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The calcifuge and calcicole character of wild plants has been related to nutrient availability
shortages, including iron (Fe)-deficiency. Surprisingly, just a few studies examined the
relation between root Fe uptake and plant distribution in different soil types. We assessed
the root Fe acquisition efficiency of two Ulmus species with calcareous (Ulmus minor) and
siliceous (U. laevis) soil distribution patterns in the Iberian Peninsula. Seedlings of both
elm species were grown hydroponically with different Fe concentrations during 6 weeks.
Plant physiological responses to Fe-limiting conditions were evaluated as were the ferric
reductase activity and proton (H+) extrusion capacity of the roots. Iron deprived elm
seedlings of both species were stunted and suffered severe Fe-chlorosis symptoms. After
Fe re-supply leaf chlorophyll concentrations rose according to species-dependent patterns.
While U. minor leaves and seedlings re-greened evenly, U. laevis did so along the nerves of
new growing leaves. U. minor had a higher root ferric reductase activity and H+-extrusion
capability than U. laevis and maintained a better nutrient balance when grown under
Fe-limiting conditions. The two elm species were found to have different Fe acquisition
efficiencies which may be related to their natural distribution in calcareous and siliceous
soils of the Iberian Peninsula.
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INTRODUCTION
Ulmus laevis is a Northern Hemisphere genus of importance in
the ecological context of the Iberian Peninsula (García-Nieto et al.,
2000). The indigenous elm species found in Spain are U. glabra
Huds, U. laevis Pall. and U. minor Mill. The native character of
U. laevis has been recently confirmed by DNA molecular mark-
ers (Fuentes-Utrilla et al., 2014). Despite U. minor being native to
Spain (Richens and Jeffers, 1986; Gil and García-Nieto, 1990),
its natural distribution is not clear since this species has been
extensively planted for over 2,000 years, first for training vines
and later for ornamental purposes (Gil et al., 2004). U. minor can
be found in the whole Iberian Peninsula in azonal flood-plain
forests, linked to shallow water-tables, since it tolerates floods
as well as summer droughts. Nonetheless, it preferentially grows
in Eastern Spain (Figure 1) were there is an abundance of cal-
careous, alkaline soils (Richens and Jeffers, 1986). In contrast,
U. laevis is one of the few European tree species which thrives
in damp soils that are seasonally flooded (Collin et al., 2000).
In Spain its relic populations are scarce, small and fragmented
(Figure 1, Venturas et al., 2013a; Fuentes-Utrilla et al., 2014). U.
laevis chiefly grows in acid soils of the Western Iberian Peninsula
as riparian forests, which are subjected to seasonal waterlog-
ging and linked to aquifer discharge areas and/or endorheic
basins.

The distribution of U. laevis and U. minor in the Iberian Penin-
sula may be related to calcifuge versus calcicole characteristics of
each species. Whilst calcicole plants are able to take up nutrients
when grown in calcareous soils (Zohlen, 2002), calcifuge species

growth under high pH, alkaline soil conditions is limited by low
nutrient availability especially phosphorus (P; Tyler, 1992; Zohlen
and Tyler, 2004), iron (Fe; Zohlen and Tyler, 1997, 2000; Zohlen,
2002), and manganese (Mn; Messenger, 1986; Thomas et al., 1998;
Kuster et al., 2013).

Iron is a vital element for plant growth, development and sur-
vival, since it is essential for the proper functioning of multiple
metabolic and physiological processes (López-Millán et al., 2013;
Sudre et al., 2013; Grillet et al., 2014). The detrimental effect of
lime-induced chlorosis on wild plants grown in calcareous, high
pH soils has been only analyzed in a few eco-physiological stud-
ies (Hutchinson, 1970; Anderson, 1984; Tyler, 1996; Zohlen and
Tyler, 1997; Zohlen, 2002). While different plant strategies and
specific mechanisms for the acquisition and homeostasis of Fe
have been characterized for several agronomic crops (Römheld,
1987; Tagliavini and Rombolà, 2001; Kobayashi and Nishizawa,
2012; Roschzttardtz et al., 2013), there is limited information on
the performance of forest species (Gogorcena et al., 2001; Fodor
et al., 2005; Pestana et al., 2012; Kuster et al., 2013).

