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Plants recognize a wide range of microbes with cell-surface and intracellular immune
receptors.Transmembrane pattern recognition receptors (PRRs) initiate immune responses
upon recognition of cognate ligands characteristic of microbes or aberrant cellular states,
designated microbe-associated molecular patterns or danger-associated molecular patterns
(DAMPs), respectively. Pattern-triggered immunity provides a first line of defense that
restricts the invasion and propagation of both adapted and non-adapted pathogens.
Receptor kinases (RKs) and receptor-like proteins (RLPs) with an extracellular leucine-
rich repeat or lysine-motif (LysM) domain are extensively used as PRRs. The correct
folding of the extracellular domain of these receptors is under quality control (QC) in the
endoplasmic reticulum (ER), which thus provides a critical step in plant immunity. Genetic
and structural insight suggests that ERQC regulates not only the abundance and quality of
transmembrane receptors but also affects signal sorting between multi-branched pathways
downstream of the receptor. However, ERQC dysfunction can also positively stimulate
plant immunity, possibly through cell death and DAMP signaling pathways.
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INTRODUCTION
Plants sense their encounters to microbes through immune
receptors that monitor extracellular or intracellular spaces for
pathogen-associated ligands (Jones and Dangl, 2006; Boller and
Felix, 2009; Dodds and Rathjen, 2010). Cell-surface receptors
involve not only PRRs that recognize microbe-associated molec-
ular patterns (MAMPs) or danger-associated molecular patterns
(DAMPs) to confer pattern-triggered immunity (PTI), but also
the resistance (R) proteins that recognize pathogen effectors to
confer effector-triggered immunity (ETI). Among the former,
FLS2 and EFR recognize the bacterial MAMPs flagellin (flg22
epitope) and the elongation factor EF-Tu (elf18 epitope), respec-
tively (Gomez-Gomez and Boller, 2000; Zipfel et al., 2006). Among
the latter, the tomato LRR-RLPs Cf proteins and Ve1 and the
rice LRR-RK XA21 confer immunity against Cladosporium ful-
vum, Verticillium dahliae, and Xanthomonas oryzae, respectively
(Song et al., 1995; Rivas and Thomas, 2005; de Jonge et al.,
2012). Adapted pathogens can escape or overcome the defenses
mounted by these extracellular receptors, with the aid of effec-
tors. However, pathogen effectors acting within the host cells
are directly or indirectly recognized by intracellular nucleotide-
binding and LRR (NB-LRR) domain-containing R proteins,
which leads to strong ETI activation that terminates pathogen
growth.

The ER plays a central role in the biogenesis and intracellu-
lar distribution of transmembrane receptors according to their
folding states and cellular demands. Hence, the ER homeostasis
and prompt adaptation to ER stress are vital for plant life and
health.

