark gray) domains are also
illustrated. The schematic is drawn to scale of 505 amino acid (aa)
residues.

cell wall-bound or apoplastic (CWIN or INCW). Several stud-
ies have demonstrated that INCWs are the major type of INVs
responsible for the delivery of hexoses to the developing seed
(Table 1). Tight regulation of the delivery of hexoses by CWINs
provides a mechanism for controlling cell division and even cell
differentiation in developing kernels (Miller and Chourey, 1992;
Weber et al., 1996). A positive correlation between seed develop-
ment and the activity of INCWs has been observed in faba bean
(Weber et al., 1995, 1996), maize (Cheng et al., 1996; Vilhar et al.,
2002; Chourey et al., 2006), barley (Weschke et al., 2003; Sreeni-
vasulu et al., 2004), rice (Hirose et al., 2002; Wang et al., 2008a),
tomato (Zanor et al., 2009), and cotton (Wang and Ruan, 2012).
In addition to INVs localized at the interface of sink organs,
hexose transporters facilitate the import of hexoses into seed
endosperm and other sinks (Bihmidine et al., 2013; reviewed in
Slewinski, 2011).

ETC-SPECIFIC CELL WALL-BOUND INVERTASES
Transfer cells are the gateway for sugar transport from mater-
nal tissue to the endosperm. Sugar delivery in turn directly
affects transfer cell formation. Mutants of the maize gene Minia-
ture1 (mn1) show an anatomical lesion in the pedicel region and
reduced size of the kernel (Lowe and Nelson, 1946; Miller and
Chourey, 1992; Cheng et al., 1996). Kernel size is reduced due
to reductions in both mitotic activity and cell size (Vilhar et al.,
2002). Miniature1 encodes a cell wall invertase (INCW2) that was
originally thought to be localized in the basal endosperm and

pedicel (Miller and Chourey, 1992; Cheng et al., 1996; Carlson
et al., 2000). However, histochemical visualization of invertase
activity in the maternal pedicel region revealed that INCW2
is expressed exclusively in the ETC layer, and that the pedi-
cel is served by the orthologs gene INCW1 (Chourey et al.,
2006).

Loss of INCW2 function in the mn1 mutant led to reduced
size and number of the labyrinth-like wall-in-growths (WIGs)
of ETC, a subsequent decrease in plasma membrane surface area
and decline in ETC transport capacity, and consequently reduced
grain filling (Kang et al., 2009). Analysis of intracellular structure
by electron microscopy revealed that in the mn1 mutant, WIGs
in the ETC were stunted and the endoplasmic reticulum in these
cells was swollen; Golgi density in the mutant ETC was reduced to
51% of the Golgi density in wild-type plants (Kang et al., 2009).
INCW2-specific immunogold particles were detected in WIGs, the
endoplasmic reticulum, Golgi stacks, and the trans-Golgi network
in the ETC of wild-type plants, but were extremely rare in the ETC
of the mn1 mutant (Kang et al., 2009).

A recent study was undertaken to identify gene products that
are metabolically regulated in ETC in response to invertase defi-
ciency (Silva-Sanchez et al., 2013). Comparisons of soluble and cell
wall-bound proteomes of the mn1 mutant and wild-type (Mn1)
plants revealed 131 differentially expressed proteins, which fell
into two major groups: proteins related to carbohydrate metabolic
and catabolic processes, or proteins involved in cell homeostasis
(Silva-Sanchez et al., 2013).
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Developing kernels of the mn1 mutant also have drastically
reduced auxin (IAA) levels (LeClere et al., 2008). The reduced IAA
levels are due to decreased transcript abundance of the ZmYucca1
(ZmYuc1) gene. This gene encodes flavin monooxygenase, a key
enzyme in the IAA biosynthetic pathway (Chourey et al., 2010;
LeClere et al., 2010). Using two different approaches it was shown
that expression of ZmYuc1 is regulated by sugar levels (LeClere
et al., 2010). These data explain how sugar levels can influence
auxin levels in seed, which in turn regulates specific aspects of
seed development.