Despite the ubiquitous presence of Fe in the earth’s crust, the
low solubility of Fe(III) compounds in many soils prevents plant
Fe uptake and induces the development of Fe deficiency symp-
toms (Lindsay, 1984; Lucena, 2006). Iron chlorosis is principally
observed in calcifuge plants growing in calcareous soils, where
CaCO3 buffers soil solution pH in the range of 7.5–8.5 (Lind-
say and Schwab, 1982), and in the presence of high bicarbonate
concentrations (Lucena, 2000). According to the specific root
uptake mechanisms for the acquisition of Fe, plants have been
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FIGURE 1 | Ulmus laevis populations (Venturas et al., 2013a)

represented as white dots over an Iberian Peninsula soil pH map

(Rodríguez et al., 2009). Ulmus minor is thought to be native east of the
broken line (Richens and Jeffers, 1986), although it grows all over Spain
because this species has been extensively used by humans (Gil et al.,
2004).

classified as (Marschner and Römheld, 1994): Strategy I (dicotyle-
doneous and non-graminaceous monocotyledoneous species) or
Strategy II (restricted to graminaceous species), which are addi-
tionally capable of producing phyto-siderophores. Iron uptake
mechanisms in Strategy I plants may involve metabolic and mor-
phological changes (Rombolà et al., 2002; Abadía et al., 2011;
López-Millán et al., 2013), but the major components are: (i) the
occurrence of a Fe-reductase enzyme of the FRO (membrane-
bound ferric reductase) family, (ii) the induction of an IRT (iron
regulated transporter) Fe(II) transporter that belongs to the ZIP
family (ZRT, IRT-like protein), (iii) acidification of the rhizo-
sphere via the excretion protons by a H+-ATPase, and (iv) the
excretion of organic compounds, such as carboxylates, pheno-
lics, and flavonoids, which can affect Fe-availability directly or
indirectly. The relative importance and efficacy of the differ-
ent root Fe uptake mechanisms may vary among plant species,
varieties and populations, which may be associated with the tol-
erance or susceptibility when grown in high pH, calcareous soils
(Dell’Orto et al., 2013).

Information on the root response mechanisms of trees to lime-
induced chlorosis is mostly limited to some fruit species such as
peach (Gogorcena et al., 2000; Jiménez et al., 2011), Annona (Ojeda
et al., 2003), olive, pear, quince (De la Guardia and Alcántara,
2002; Donnini et al., 2011), and to a few forest or woody species
like cork-oak (Gogorcena et al., 2001), poplar (Fodor et al., 2005),
carob and trifoliate orange (Pestana et al., 2012). On the other
hand, the response of some calcicole and calcifuge plants to lime-
induced chlorosis (e.g., Zohlen and Tyler, 1997, 2000; Zohlen,
2002; Donnini et al., 2012) has been principally evaluated on the
basis of tissue Fe determinations.

Therefore, given the markedly different distribution of U. lae-
vis and U. minor in siliceous and calcareous soils of Spain and

as a first approach, a greenhouse study was undertaken to assess
the effect of growing these species under hydroponic, Fe-limiting
conditions. With the aim of comparing the performance of both
elm species under Fe-limiting conditions, we tested the following
hypotheses: (i) Do U. laevis and U. minor differ in their degree
of tolerance to lime-induced chlorosis in relation to growth, defi-
ciency symptom development and nutrient homeostasis?, and (ii)
is U. minor more efficient than U. laevis in acquiring Fe via the
root system as measured by ferric reductase activities and proton
extrusion capacities?

MATERIALS AND METHODS
PLANT CULTURE
Ulmus minor P-VV1 genotype seeds (the code refers to the Spanish
Elm Breeding Program) were collected at Puerta de Hierro nurs-
ery (Madrid, 40◦27’N, 3◦45’W) conservation plot, and U. laevis
M-VD.R29 genotype seeds (referring to the Spanish Elm Breeding
Program) at Valdelatas forest (Madrid, 40◦32’N, 3◦40’W). In the
first experimental week, seeds were germinated in 4 L pots filled
with perlite. All the materials used for plant growth (perlite and
pots) were previously washed (two washes in 0.1 M HCl, followed
by a wash in 100 μM ethylenediaminetetraacetic acid disodium
(Na2EDTA) and several rinses in pure water) to limit the poten-
tial occurrence of Fe contamination. Seeds were initially irrigated
with distilled water (type II analytical grade, obtained with an Elix
5 apparatus, Millipore, USA) until the development of the first
true leaf (c.a. 3 weeks after seed sowing). Seedlings were subse-
quently grown in ¼ strength nutrient solution (T0, as described
below) for 1 week, ½ strength for another 2 weeks, and finally
in full-strength solution until the end of the experimental period.
The base nutrient solution without Fe (T0) was changed once per
week and had a composition of: (i) macronutrients (mM): 1.0
Ca(NO3)2, 0.9 KNO3, 0.3 MgSO4, and 0.1 KH2PO4; (ii) EDTA-
buffered metal micronutrients (μM): 2.5 MnSO4, 1.0 CuSO4, 10.0
ZnSO4, 1.0 NiCl2, 1.0 CoSO4, and 115.5 Na2EDTA; and (iii) other
micronutrients (μM): 35 NaCl, 10 H3BO3, and 0.05 Na2MoO4

(Nadal et al., 2012). The pH of the solution was buffered with
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) at
0.1 mM and adjusted to 7.5 with 1.0 M KOH (Nadal et al.,
2012). Seedlings were grown in a greenhouse under a 16/8 h
day/night regime and temperatures ranging from 10 to 25◦C. A
total of 72 homogeneous seedlings from the two species were
selected and transferred to hydroponic culture 1 month after sow-
ing. Twelve plants from the same species were placed together
in continuously aerated (approximately 100 L of air per hour
and container) 6 L containers filled with full-strength nutrient
solution.