TRANSMEMBRANE IMMUNE RECEPTORS AND
REGULATORS IN PLANTS
In plants, the extracellular leucine-rich repeat (LRR) and
lysine-motif (LysM) domains define two major structural mod-
ules that recur in the extracellular domain of PRRs. PRRs
include the LRR-RKs FLS2, EFR, and PEPR1/2 (for the endoge-
nous Pep peptides; Krol et al., 2010; Yamaguchi et al., 2010),
the LRR-RLPs LeEIX1/2 (for fungal xylanase; Ron and Avni,
2004), the LysM-RK CERK1 (for fungal chitin; Miya et al., 2007;
Wan et al., 2008), the LysM-RLPs CEBiP (for fungal chitin;
Kaku et al., 2006) and LYM1 and LYM3 (for bacterial pepti-
doglycan; Willmann et al., 2011). PRR-associated RKs and/or
RLPs have been also described. The LRR-RK BAK1 (and/or
its related SERK members) associates with numerous LRR-RKs,
including the PRRs FLS2, EFR, and PEPR1/2, and also the
defense regulators BIR1 and SOBIR1/EVR (Chinchilla et al., 2007;
Ryan et al., 2007; Gao et al., 2009; Postel et al., 2010; Schulze
et al., 2010). The tomato SOBIR1 ortholog interacts with Cf-
4 and Ve-1 and is required for their ETI functions (Liebrand
et al., 2013b). SOBIR1/EVR also acts together with the LRR-
RLP RLP30, apparently in PTI against Sclerotinia sclerotiorum
(Zhang et al., 2013). CERK1 also serves LYM1 and LYM3 in
peptidoglycan perception (Willmann et al., 2011). Given the
BAK1-independence of CERK1-mediated chitin signaling (Heese
et al., 2007; Shan et al., 2008; Gimenez-Ibanez et al., 2009),
the LRR-PRRs and LysM-PRRs might act in separate receptor
complexes. In sum, extensive engagement of transmembrane
receptors and regulators represents a key principle in plant
immunity.
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EVOLUTIONARILY CONSERVED ERQC PATHWAYS UNDERLIE
PLANT-SPECIFIC SECRETORY PROCESSES
In eukaryotes, including plants, the biogenesis of transmembrane
or secretory proteins occurs through the ER. Folding status of
these proteins are monitored during their folding and matura-
tion by a mechanism termed ERQC that ensures the delivery
of properly folded proteins to their functional sites (Anelli and
Sitia, 2008). This is essential in all eukaryotes tested (Kelleher and
Gilmore, 2006). One pathway employs the Hsp70 family member
BiP that acts in a multi-protein complex with the Hsp40 family
members ERdJ and stromal cell-derived factor 2 (SDF2; Meunier
et al., 2002). A second pathway relies on Asn (N)-glycosylation
(Glc3Man9GlcNAc2 conjugation) on the nascent client proteins
catalyzed by the oligosaccharyltransferase (OST) complex. An N-
glycosylation inhibitor, tunicamycin, is widely used as an inducer
of ER stress in plants (Koizumi et al., 1999). Subsequent folding
of N-glycosylated proteins occurs through a pathway involving
glucosidases I and II (GI and GII), the folding cycle via the ER
chaperones calreticulin (CRT) and calnexin (CNX), and UDP-
glucose:glycoprotein glucosyltransferase (UGGT) that are highly
conserved in eukaryotes (Kelleher and Gilmore, 2006). How-
ever, plants exhibit better tolerance to single gene disruptions in
the N-glycosylation pathway downstream of the OST-mediated
step (see below). N-glycoproteomics studies comparing seven
model organisms including Arabidopsis also revealed the exis-
tence of lineage-specific N-glycosylated proteomes in a much
larger portion than previously thought (Zielinska et al., 2012).
Over-representation of extracellular functions in lineage-specific
N-glycoproteomes implies a role for N-glycosylation in the diver-
gence of extracellular and/or secretory functions unique to the
plant lineage.

ERQC FOR PLANT IMMUNE RECEPTORS AND REGULATORS
Genetic tractability for ERQC components in plant models facil-
itates unraveling their roles in different branches of plant immu-
nity. Genetic studies on Arabidopsis elf18-hyposensitive mutants
led to the discovery for an ER N-glycosylation pathway involving
the OST complex subunits STT3A and OST3/6, CRT3, UGGT, GII
that is essential for EFR but not FLS2 biogenesis (Li et al., 2009; Lu
et al., 2009; Nekrasov et al., 2009; Saijo et al., 2009; Haweker et al.,
2010; Farid et al., 2013). Consistently, compared to FLS2, EFR
is highly vulnerable toward chemical interference with the OST
function or N-glycosylation site substitutions in the receptor LRR
domain (Nekrasov et al., 2009; Saijo et al., 2009; Haweker et al.,
2010; Sun et al., 2012). In addition, EFR biogenesis also specifi-
cally requires SDF2, ERdj3b, and BiP (Nekrasov et al., 2009). It
remains elusive how these ERQC pathways are coordinated.

This N-glycosylation pathway is also required for SA-inducible
but EFR-independent resistance (Saijo et al., 2009). Consistent
with this, SA-induced resistance is reduced in the absence of BiPs
or the OST subunit DAD1 (Wang et al., 2005). By contrast, DAD1
is dispensable for EFR accumulation and function (Haweker et al.,
2010). In Nicotiana benthamiana that inherently lacks EFR, CRT3a
is also required for PTI to the oomycete pathogen Phytophthora
infestans (Matsukawa et al., 2013). These findings imply the exis-
tence of another ERQC client receptor(s) than EFR mediating
these immune responses.