A similar role of INCW genes in seed development in rice has
been reported (Wang et al., 2008b). Rice seed weight was increased
by overexpression of the GRAIN INCOMPLETE FILLING 1 (GIF1)
gene that encodes a cell-wall invertase (Wang et al., 2008b). Inter-
estingly, although expression under the native GIF1 promoter
increased grain size, ectopic expression of the GIF1 gene under
the 35S or rice Waxy promoters resulted in smaller grains. This
observation illustrates that transgenic plant phenotypes depend
on the spatial and temporal patterns of transgene expression.

A study of barley cell wall-bound invertase genes revealed an
expression pattern similar to expression of maize INCW2. Two cell
wall-bound invertase genes, HvCWINV1 and HvCWINV2, were
preferentially expressed in the maternal-basal endosperm bound-
ary just before cellularization (Weschke et al., 2003). Transcripts
of HvCWINV1 were localized within the first row of endosperm
cells, in the outermost area of the nucellar projection as well as
in ETC before starch filling. HvCWINV2 is expressed early in
development, predominantly in the style region and later on in
pericarp areas which transiently accumulate starch (Weschke et al.,
2003).

Possible additional roles for INCWs have been revealed by
examining spatial and temporal expression of the GhCWIN1
gene in cotton seeds during very early seed development, from
just before fertilization to the beginning of starch accumula-
tion in the endosperm (Wang and Ruan, 2012). The dynamics
of GhCWIN1 expression suggest an involvement of INSWs in
regulating endosperm nuclear division, embryonic provascular
formation and differentiation of ETC (Wang and Ruan, 2012).

ETC-SPECIFIC CELL SOLUBLE INVERTASES
A barley gene encoding the soluble acid invertase enzyme,
sucrose:fructan 6-fructosyltransferase (HvSF6FT1), shows similar
temporal and spatial expression patterns to HvCWINV2 (Weschke
et al., 2003). HvSF6FT1 is expressed in the inner cell layers of
maternal pericarp above the dorsal cells, at 3 DAP. At 4 DAP the
expression of HvSF6FT1 is observed in the ventral pericarp and
ETC. At 6 DAP, expression of this gene is limited to the ETC layers
(Weschke et al., 2003). HvSF6FT1 transcript levels and acid soluble
invertase activity were found to be highest in the maternal pericarp
1–2 days after flowering (DAF). HvSF6FT1 is strongly expressed
in regions flanking the main vascular bundle and to a lesser extent
in filial ETC, which continues until grain maturity (Weschke et al.,
2003).

AN ETC-SPECIFIC HEXOSE TRANSPORTER
Regions of the developing barley grain associated with HvCWINV1
expression are also associated with expression of a hexose

transporter, HvSTP1 (Weschke et al., 2003; Table 1). HvSTP1
is expressed at a very low level within the pericarp, but much
more highly in the syncytial endosperm at 3 DAF and in ETC
at 7 DAF. The temporal and spatial association of expression
of HvsSTP1 and INVs suggests that hexoses released by INVs
within the endospermal cavity are transferred by the trans-
porter to the liquid part of the mitotically active endosperm
(Weschke et al., 2003). HvSTP1 is a large membrane protein
of 743 amino acid residues with up to 10 trans-membrane
α-helices, as assessed by hydrophobic cluster analysis (HCA;
Callebaut et al., 1997) and PRED-TMR (Pasquier et al., 1999;
Figure 5A). Our topological analysis shows that HvSTP1 harbors
a large intracellular module rich in hydrophilic residues that are
positioned approximately in the middle of an α-helical bundle
(Figure 5B).

Thus, the activity of cell wall INVs establishes a sucrose con-
centration gradient between maternal symplast and endosperm
apoplast by hydrolysis of sucrose to fructose and glucose moieties.
Subsequently, an ETC-specific hexose transporter facilitates the
import of hexoses into the endosperm (Miller and Chourey, 1992;
Cheng et al., 1996; Weschke et al., 2003).