TREATMENT APPLICATION
When seedlings were 2 months old the nutrient solution was
changed for the onset of the different root Fe treatments. When
supplied to the plants, iron was applied as Fe(III)-HBED pre-
viously synthesized in the laboratory by complexing free Fe(III)
supplied as Fe(NO3)3 9H2O with HBED (ADOB PPC, Poznan,
Poland) at 1:1 (Fe:ligand) ratios.

Three different Fe treatments per species were initially added to
the base nutrient solution, namely: 0 μM Fe (i.e., T0 containing no
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Fe, as described above), 5 μM Fe (T5) and 20 μM Fe (T20). Four
containers per species received 0 μM Fe (T0). Nutrient solutions
were changed once per week until the end of the experimental
period (after 6 weeks). To achieve a Fe-deficiency state similar to
what may occur to Fe-chlorotic field trees and an intermediate
chlorosis level, an additional 1 μM Fe treatment (T1) was given
for 2 weeks to one T0 container per species (i.e., to 12 plants).

PLANT PHYSIOLOGICAL RESPONSES
After Fe-resupply, plant heights and SPAD values (measured with
a SPAD 502, Minolta, Osaka, Japan) were determined on a weekly
basis for 6 weeks on 12 plants per treatment and species. For SPAD
index determinations, which give an estimation of leaf chlorophyll
(Chl) concentrations (Nadal et al., 2012), two sub-apical leaves per
plant were measured, with two measurements per leaf. Total Chl
contents were determined by the method of McKinney (1941) and
correlations with SPAD values were established for both species.
In brief, Chl concentrations were measured from fresh tissue after
extraction in 80% acetone and spectrophotometric reading at
664 nm for Chl a and 647 nm for Chl b (7315 Spectrophotometer
Jenway, Bibby Scientific Limited, UK).

Plant tissues were analyzed following standard laboratory pro-
cedures and limiting the risk of Fe contamination by rising the
flasks, test tubes, filter paper, funnels and caps in 0.1 M HCl prior
to use (Nadal et al., 2012). At the end of the experimental period,
all the leaves and stems of the plants were separated and thor-
oughly washed with 0.1% HCl plus 0.05% surfactant (Tween 20,
Sigma Aldrich). They were then rinsed once in tap water and
twice in distilled water (Nadal et al., 2012). The mineral element
composition of Ulmus seeds was also analyzed after separation
of the seeds from the samaras. Plant tissues were subsequently
oven-dried at 70◦C for 2 days, weighed and ground prior to min-
eral element determination after dry-ashing. Carbon and N were
measured with an elemental analyser (TruSpec, Leco Corporation,
St. Joseph, MI, USA). The remaining elements were determined
by inductively coupled plasma (ICP, Perkin-Elmer, Optima 3000)
following the UNE-EN ISO/IEC 17025 standards for calibration
and testing laboratories (CEBAS-CSIC Analysis Service, Murcia,
Spain).

ROOT PROTON EXCRETION
To assess the acidification (proton extrusion; Römheld et al., 1984)
capacity of the roots of U. minor and U. laevis, 15 plants (10 weeks
old) per species never supplied with Fe via the root system (i.e.,
belonging to the T0 treatment) were selected. Individual plants
were transferred to 250 mL dark, sterile, aerated plastic jars. Each
black lid closing a jar had two different size perforations to allow
insertion of an air dispersion tube, and an elm seedling. Three
treatments without HEPES were applied (five replicates per Fe-
treatment and species): T0, T5, and T20 solutions and adjusting
the pH to 7.0 with 1.0 M KOH. Each jar was filled with 200 mL of
its corresponding nutrient solution. At 1, 2, 3, 4, 7, 8, and 9 days
after the beginning of the treatment (DAT) the jars were first filled
up to 200 mL with pure water, and a 5 mL sample was collected for
titration. Twenty-five mL of pure water were added to each 5 mL
nutrient solution sample. Root H+ extrusion was subsequently
calculated after titration of the diluted nutrient solution with

0.5 mM NaOH to reach again the initial pH of 7.0 (measurements
carried out with a Micro-pH 2002 pH-meter, Crison Instruments,
Spain). Since solutions were continuously aerated, the contribu-
tion of root respiration to solution acidification was negligible.
Shoot and root fresh weights (FWs) were recorded at the end of
the experimental period. The daily H+ extrusion per plant (μmol
g−1 root FW day−1) was calculated as the H+ increment since the
previous day.