Genetic studies with misfolded but signaling-competent alleles
of the LRR-RK brassinosteroid receptor BRI1, designated bri1-
5 and bri1-9, have also revealed a role for a common set of
ERQC components, CRT3, UGGT, and BiP, in the ER reten-
tion of the BRI1 variants (Jin et al., 2007, 2009; Hong et al.,
2008). However, OST3/6 seems to be dispensable for this ERQC
(Farid et al., 2013). This again points to partial client-specific
divergence in the usage of the OST complex subunits in the
N-glycosylation pathway. The overall composition and precise
mode of actions for the OST complex subunits remain to be
elucidated.

Proteomics studies revealed BiPs and CRTs among Cf-4- and
Ve1 interacting proteins in vivo (Liebrand et al., 2012, 2013a).
Of four BiP members and three CRT members in tomato and
N. benthamiana, only silencing of CRT3a (a plant-specific CRT;
Christensen et al., 2010) compromises the proper glycosylation
and biogenesis of functional Cf-4 protein. By contrast, silenc-
ing of single BiP members (except BiP4) and CRT members
impaired Ve1-mediated resistance, without a significant decrease
in the accumulation of complex glycan-conjugated Ve1. It is pos-
sible that these ER chaperones rather serve the LRR-RKs SOBIR1,
SERK1, or BAK1 that is required for Ve1 function (Fradin et al.,
2009, 2011; Liebrand et al., 2013b). Likewise, BiP3, SDF2, ERdj3B,
CNX1, and CRT3 were recovered among XA21-associated pro-
teins from rice plants (Park et al., 2010, 2013). BiP3 overexpression
and SDF2 silencing both lower XA21-mediated resistance, point-
ing to a critical role for the ER homeostasis in this receptor
pathway.

Compared to CRT3, CRT2 appears to have a minor role
in PTI (Li et al., 2009; Christensen et al., 2010). True CRT2
function might be obscured by its dual role: CRT2 overexpres-
sion in Arabidopsis led to constitutive SA accumulation and PR
gene activation in a manner dependent on its C-terminal Ca2+-
binding domain, but it rather lowered bacterial resistance (Qiu
et al., 2011). However, the perturbation of the N-terminal chap-
erone domain allowed CRT2 to enhance bacterial resistance.
It might be that CRT2 chaperone function serves a defense
suppressor whilst Ca2+-buffering function promotes SA-based
immunity. In N. benthamiana, both CRT2 and CRT3 are required
for the expression of the LRR-RK IRK1 that is essential for
the NB-LRR R protein-mediated ETI to Tobacco mosaic virus
(Caplan et al., 2009).

CRT-mediated defense suppression is exploited by the root-
knot nematode Meloidogyne incognita for virulence promotion
(Jaouannet et al., 2013). The nematode secretes CRT, which can
suppress MAMP responses, into the apoplastic spaces during
plant infection. In plants and animals, CRTs localize not only
inside but also outside the ER (Baluska et al., 1999; Sharma
et al., 2004; Krysko et al., 2013). Whether extracellular CRT pools
modulate immunity in plants, like in mammals, requires future
investigation.

In contrast to the aforementioned receptors that strictly require
a subset of ERQC components for their biogenesis and/or func-
tion, there are also receptors that exhibit relative robustness to
ERQC dysfunction, such as FLS2 and PEPR1/2 (Tintor et al.,
2013). Future studies will be required to elucidate the molecular
determinants for the differences in ERQC dependency.
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FIGURE 1 | A model for ER-mediated control of PRR biogenesis and

signaling. In weakly dysfunctional alleles of ERQC components (right),
folding defects of the extracellular domain of PRRs might affect stable
accumulation at the plasma membrane (PM), subcellular trafficking,
assembly of pre- and post-recognition complexes, or combinations thereof.
Importantly, this can selectively impair a subset of diverse signaling outputs
downstream of the receptor.

ROLE FOR THE LRR DOMAIN CONFORMATION IN IMMUNE
RECEPTOR COMPLEX FORMATION AND SIGNALING
The question of how a single receptor governs diverse signaling
outputs represents an important challenge in receptor biology. In
weakly dysfunctional alleles of CRT3 and GII, the tested signal-
ing outputs of EFR are differentially, but not uniformly, impaired
without a significant decrease in the receptor steady-state levels
(Lu et al., 2009; Saijo et al., 2009). In these alleles, the degree of
signaling defects is correlated with that of decreases in EFR-ligand
binding. It remains elusive how the lowered ligand binding dif-
ferentially affects multi-branched signaling pathways emanating
from the receptor. Nevertheless, these findings predict that signal
separation for these diverse outputs occurs at the level of or in the
proximity to the receptor, and can be influenced by the folding
states of the LRR domain (Figure 1).