ETC-SPECIFIC LIPID TRANSFER PROTEINS
PLANT NON-SPECIFIC LIPID TRANSFER PROTEINS
Non-specific lipid transfer proteins (nsLTPs) have been found in
a broad range of tissues from plants, animals and fungi (Crain
and Zilversmit, 1980; Tai and Kaplan, 1985; Kader, 1996; Ng
et al., 2012). The term “non-specific” indicates that LTPs can
bind with phospholipids or their derivatives of broad specificity
(Ostergaard et al., 1993). In plants, nsLTPs form multigenic fam-
ilies of structurally related proteins with low levels of protein
sequence identity. All plant nsLTPs are originally translated as
precursor proteins and contain hydrophobic signal peptides of
different length, which are subsequently proteolytically processed
by endopeptidases. The enzymes responsible for the processing
of precursors remain largely unknown but are likely to be mem-
bers of the subtilase group of Ser proteases (Murphy et al., 2012).
The precise place and role of signal peptide processing of nsLTPs
is also unknown. However, in one example it was shown that
signal peptide processing takes place in microsomal membranes
(Bernhard et al., 1991). It is not yet clear whether the prote-
olytic cleavage of a signal peptide also occurs in other types of
membranes.

Plant nsLTPs usually have a molecular mass between 6.5
and 10.5 kDa and an isoelectric point ranging between 8.5
and 12 (Jose-Estanyol et al., 2004). Each mature nsLTP sequence
usually contains a characteristic 8-cysteine residue motif: Cys1-
Xn-Cys2-Xn-Cys3Cys4-Xn-Cys5XCys6-Xn-Cys7-Xn-Cys8. Plant
nsLTPs were initially classified into two types, based on their
size and localization (Kader, 1996). Later, a new classification
based on the analysis of a large number of nsLTPs sequences
was proposed, to include nine types (I–IX) of nsLTPs (Boutrot
et al., 2008). Genome-wide analysis revealed 49 Arabidopsis, 52
rice and 156 wheat nsLTPs (Boutrot et al., 2008). Recently, the
first plant nsLTP database (nsLTPDB1) was constructed, which

1http://140.114.98.10/ltp/
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FIGURE 5 | Secondary structure analyses of a barley hexose

transporter HvSTP1, (A) A bi-dimensional hydrophobic cluster

analysis (HCA) plot (Callebaut et al., 1997). Positions of 10 membrane
helices MH1–MH10 are marked by arrowed lines. Proline residues are
shown as red stars, glycine residues as black diamonds, serine residues
are empty squares and threonine residues are shown as squares
containing a black dot in the center. Negatively charged residues are

colored in red and positively charged residues are in blue. Other
residues are shown by their single amino acid letter codes. The amino
acid numbers are read from the top to the bottom of the plots (in
duplicate) in a left to right direction. (B) A topology model predicted by
PRED-TMR algorithm (Pasquier et al., 1999). The intracellular and
extracellular positions of individual domains are shown. The topology
map was drawn with TOPO (http://www.sacs.ucsf.edu/TOPO/topo.html).

initially contained 595 nsLTPs from 121 different species. This
database includes information about LTP sequence, protein struc-
ture, relevant references and also some biological data (Wang et al.,
2012).

Plant nsLTPs are involved in embryogenesis (Sterk et al., 1991),
defense against bacterial and fungal pathogens (Molina and
Garcia-Olmedo, 1993; Molina et al., 1993; Hendriks et al., 1994;
Lindorff-Larsen and Winther, 2001), symbiosis (Krause et al.,
1994; Pii et al., 2009), plant response to environmental stresses
(White et al., 1994; Liu et al., 2000; Cameron et al., 2006) and in the
delivery of waxes to cuticle (Hendriks et al., 1994; Lindorff-Larsen
and Winther, 2001; Lee et al., 2009). It has also been postulated that
nsLTPs can associate with hydrophobic cell wall compounds and
disrupt or facilitate cell wall extension (Nieuwland et al., 2005). A
role in these very diverse functions is based on the ability of nsLTPs
to carry a broad range of hydrophobic molecules such as fatty
acids or fatty acid derivatives (Garcia-Olmedo et al., 1995). LTPs