ROOT REDUCTASE ACTIVITY
The method described by Lucena and Chaney (2006) was followed
to assess the root ferric reductase activity (RA) of the plants. Two
days before RA measurement, the 6 L containers were transferred
to a growth chamber (with 30◦C/25◦C day/night temperatures)
with cool-white fluorescent and incandescent light (200 μEm−2

at plant height during 16 h per day). Two-hundred-and-fifty mL
darkened, sterile plastic jars with black lids were placed in the
growth chamber. Each jar contained 200 mL reductase assay solu-
tion consisting of: macronutrient solution T0 as in the growth
period; 100 μM Fe(III)-EDTA used as substrate of the ferric
chelate reductase; 2 mM 2-morpholinoethanesulfonic acid (MES)
to buffer the pH at 6.0; and 300 μM bathophenanthrolinedisul-
fonic acid (BPDS) as an Fe2+ trapping and coloring reagent. The
lids had one hole for a plastic gas dispersion tube, another for a
pipette, and a third one to hold one elm seedling. Each solution
was continuously aerated and allowed to reach temperature equi-
librium before plants were transferred. Experiments began 3 h into
the daylight period. Initial 3 mL samples were obtained for each
jar. The roots of plants were washed three times in macronutrient
solution containing 37.5 μM Na2BPDS, and then transferred to
the RA solutions. Seven replicates (14 weeks old plants) were pre-
pared for each treatment (T0, T1, and T20) and species. Four jars
without plants were included in order to correct reduction rates for
slow photo-reduction. Three-mL nutrient solution samples were
withdrawn at 10, 20, 60, and 120 min and the Fe(II)-BPDS con-
centration was subsequently measured at 535 nm, with a V-650
spectrophotometer (Jasco, Easton, MD, USA). Standard Fe(II)-
BPDS solutions were previously prepared and molar absorption
coefficients at 535 nm were determined. For each experimental
plant, the ferric RA activity was determined as the slope of the
curve resulting from plotting the Fe(II) concentration recorded
over time divided by the root FW.

STATISTICAL ANALYSIS
Analyses of variance (ANOVA) were performed for SPAD values,
plant height, root proton extrusion, reductase activity, Chl and tis-
sue mineral element concentrations. The factors considered were
Fe-treatments nested within species. All pairwise comparisons of
mean values were performed using Tukey’s honestly-significant
difference (HSD) multiple range test at a 95% confidence level. All
statistical analyses were performed using STATISTICA 7.0 software
(StatSoft Inc., Tulsa, OK, USA).

RESULTS
PLANT PHYSIOLOGICAL RESPONSES
For the two species, Fe-supply led to a steep Chl concentra-
tion increment during the first 2 weeks (Figure 2), which was

www.frontiersin.org March 2014 | Volume 5 | Article 104 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Nutrition/archive


Venturas et al. Root iron uptake of Ulmus

FIGURE 2 | SPAD evolution for the different treatments during 6 weeks

after Fe-resupply to 2 months-old plants (n = 12, mean ± SD; letters

correspond toTukey’s HSD 95% homogeneous groups). Filled symbols,
U. laevis; empty symbols, U. minor ; circles, 20 μM Fe; triangles, 5 μM Fe;
squares, 1 μM Fe; diamonds, 0 μM Fe. The black arrow indicates when the
1 μM treatment was initiated and gray arrows when it was stopped.

maintained until the end of the experimental period. In gen-
eral and for a similar root Fe supply level U. laevis had higher
SPAD values than U. minor leaves, and there were no signifi-
cant differences between the 20 and 5 μM Fe treatments at the
end of the trial. The supply of 1 μM Fe to Fe-deficient seedlings
(indicated with an arrow) in week 3 led to a steep Chl increase
(Figure 2).

Both elm species fully supplied with iron (20 μM Fe treatment)
were green, had a healthy appearance and a large size (especially U.
laevis) during the whole experimental period (Table 1, Figure 3).
For this treatment, U. laevis leaves had 37% more total Chl concen-
trations than U. minor (Table 1). Iron-sufficient, U. laevis leaves
also had 34% higher tissue Fe concentrations than U. minor leaves
(Table 1).

FIGURE 3 | Plant height increment (Week 6 – Week 0) after Fe-resupply

to 2 months-old plants (n = 12, mean ± SD, letters correspond to

Tukey’s HSD 95% homogeneous groups).