A crystal structure of flg22-bound FLS2 and BAK1 ectodomains
revealed that the FLS2 ectodomain forms a superhelical struc-
ture with the flg22 binding site in the concave surface of the LRR
3–16 (Sun et al., 2013). This is in agreement with previous stud-
ies on the receptor-ligand binding (Dunning et al., 2007; Mueller
et al., 2012). Importantly, flg22 binding occurs in the FLS2-BAK1
interface and seems to stabilize their interaction. Strikingly, per-
turbations of the FLS2-BAK1 interface differentially affect separate
signaling outputs. BAK1 point substitutions in key residues of
this interface almost abolished MPK4/MPK11 activation with-
out substantial effects on MPK3/MPK6 activation. Flg22 variants
incapable of BAK1 binding reduce FLS2-BAK1 interaction and a
ROS burst without affecting MPK activation. These results sug-
gest that changes in either FLS2 or BAK1 LRR conformation alter
the receptor complex formation and function, and importantly,
which selectively influences downstream signaling pathways. This
model further predicts the existence of distinct signaling com-
plexes defined by the LRR domain conformations of FLS2 and

BAK1, which are specifically assigned to diverse signaling outputs.
Such complexes might be separated spatiotemporally from each
other and/or different in the composition of accessory proteins.

SUBCELLULAR PARTITIONING AND TURNOVER OF THE
RECEPTOR IN PATTERN RECOGNITION RECEPTORS
SIGNALING
The mechanisms underlying the subcellular partitioning of PRRs
between their biogenesis and functional sites are still poorly
understood in plants (Popescu, 2012). The reticulon-like proteins
RTNLB1/RTNLB2 regulate the accumulation of functional FLS2
at the PM, possibly by controlling the ER exit of FLS2 (Lee et al.,
2011). In rice, a chaperone complex consisting of Hsp90 and its
co-chaperon Hop/Sti1 promote the delivery of CERK1 from the
ER to the PM (Chen et al., 2010). This work also raises the pos-
sibility that PRRs associate with their signaling partners during
their travel in the secretory pathway. Detailed cell biological stud-
ies are needed to precisely decipher the subcellular dynamics of
these immune receptors.

PRR ubiquitination has emerged as a determinant for the
receptor levels by targeting the receptors for degradation and/or
modulating their membrane trafficking. Direct ubiquitination
and subsequent degradation of the receptor contributes to sig-
nal attenuation for FLS2 (Lu et al., 2011). Upon flg22 binding,
the FLS2 complex recruits two related U-box E3 ligases, PUB12
and PUB13, along with BAK1. A flg22-induced increase in
BAK1 kinase activity on PUB12/PUB13 suggests a model in
which BAK1-mediated phosphorylation promotes PUB12/13-
mediated FLS2 ubiquitination. However, given that SOBIR1
is required to stabilize Cf-4 (Liebrand et al., 2013b), degrada-
tion of one of the receptor-interacting proteins might cause the
receptor destabilization. Future investigation is required for how
trans-phosphorylation between FLS2 and BAK1 influences the
recruitment and phosphorylation of PUB12/PUB13 and how PUB
phosphorylation influences the E3 ligase activity. Another E3
ligase triplet, PUB22/23/24 also acts as a negative regulator for
FLS2, EFR, and PEPR signaling (Trujillo et al., 2008; Stegmann
et al., 2012). Yeast two-hybrid screens for the E3 ligase interac-
tors led to the identification of the exocyst subunit EXO70B2
as a target for PUB22-mediated ubiquitination (Stegmann et al.,
2012). EXO70B2 contributes to different PTI-associated outputs,
implying its influence on the receptor function, possibly through
maintaining the PM receptor pool. The defects of exo70b2 mutants
in responses to different MAMPs and pathogens point to a role
for EXO70B2 in a common step between different receptor path-
ways. Exocyst subunit degradation might lower the delivery of
these receptors to the PM. However, compared to the pub triple
mutants, the defects of exo70b2 mutants in PTI-related outputs
are much smaller, implying the existence of another ubquitina-
tion target(s) for these E3 ligases. Interestingly, the Medicago
truncatula E3 ligase PUB1 has been also described to inter-
act with and negatively regulate the LysM-RLK LYK3-mediated
nodulation (Mbengue et al., 2010). This molecular logic might
be widespread for transmembrane receptors in plant-microbe
interactions.