can catalyze the exchange of lipids between natural and artificial
membranes in vitro (Helmkamp, 1986; Wirtz and Gadella, 1990;
Kader, 1996). A role of nsLTPs in intracellular lipid transfer has
also been proposed (Miquel et al., 1988) but not yet proven. Exist-
ing knowledge suggests that LTPs are secreted from cells into the
extracellular (cell wall) space (Serna et al., 2001; Yeats and Rose,
2008). Precise mechanisms of uploading, delivery to membranes
and cuticle, and unloading of lipidic molecules by LTPs remain
unclear.

LTP GENES SPECIFICALLY OR PREDOMINANTLY EXPRESSED IN ETC
Most nsLTP genes show very specific spatial patterns of expres-
sion, and several ETC-specific genes encoding different nsLTPs
have been identified in developing kernels (Hueros et al., 1995,
1999b; Doan et al., 1996; Cai et al., 2002; Gutierrez-Marcos et al.,
2004; Li et al., 2008; Kovalchuk et al., 2009; Table 1). Four types
of nsLTPs are found in maize BETL. BETL-1 and BETL-3 show
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sequence homology to defensin-like proteins; BETL-2 has no
homologous sequences; and BETL-4 shares some homology with
the Bowman-Birk family of α-amylase/trypsin inhibitors (Hueros
et al., 1995, 1999b). Members of these protein families have been
shown to inhibit the growth of fungi and bacteria (Broekaert
et al., 1997). Defensins and probably other types of LTPs can alter
the permeability of fungal plasma membranes and hence may
act as regulators of transport through plant cellular membranes
(Thompson et al., 2001). Proteolytic processing and secretion into
adjacent maternal tissue of BETL-2 (also named BAP2) protein
was demonstrated by immunolocalization in different grain tissues
(Serna et al., 2001). A gene with sequence similarity to BETL-3,
OsPR9a, has been found in rice. However, OsPR9a expression is
not restricted to ETC, but was also detected in some rice floral
tissues (Li et al., 2008).

Expression of BETL-1 and BETL-2 proteins was found to be
strongly reduced in the maize reduced grain filling1 (rgf1) mutant,
which also showed decreased uptake of sugars in endosperm cells
at 5–10 DAP and changes in pedicel development (Maitz et al.,
2000). The rgf1 mutant is morphologically similar to the mni1
mutant; it causes up to 70% reduction of grain filling in maize.
Starch accumulation (but not synthesis) is reduced in rgf1 kernels.
Therefore, the Rgf1 gene, which has not been identified, may be
involved in sugar sensing or transport in ETC (Maitz et al., 2000).

Expression of at least some ETC-specific genes is under mater-
nal control. One such gene, Maternally Expressed Gene1 (MEG1),
encodes a LTP which bears structural similarity to defensins
(Gutierrez-Marcos et al., 2004). MEG1 is expressed exclusively in
the BETL cells of maize endosperm and has a parent-of-origin
expression pattern during early stages of endosperm develop-
ment. However, at later stages of endosperm development it shows
biallelic expression. The product of this gene is glycosylated and
localizes to the labyrinthine in-growths of the walls of transfer cells
(Gutierrez-Marcos et al., 2004).