There were significant differences in SPAD values between
the species and Fe treatments after 6 weeks (P < 0.0001;
Table 1, Figure 2). Both elm species developed strong Fe-chlorosis
symptoms in the lack of Fe. The seedlings subjected to the 0 μM
Fe treatment were stunted and leaves were severely chlorotic with
necrotic spots, chiefly in the case of U. laevis (Figures 3 and
4A,C).Once supplied Fe, the re-greening patterns of seedlings and
leaves were different in both species. The re-greening process in U.
laevis leaves began along the veins of apical leaves and basal leaves
took longer to re-green and never reached a homogeneous green
coloration (Figure 4B). Meanwhile, U. minor re-greened evenly
all over the plant and leaf surface (Figure 4D). Seedlings of the 5
and 20 μM Fe treatments reached their maximum SPAD values
in week 3 (Figure 2). Regarding tree height and for both species,
no significant differences were found between the 5 and 20 μM Fe
treatments, while plants receiving 1 and 0 μM Fe in the nutrient
solution had a stunted growth (Figure 3).

Table 1 | SPAD values, leaf chlorophyll (Chl) and iron leaf and stem concentrations of U. laevis and U. minor seedlings 6 weeks after Fe-resupply.

Species Treatment Mean aerial part DW (g) Leaf Stem

� SPAD [Fe] (mg Kg−1) Total [Chl](mg cm−2) [Fe] (mg Kg−1)

U. laevis 0 μM Fe 0.10 ± 0.02 a −6.4 ab 21.0 ± 0.4 a 0.08 6.2 ± 0.1 b

1 μM Fe 0.47 ± 0.13 b 14.4 c 23.8 ± 5.8 ab 1.98 8.1 ± 0.2 bc

5 μM Fe 1.95 ± 0.30 c 29.6 d 37.0 ± 3.6 bc 2.73 10.8 ± 1.3 c

20 μM Fe 2.07 ± 0.51 c 28.4 d 60.3 ± 2.7 d 3.01 13.7 ± 1.0 cd

U. minor 0 μM Fe 0.23 ± 0.15 a −10.5 a 10.8 ± 0.2 a 0.13 4.3 ± 0.1 a

1 μM Fe 0.34 ± 0.18 a,b −2.6 b 11.9 ± 0.1 a 0.70 9.0 ± 0.2 c

5 μM Fe 2.81 ± 1.57 c,d 16.3 c 38.8 ± 2.3 bc 2.12 9.9 ± 0.8 c

20 μM Fe 1.23 ± 0.35 c 16.2 c 44.9 ± 1.5 c 2.19 15.0 ± 0.9 d

The headings correspond to: mean aerial part dry weight (DW; g), � SPAD (SPAD increment of Week 6 – Week 0; n = 12), total leaf [Chl], and leaf and stem [Fe] (mg
kg−1DW; means ± SE; n = 7). Letters correspond to Tukey’s HSD 95% homogeneous groups.
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FIGURE 4 | Leaf appearance of Fe chlorotic and Fe-resupplied

3 months-old elm seedlings. Ulmus laevis: (A) chlorotic leaves, (B)

re-greening pattern after Fe supply. Ulmus minor : (C) chlorotic leaves, (D)

re-greening pattern after Fe-supply.

ROOT PROTON EXCRETION
The proton extrusion per day was significantly different between
the species (P < 0.0001), but was not found to be significant for
treatments nested within species (P = 0.57). The highest rate of
proton excretion was measured on the first day of the trial when
280 and 97 μmol H+ g−1 day−1 were recorded for U. minor and
U. laevis, respectively. During the following 8 days, root extrusion
values decreased to reach a steady average of 17 (U. minor) and 9
(U. laevis) μmol H+ g−1 day−1.

ROOT FERRIC REDUCTASE ACTIVITY
The root ferric reductase activity was significantly different
between species (P = 0.0004) and treatments nested within species
(P < 0.0001; Figure 5). For the 1 μM Fe and 20 μM Fe treatments,
U. minor had a much higher reductase activity than U. laevis. How-
ever during 2 h of the assay, Fe-deficient (0 μM Fe) plants of both
species had a limited root ferric reductase activation capacity in
the presence of Fe(III) in the nutrient solution (Figure 5).

MINERAL ELEMENT STATUS
The macro- and micro-nutrient concentrations of leaves and stems
in relation to the different treatments are shown in Tables 1–3.
Leaf and stem Fe concentrations decreased under Fe-limiting con-
ditions (Table 1). At the end of the experimental period and as
derived from Figure 3, the aerial part dry weight (DW) gradually
increased with higher root Fe levels for U. laevis. While a similar
trend was observed for U. minor seedlings, the highest mean aerial
plant DW was recorded for the 5 μM Fe treatment, which however,
had a high SD (Table 1). This implies that the highest Fe absorp-
tion rates were achieved by the 20 μM Fe U. laevis and 5 μM Fe U.
minor treated seedlings, suggesting that the later species possibly
reached an optimum when supplied 5 μM Fe via the root system.