Pattern recognition receptors undergo ligand-induced internal-
ization from the PM, as described for FLS2 and LeEIX2 (Robatzek
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et al., 2006; Bar and Avni, 2009). Although this process is closely
correlated with immune signaling activation, it remains to be
determined whether it serves signal activation or attenuation of the
PRRs. Recent studies showed that flg22 perception transiently low-
ers the steady-state FLS2 levels and causes signal de-sensitization,
which is followed by the replenishment of FLS2 accumulation and
signal re-sensitization (Smith et al., 2013). It is of high interest
to correlate this turnover event with subcellular dynamics of the
receptor.

ENDOPLASMIC RETICULUM STRESS AND DEFENSE
REGULATION
Overloading of misfolded proteins beyond the capacity of ERQC,
termed ER stress, induces the so-called unfolded protein response
(UPR) that is characterized by the induction of ER chaper-
ones. Although close associations between UPR, disease, and
immunity have been well documented in animals (Todd et al.,
2008), much less information is available in plants (Vitale and
Boston, 2008; Eichmann and Schafer, 2012). Two arms of UPR
signaling have been described in Arabidopsis that involve the
transmembrane transcription factors (TFs) bZIP17/bZIP28 and
the protein kinase/ribonuclease IRE1 (Iwata and Koizumi, 2012;
Howell, 2013). IRE1 serves to generate an active form of the TF
bZIP60 via its mRNA processing. The two homologues IRE1a and
IRE1b, as well as bZIP60, contribute to SA-mediated antibacterial
immunity (Moreno et al., 2012). It seems likely that UPR-based
increase of ERQC capacity ensures the supply of functional trans-
membrane regulators and alleviates cell death or damages that
are caused by excessive ER stress (Howell, 2013). Indeed, ire1a
ire1b plants show enhanced cell death upon ER stress, pointing
to a role for the proper UPR in the ER homeostasis (Mishiba
et al., 2013). ER stress-induced cell death is exploited by the
mutualistic fungus Piriformospora indica for Arabidopsis root
infection (Qiang et al., 2012). The fungal colonization is depen-
dent on active suppression of the host UPR, ER disintegration
and subsequent vacuolar processing enzyme-mediated vacuolar
collapse leading to cell death in the colonized cells. Impaired ER
integrity might disturb vesicular secretion of antimicrobial and/or
defense signaling molecules, which could also facilitate fungal
colonization.

Excessive ER stress also induces autophagy, another link to
plant defense responses (see more details in Hayward and Dinesh-
Kumar, 2011; Teh and Hofius, 2014). Both pro-survival and pro-
death functions have been assigned to autophagy in the control
of immune responses. Likewise, excessive ER stress can also pos-
itively influence plant immunity. In this respect, it is conceivable
that ER stress-induced cell death emits DAMPs, as documented in
animals (Krysko et al., 2013). This possibility remains understud-
ied in plants. ER stress induces the TF OsWRKY45 that promotes
SA-based defense in rice (Hayashi et al., 2012) and systemic immu-
nity in cucumber (Sticher and Metraux,2000). The mechanisms by
which excessive ER stress is sensed and linked to defense activation
represent an important future challenge.

CONCLUSION AND PERSPECTIVE
The ER regulates the abundance, quality and signaling function
of transmembrane immune receptors. Genetic and proteomic

studies led to the identification of ERQC components that are
critical for PRR biogenesis in different plant species. Interestingly,
emerging evidence points to a role for ERQC in receptor signal
sorting, possibly through controlling the folding states and thus
conformations of the extracellular domains. Future studies will
be needed to reveal how ERQC modulates the turnover, subcel-
lular dynamics, complex assembly, and post-recognition signaling
of PRRs. It is also of importance to show how PRR biogenesis is
rewired during pathogen challenges, according to the extent of ER
stress arisen. Excessive ER stress might facilitate to engage DAMP-
mediated immune systems that are tolerant to ERQC dysfunction,
and thereby can ultimately enhance plant immunity.
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