Another class of ETC-specific nsLTP genes was identified in
the barley transfer cell domain of the endosperm coenocyte. The
gene was designated Endosperm 1 (END1; Doan et al., 1996). The
expression pattern of the barley END1 gene and its ortholog
from wheat were studied using in situ hybridization (Doan et al.,
1996; Drea et al., 2005). Before cellularization END1 transcripts
accumulate mainly in the coenocyte above the nucellar projec-
tion, and after cellularization in the ventral endosperm over the
nucellar projection. At 8 DAP and later, a low level of END1
expression can be detected in the ETC and the adjacent starchy
endosperm (Doan et al., 1996). The function of END1 remains
unknown. The expression of the wheat END1 homologue, des-
ignated TaPR60, was studied using transgenic wheat, barley, and
rice stably transformed with a gene promoter-GUS fusion con-
struct (Kovalchuk et al., 2009). In wheat and barley, TaPR60 is
expressed predominantly in ETC and in the adjacent starchy
endosperm. However, in rice the expression pattern of TaPR60
was rather different, suggesting that the regulatory mechanisms
for ETC-specific expression in rice are different to wheat and
barley (Kovalchuk et al., 2009). A molecular model of the TaPR60
protein lacking its N-terminal hydrophobic peptide, constructed
using the crystal structure of a non-specific LTP from Prunus per-
sica as a template (Figure 6), indicates the likely positions of a

FIGURE 6 | Structural molecular modeling of theTaPR60 lipid transfer

protein. (A) HCA of a non-specific lipid transfer protein (LTP) from
Prunus persica (PDB 2ALG:A) and of TaPR60. Positions of N-terminal
hydrophobic signal peptide (large arrow ), four paired conserved cysteines
(arrowheads) and α-helices (lines) are marked. (B) Superposition of the
TaPR60 model (cyan) on the template crystal structure of 2ALG:A
(magenta) showing distribution of the secondary structural elements. A
root-mean-square-deviation value for 69 structurally equivalent residues is
1.5 Å over the Cα backbone positions. The dispositions of bound lauric acid
(LA; left ) and heptane (HE; right ), in cpk colors internalized in protein
cavities, and the positions of four invariant disulfide bridges (yellow ) are
also shown. The right-hand-side and left-hand -side arrows indicate N- and
C-terminal parts of both proteins, respectively. The Figure was modified
from Kovalchuk et al. (2009).

fatty acid (lauric acid) and lipid-mimicking molecule (heptane).
These are enclosed in the central cavity of a triple α-helical bun-
dle of TaPR60. Modeling supports the hypothesis that TaPR60
is involved in binding and transfer of lipid molecules. It was
also shown that the cavity of TaPR60 retains its shape both with
and without the hydrophobic signal peptide (Kovalchuk et al.,
2009). Therefore, TaPR60 could potentially enclose the lipid and
lipid-like molecule(s) in the cavity during precursor processing
and secretion. One of the possible functions of TaPR60 could
be in mediation of lipid delivery to or through a membrane
(Kovalchuk et al., 2009). Similar findings were reported for a
closely related protein, TdPR61, isolated from durum wheat (T.
durum; Kovalchuk et al., 2012a).
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Expression directed by the promoter of a rice homologue of
the END1 gene, OsPR602, was studied in transgenic rice and bar-
ley. In rice, the promoter of OsPR602 was active in ETC and
above the ETC in several layers of the starchy endosperm cells.
However, GUS reporter gene expression was also detected in the
maternal vascular tissue adjacent to ETC and vascular tissue of
the lemma and palea (Li et al., 2008). Surprisingly, in barley the
promoter of OsPR602 was activated only in ETC and adjacent lay-
ers of starchy endosperm and the temporal and spatial patterns of
GUS expression were perfectly correlated with the expression of
the END1 gene from barley and TaPR60 from wheat (Doan et al.,
1996; Kovalchuk et al., 2009). These data again suggest possible
differences in ETC-specific gene regulation between barley and
rice.

The most probable roles of END1-like proteins in ETC are
regulation of cell wall-ingrowth extension, formation of cellu-
lar membranes, lipid transfer to endosperm and/or defense from
bacterial and fungal pathogens transported from maternal tissues.

OTHER ETC-SPECIFIC GENES
Recently, a new ETC-specific gene, AL1, was isolated from
rice (Kuwano et al., 2011; Table 1). The gene encodes a puta-
tive anthranilate N-hydroxycinnamoyl/benzoyltransferase and is
expressed in the dorsal aleurone layer adjacent to the main vascu-
lar bundle. In rice, transfer cells are differentiated in this region.
The role of this gene in plants remains unknown.