For all elements excepting K, Fe, and Zn in leaves and K and Fe
in stems, variations in U. laevis were larger than in U. minor. For

FIGURE 5 | Root ferric reductase activity (FQR) of 3 months-old U.

laevis and U. minor plants (n = 7, means ± SD, letters correspond to

Tukey’s HSD 95% homogeneous groups).

both species, the relative changes followed a similar trend for all
the elements excepting Zn, which increased in U. laevis chlorotic
plants and decreased in U. minor (Tables 2 and 3). Leaf N concen-
trations decreased with lower root Fe supply levels, especially in
U. laevis. On the contrary, stem N concentrations were higher in
seedlings of the 0 μM Fe treatment. Phosphorus tissue concentra-
tions increased in association with lower root Fe doses. Potassium
leaf and stem concentrations were generally lower in 0 μM Fe
treated elm seedlings, which also had the lowest leaf Ca concen-
trations (Table 2). Concerning the micronutrients, approximately
five and eight times higher Mn concentrations were determined in
leaves and stems of Fe-deprived versus 20 μM Fe treated U. laevis
seedlings, indicating the accumulation of Mn under Fe-limiting
conditions. However, in U. minor the lack of Fe in the growing
medium approximately doubled the Mn concentration of leaves
and stems as compared to the 20 μM Fe treatment. Root Fe short-
age also led to the accumulation of B in leaves and of Cu in leaves
and stems while no clear trend was observed for Zn concentra-
tions in leaves and stems in relation to the different Fe treatments
(Table 3).

Individual U. laevis and U.minor seed (extracted from the
samara) weighed an average of 6.9 and 5.4 mg DW, respectively.
Differences between U. laevis and U. minor were only recorded
for the macronutrients (g kg−1 DW): N [75.8 versus (vs.) 62.2]
K (11.7 vs. 17.3), Ca (1.0 vs. 2.5), and Mg (1.7 vs. 3.0), and the
micro-elements (mg kg−1 DW): Fe (80.3 vs. 37.7) and Zn (76.9 vs.
56.5). Seeds of both elm species had a Mn concentration around
49.3 mg kg−1 DW, which provides evidence for the accumulation
of Mn in seedlings during hydroponic culture.

DISCUSSION
In this study we investigated the root response mechanisms under
Fe-limiting conditions of a putative calcicole versus a calcifuge
elm species, based on their natural distribution in the soils of the
Iberian Peninsula. Calcifuge plants and lichens do not occur in
calcareous soils, where their growth and development is largely
limited by Fe and P deficiency (Zohlen, 2002; Zohlen and Tyler,
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Table 2 | Macronutrient leaf and stem concentrations (mean ± SE; the same letters within the same tissue and element correspond toTukey’s

HSD 95% homogeneous groups).

[Macronutrients] (g kg−1 DW)

Tissue Species Treatment N P K Ca Mg

Leaf U. laevis 0 μM Fe 25.8 ± 0.5 a 9.3 ± 0.2 f 16.8 ± 0.3 ab 53.0 ± 1.1 d 10.4 ± 0.2 e

1 μM Fe 30.7 ± 0.3 bc 6.0 ± 0.2 e 17.5 ± 1.1 ab 38.4 ± 1.7 cd 6.8 ± 0.2 d

5 μM Fe 32.1 ± 3.4 bc 2.6 ± 0.1 ab 14.0 ± 0.7 a 32.2 ± 2.0 abc 5.0 ± 0.3 c

20 μM Fe 40.1 ± 0.4 c 2.4 ± 0.1 ab 15.9 ± 0.7 ab 25.2 ± 1.2 a 3.5 ± 0.2 a

U. minor 0 μM Fe 35.3 ± 0.7 bc 5.2 ± 0.1 de 15.0 ± 0.3 a 40.0 ± 0.8 cd 5.6 ± 0.1 cd

1 μM Fe 34.3 ± 1.6 bc 4.1 ± 0.5 cd 17.2 ± 1.5 ab 36.8 ± 1.0 bc 6.5 ± 0.1 d

5 μM Fe 37.4 ± 1.0 bc 2.4 ± 0.1 a 15.9 ± 1.2 ab 32.6 ± 1.9 bc 4.6 ± 0.2 bc

20 μM Fe 39.7 ± 0.9 c 3.2 ± 0.2 bc 19.3 ± 1.1 b 27.9 ± 1.5 ab 3.6 ± 0.3 ab

Stem U. laevis 0 μM Fe 32.5 ± 0.6 b 4.7 ± 0.1 d 9.6 ± 0.2 a 20.1 ± 0.4 c 2.0 ± 0.0 bc

