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Nitric  oxide (NO),  peroxynitrite
(ONOO™), and S-nitrosoglutathione
(GSNO) are components of a family of
molecules which have important signaling
functions in higher plants under phys-
iological and stress conditions because
directly or indirectly can mediate post-
translational modifications  including
binding to metal centers, S-nitrosylation
of thiol groups and nitration of tyrosine
(Lamattina et al., 2003; Besson-Bard et al.,
2008; Baudouin, 2011).

During the last 10 years or so, differ-
ent sets of data indicate surprising new
findings in relation to the enzymatic com-
position and functions of plant peroxi-
somes. One of these discoveries was the
presence of an L-arginine-dependent NO
synthase activity which initially shows
that these organelles house a complete
NO metabolism that participates in the
physiology of whole plants under nor-
mal and adverse environmental conditions
(Barroso et al., 1999; Corpas et al., 2004).

PEROXISOMAL NITRIC OXIDE
PARTICIPATES IN A WHOLE ARRAY OF
PHYSIOLOGICAL PROCESSES

Larger than a mitochondrion and smaller
that a chloroplast, plant peroxisomes
observed under an electron microscope
are characterized as having a very sim-
ple structure made up of a single mem-
brane that includes a granular matrix and
sometimes a crystal structure (Tenberge
and Eising, 1995; Usuda et al, 1999).
However, from a metabolic perspective,
peroxisomes possess an important and
complex enzymatic composition charac-
terized by plasticity which is adaptable to
the plant organ, development stage, and/or

environmental conditions (Fulda et al.,
2004; Ma et al., 2006; Le6n, 2008; Babujee
et al., 2010; Hu et al., 2012). However,
with the unexpected identification of per-
oxisomal proteins, new functions for these
organelles have been proposed (Nowak
et al, 2004; Reumann et al., 2007;
Sorhagen et al, 2013). Given perox-
isomal L-arginine-nitric oxide synthase
(NOS) activity has the same cofactor
requirements as animal NOS responsi-
ble for the endogenous generation of
NO (Figures 1A-C) (Corpas et al., 2009
and references therein), it has been sug-
gested that these organelles are a source
of NO which can regulate peroxisomal
metabolism and also be a source of long-
distance signal molecules that participate
in cross-talk between the different sub-
cellular compartments (del Rio, 2011).
In addition, data from different areas of
plant research suggest that peroxisomal
NO participates in an array of physio-
logical functions and in different organs
such as leaf senescence, pollen tube growth
(Prado et al., 2004), auxin-induced root
organogenesis (Schlicht et al., 2013) as
well as being involved in the mecha-
nism of response to abiotic stress condi-
tions such as salinity and cadmium stress
(Corpas et al., 2009; Corpas and Barroso,
2014).

PEROXISOMAL NITRIC OXIDE
METABOLISM

Recently, cellular and biochemical
approaches have shown the presence of
new components involved in the peroxiso-
mal metabolism of NO such as ONOO™,
S-nitrosoglutathione (GSNO), GSNO
reductase and protein nitration (Heijnen

et al., 2006; Barroso et al., 2013; Corpas
and Barroso, 2014) which contribute to a
more complete picture of the peroxisomal
metabolism. It has also been demonstrated
that Arabidopsis plants under cadmium
stress, peroxisomal peroxynitrite, NO, and
superoxide anion (O ) are overproduced,
suggesting that peroxisomes participate in
the nitro-oxidative stress response to this
heavy mental (Corpas and Barroso, 2014).
Given that NO and related molecules can
mediate post-translational modifications,
mainly nitration and S-nitrosylation, sev-
eral proteomic studies of different plant
species have also shown that some per-
oxisomal proteins are potential targets
of post-translation modifications medi-
ated by NO-derived molecules. Thus, a
proteomic analysis of isolated pea leaf
peroxisomes has shown that the NADH-
dependent hydroxypyruvate reductase
(HPR1) involved in the photorespira-
tion pathway is negatively modulated
by tyrosine nitration, specifically Tyr198,
which affects the binding of the coen-
zyme (Corpas et al., 2013). This suggests a
clear connection between NO metabolism
and photorespiration. In vitro assays using
NO donors also revealed that several per-
oxisomal enzymes, including catalase,
malate dehydrogenase, glycolate oxidase,
and hydroxypyruvate reductase, are also
potential candidates of S-nitrosylation
(Ortega-Galisteo et al., 2012).

CONCLUDING REMARKS AND FUTURE
RESEARCH

Accumulated data obtained during the
last 10 years or so confirm that plant
peroxisomes possess a whole metabolic
mechanism related to NO metabolism
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FIGURE 1 | Peroxisomal localization by confocal laser scanning microscope (CLSM) of
molecules involved in NO metabolism. (A) CLSM in vivo detection of peroxisomes (green color)
in primary roots of Arabidopsis seedlings expressing GFP-PTS1 (green fluorescent protein fused
with peroxisomal targeting signal 1). (B) CLSM in vivo detection of NO (red color) with DAR-AM AM
in the field showed in panel (A). (C) merged images of panels (A,B). Arrows indicate representative
punctate spots corresponding to NO and peroxisome localization. (D) Model proposed for the
metabolism and signaling function of nitric oxide (NO) and S-nitrosoglutathione (GSNO) in plant
peroxisomes. Reproduced, with permission, from Plant Physiol. 151:2083-2094 (Copyright
American Society of Plant Biologists) for panels (A-C).
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which complements our knowledge of the
reactive oxygen species (ROS) metabolism.
Therefore, our understanding of the bio-
logical chemistry of NO in peroxisomes
presented in Figure 1D will now provide a
framework to comprehend how these NO-
derived molecules participate in the plant
development process (Prado et al., 2004;
Schlicht et al., 2013) and to understand the
mechanism of response to environmental
stress (Corpas and Barroso, 2014). Further
research is required to elucidate the nature
of finely-tuned endogenous regulation of
peroxisomal components.
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