With the advent of new technologies for tissue/cell-specific
transcriptome and proteome analysis (Thiel et al., 2012; Silva-
Sanchez et al., 2013) it is expected that further genes with
ETC-specific or predominant expression of novel function will
be identified.

POTENTIAL APPLICATIONS OF ETC-SPECIFIC GENES AND
THEIR PROMOTERS FOR IMPROVEMENT OF GRAIN QUALITY
AND YIELD
It is a well-documented that grain development in crops occurs
under saturated supply of assimilates, which indicates that trans-
portation of those nutrients from plant maternal tissues to
embryo and endosperm is the main yield limiting factor (Bor-
rás et al., 2004; Bihmidine et al., 2013). Therefore, manipulating
the nutrients transport in order to increase grain sink strength
is expected to lead to increased yield (Reynolds et al., 2009).
Considering the role of ETC as a principal gateway regulat-
ing flux of nutrient precursors for endosperm filling, there is
a huge, yet un-realized potential for engineering this gateway
to increase grain yield and improve endosperm composition:
quantity and quality of carbohydrates, proteins, lipids and
micronutrients.

The importance of TCS for ETC development and the likely
consequential involvement of TCS components in grain develop-
ment, make this group of genes interesting tools for engineering
or modifying grain quality and yield. Furthermore, involvement
of TCS components in response to major abiotic stresses such as
drought (Le et al., 2011; Kang et al., 2012), high salinity (Karan
et al., 2009), and cold stress (Jeon et al., 2010) have been demon-
strated. Although many genes representing the major components
of TCS were recently identified in the barley ETC layer (Thiel et al.,

2012), their function and responsiveness to environmental stresses
and stimuli are largely unknown. Most of the existing studies
on TCS-based cytokinin and ethylene signaling have been done
in the model plant A. thaliana. Although studies have recently
expanded to a broader range of plant species, there is still very
little known about TCS function in cereals and specifically in
grain development (Hellmann et al., 2010). Therefore, it is still
too early to design or even predict possible applications of spe-
cific grain-related TCS genes in breeding and molecular genetics
projects.

There are similar problems for biotechnologists interested in
manipulating the transcriptional regulation of ETC development
and function. Only one TF, ZmMRP-1, has been demonstrated
to regulate ETC function (Gómez et al., 2002). Observations
that ZmMRP-1 regulate several ETC-specific genes makes this
TF a promising target. However, characterisation of transgenic
plants with up- or down-regulated ZmMRP-1 has not been
reported. It may be that ectopic, constitutive overexpression of
ZmMRP-1 or silencing of this gene leads to significant pleiotropic
changes in plant development or is lethal. It would be par-
ticularly interesting to express this gene under an ETC-specific
promoter that is regulated by ZmMRP-1. This could lead to
higher levels of ZmMRP-1 as a result of feed-back loop activa-
tion of the promoter. Higher levels of ZmMRP-1 could potentially
enhance and/or extend in time the activation of target ETC-
genes, and consequently further increase the development of
cell wall-ingrowths (to increase cell membrane surface) and lev-
els of ETC-specific proteins responsible for transport of lipids
and sugars, hopefully culminating in increased efficacy of ETC
function. An alternative to overexpression of ZmMRP-1 could
be manipulation of levels of ZmMRP-1 regulators, the MRPI
proteins.