1 μM Fe 18.0 ± 0.4 a 3.6 ± 0.1 cd 12.4 ± 0.2 ab 14.1 ± 0.3 bc 1.3 ± 0.0 abc

5 μM Fe 19.5 ± 2.8 a 1.6 ± 0.1 ab 12.5 ± 0.9 ab 8.9 ± 0.7 ab 1.1 ± 0.1 ab

20 μM Fe 16.6 ± 1.0 a 1.4 ± 0.1 a 11.9 ± 0.8 ab 7.0 ± 0.6 a 0.9 ± 0.1 a

U. minor 0 μM Fe 29.1 ± 0.6 b 3.3 ± 0.1 c 12.5 ± 0.3 a 13.0 ± 0.3 bc 2.4 ± 0.0 c

1 μM Fe 27.4 ± 0.5 b 4.2 ± 0.1 cd 24.0 ± 0.5 c 15.0 ± 0.3 c 4.0 ± 0.1 d

5 μM Fe 17.2 ± 1.2 a 1.5 ± 0.1 ab 14.7 ± 0.9 ab 7.3 ± 0.6 a 1.7 ± 0.1 c

20 μM Fe 19.4 ± 1.5 a 2.0 ± 0.1 a 17.7 ± 1.5 cd 7.4 ± 0.3 a 1.5 ± 0.1 bc

Table 3 | Micronutrient leaf and stem concentrations (mean ± SE; the same letters within the same tissue and element correspond toTukey’s

HSD 95% homogeneous groups).

[Micronutrients] (mg kg−1 DW)

Tissue Species Treatment Fe B Mn Cu Zn

Leaf U. laevis 0 μM Fe 21.0 ± 0.4 a 96.7 ± 1.9 e 1027.4 ± 20.5 e 17.1 ± 0.3 e 91.3 ± 1.8 d

1 μM Fe 23.8 ± 5.8 ab 59.1 ± 2.7 d 507.1 ± 13.9 d 10.7 ± 0.9 d 72.2 ± 3.8 bc

5 μM Fe 37.0 ± 3.6 bc 29.8 ± 1.7 a 256.0 ± 5.5 c 5.4 ± 0.5 bc 48.9 ± 2.1 ab

20 μM Fe 60.3 ± 2.7 d 30.0 ± 1.8 a 205.5 ± 7.3 b 5.3 ± 0.4 bc 77.6 ± 7.4 cd

U. minor 0 μM Fe 10.8 ± 0.2 a 56.8 ± 1.1 cd 303.8 ± 6.1 c 8.7 ± 0.2 cd 36.5 ± 0.7 ab

1 μM Fe 11.9 ± 0.1 a 42.4 ± 4.4 bc 278.1 ± 1.2 c 7.0 ± 0.3 c 27.4 ± 2.6 a

5 μM Fe 38.8 ± 2.3 bc 31.0 ± 2.5 ab 160.8 ± 10.0 a 4.6 ± 0.4 ab 49.7 ± 3.6 ab

20 μM Fe 44.9 ± 1.5 c 25.8 ± 1.7 a 167.8 ± 11.1 ab 3.5 ± 0.2 a 53.0 ± 3.7 abc

Stem U. laevis 0 μM Fe 6.2 ± 0.1 b 13.1 ± 0.3 ab 181.3 ± 3.6 e 9.1 ± 0.2 c 43.9 ± 0.9 a

1 μM Fe 8.1 ± 0.2 bc 13.0 ± 0.3 ab 61.0 ± 1.2 c 6.1 ± 0.1 bc 26.8 ± 0.5 ab

5 μM Fe 10.8 ± 1.3 c 10.2 ± 0.8 a 21.9 ± 2.0 a 3.6 ± 0.4 ab 20.2 ± 1.7 a

20 μM Fe 13.7 ± 1.0 cd 9.8 ± 0.7 a 23.1 ± 2.5 ab 3.2 ± 0.3 a 26.2 ± 2.7 ab

U. minor 0 μM Fe 4.3 ± 0.1 a 14.0 ± 0.3 ab 79.8 ± 1.6 cd 7.0 ± 0.1 c 29.7 ± 0.6 ab

1 μM Fe 9.0 ± 0.2 c 20.6 ± 0.4 b 88.6 ± 1.8 d 7.7 ± 0.2 c 30.1 ± 0.6 ab

5 μM Fe 9.9 ± 0.8 c 9.6 ± 0.5 a 31.7 ± 2.2 b 3.7 ± 0.2 ab 27.7 ± 1.7 ab

20 μM Fe 15.0 ± 0.9 d 10.1 ± 0.6 a 32.2 ± 1.5 b 3.4 ± 0.2 a 32.2 ± 2.5 b

2004; Paul et al., 2009). Calcicole species however, thrive in
soils containing a high CaCO3 concentration, which implies that
they were able to develop efficient mineral element uptake and
homeostasis mechanisms as an adaptation to such rhizospheric

environment. Since lime-induced chlorosis can sometimes be
observed in wild plants grown in calcareous soils and problems of
tissue Fe immobilization have been previously reported (Zohlen
and Tyler, 1997; Zohlen, 2002), we analyzed for the first time the
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Fe-reducing and acidification capacity of two Ulmus species of
major ecological significance in azonal forests of Spain, which are
naturally distributed in either siliceous (U. laevis) or calcareous
(U. minor) soils.