The best studied and currently most promising ETC-related
genes for the engineering of grain quality and yield, and particu-
larly for grain yield under stress conditions, are genes of sucrose
synthases, INVs, and hexose transporters. There are considerable
data on the structure and function of these genes (Weschke et al.,
2000; Xu et al., 2012). Some of these genes are either specifically
or predominantly expressed in ETC and tissues adjacent to ETC
layers in barley (Weschke et al., 2000), sorghum (Jain et al., 2008b),
cotton (Wang and Ruan, 2012), maize (Chourey et al., 2012; Liu
et al., 2012), and rice (Wang et al., 2008a). Improvement of grain
size and yield by overexpression of a hexose transporter has not
been reported. Recent reports of the effects of sucrose synthase and
cell wall-bound invertase overexpression, however, are astonishing
(Wang et al., 2008a; Xu et al., 2012; Li et al., 2013). For example,
overexpression of a potato sucrose synthase gene in transgenic cot-
ton reduced seed abortion and increased the seed fresh weight by
about 30% compared to the seed weight of control plants (Xu et al.,
2012). Constitutive overexpression of the Mn1 gene from Ara-
bidopsis, rice and maize in transgenic maize significantly increased
invertase activities in leaves and developing seeds and dramatically
improved grain yield through enlarged ears, and increased grain
size and number (Li et al., 2013). Total starch content in transgenic
kernels was also increased.

It is interesting however, that ectopic expression of cell wall-
bound INVs does not always produce an expected positive effect
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on grain size and yield. For example, ectopic expression of
the GIF1 gene under 35S or rice Waxy promoters resulted in
smaller grains, while overexpression of GIF1 driven by its native
promoter increased grain production (Wang et al., 2008a). The
incorrect spatial or temporal expression of sugar INVs and hex-
ose transporters can potentially lead to re-arrangement of auxin
levels in grain tissues and consequential changes in auxin gra-
dient. Decreased auxin levels impair development of ETC and
other parts of endosperm (Bernardi et al., 2012). Therefore,
knowing and considering the cascade of events induced by hor-
mones during early stages of grain development is important
for making correct decisions on spatial and temporal expres-
sion of genes, which can directly or indirectly influence auxin
concentrations.

Another way to increase invertase activity, while maintaining
the original spatial patterns of invertase gene expression, is in
silencing invertase inhibitors (Rausch and Greiner, 2004). Silenc-
ing of invertase inhibitors in transgenic tomato plants resulted in
an increased seed weight and increased levels of hexoses in fruit
(Jin et al., 2009). Inhibitor(s) of ETC-specific INVs have not been
reported, but if such inhibitor(s) exist, tissue-specific silencing of
these gene(s) would be interesting to test.

It would also be interesting to express genes of sucrose synthase,
invertase, and hexose transporters simultaneously, using stacking
constructs and clever selection of suitable promoters. A simpler
approach could be the tissue specific overexpression of a TF which
co-ordinately regulates a group of sugar production and transport
genes. It was recently reported that overexpression of the soybean
GmbZIP123 gene in transgenic Arabidopsis not only enhanced lipid
accumulation in Arabidopsis seeds, but also up-regulated expres-
sion of two sucrose transporter genes and three cell-wall invertase
genes by directly binding to their promoters. This in turn signif-
icantly increased levels of sucrose and both hexoses in seeds of
transgenic plants compared to seeds of control plants (Song et al.,
2013).

CONCLUSIONS AND FUTURE PERSPECTIVES
ETC are highly specialized cells responsible for the delivery of
signals and nutrients from maternal tissues to the developing
endosperm. Large numbers of ETC-specific genes and genes
predominantly expressed in ETC have been isolated and char-
acterized from important cereal crop species and other plants
during the last decade. Surprisingly, the most of identified
genes fall into just four of the five groups. These four groups
of genes are involved in signal transduction and/or transcrip-
tional regulation in ETC. Genes from two groups are directly
involved in transport of sugars and lipids to the endosperm.
Because of the significance of ETC for grain development, ETC-
specific genes and their promoters are important targets for the
generation of transgenic crop plants with improved seed size
and quality characteristics. The overexpression of ETC-specific
INCW genes in transgenic rice and maize provides the first
example of targeting ETC-specific genes for the manipulation
of grain characteristics. However, a better understanding of
the roles of ETC-specific genes encoding regulatory proteins is
required for the correct application of these genes for grain
biotechnology.
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