The existing studies on calcifuge and calcicole species were
always performed by growing plants in calcareous or acid soils
(e.g., Zohlen, 2002; Zohlen and Tyler, 2004) and focused on the
distribution and partition of Fe within the different plant tissues
(Zohlen and Tyler, 2000). However, plant growth in a solid sub-
strate poses some experimental constraints to analyse in detail the
response of roots to Fe-limiting conditions, which led us to carry
out the trials in hydroponic culture. While both species have high
water requirements as compared to other Mediterranean plants
(Galmés et al., 2012; Venturas et al., 2013b), U. laevis may be sub-
jected to prolonged soil flooding periods (Collin et al., 2000) in
contrast to the occasional flooding that U. minor may tolerate
(García-Nieto et al., 2000).

The results show that lack of iron (T0) severely affected the
growth and development of both elm species. By the end of the
experimental period, seedlings grown without Fe were stunted
and almost completely defoliated. This shows that Fe is essential
and very limiting for Ulmus seedling growth and establishment as
shown previously for other wild species (Hutchinson, 1967, 1970).
Micronutrient contents in leaves and stems of elms grown with no
Fe limitation (T20; Table 3) were within the range described for
other temperate European trees (Hagen-Thorn and Stjernquist,
2005).

Seed nutrient contents may be key for the successful estab-
lishment of seedlings (Tyler and Zohlen, 1998), and we observed
that U. laevis contained twice as much Fe as U. minor seeds, in
accordance with the higher leaf Chl and Fe concentrations mea-
sured in fully expanded leaves. This indicates the higher nutrient
requirements of U. laevis that may compete better than U. minor
under flooding, in siliceous soils and with optimal growing con-
ditions. However, for seedling establishment in calcareous soils, it
will be important that the root uptake mechanisms of a species are
effective for the acquisition of Fe. Our results indicate that under
Fe-limiting conditions U. minor seems to be more Fe-efficient than
U. laevis, and hence more competitive. Furthermore, it is likely
that fitness and recruitment of calcifuge plants growing in calcare-
ous soils is much reduced due to the occurrence of lime-induced
chlorosis. This will yield calcifuge species more susceptible to be
displaced by calcicole plants, following a process of natural selec-
tion. Thereby, observation of Fe-deficiency symptoms in natural
populations is limited to the plants which may be able to withstand
a certain degree of Fe-chlorosis when growing in a calcareous, high
pH soil at the seedling stage, even though such seedlings may not
be competitive.

From the three major root Fe uptake mechanisms characterized
in Strategy I plants, we analyzed the root acidification capacity and
ferric reductase activity of both elm species in relation to different
Fe treatments. Our results suggest that U. minor may be better
adapted to Fe-limiting environments (i.e., high rhizosphere pH
and a lower Fe supply) than U. laevis. This can be concluded
since the root acidification capacity and reductase activity are
higher for U. minor, which will subsequently be more efficient
in solubilizing and taking up Fe from the rhizosphere. We did not

compare the effectiveness of the root ferrous Fe transporter (IRT)
between both species, but the increased tissue Mn concentrations
determined particularly in U. laevis when subjected to Fe-limiting
conditions, may provide indirect evidence for the high activity
of this transporter and for the interactions between Fe and Mn
nutrition (Conte and Walker, 2011; Marschner, 2012).

Iron deficiency changed the nutrient balance of U. laevis and
U. minor seedlings as previously reported for other plant species
(e.g., Fernández et al., 2008). We observed that despite growing
under Fe-limiting conditions, U. minor was able to preserve a
better nutrient balance as compared to U. laevis seedlings, which
experienced more remarkable tissue nutrient variations in relation
to Fe deficiency with especial regard to Mn, P, B, and Mg. U. minor
plants supplied 5 μM Fe reached the largest size, tissue DW and
Fe absorption rates, while higher root medium Fe doses improved
growth and increased tissue Fe and leaf Chl concentrations in U.
laevis. This suggests that the calcicole U. minor may be adapted to
lower soil Fe availability levels as commonly found in calcareous,
high pH soils in which the solubility of Fe can be extremely low
(Lindsay and Schwab, 1982). In contrast, U. laevis appeared to
physiologically benefit from receiving a 20 μM Fe concentration
via the root system, which may be linked to the generally higher
availability of Fe in siliceous soils.

Furthermore, after Fe-resupply, U. minor leaves fully re-greened
following a homogeneous pattern in contrast to U. laevis in which
re-greening chiefly occurred on the young leaves. The highest leaf
and stem Fe concentration increments after Fe-resupply were also
recorded for U. minor. Both Chl and tissue Fe results after Fe-
resupply may be due to the lower mobility and symplastic uptake
of Fe in U. laevis as compared to U. minor.

The root Fe uptake efficiency of U. minor and U. laevis may
account for their natural distribution in calcareous and acid soils
of the Iberian Peninsula, respectively. However, calcifuge species
may be affected by the reduced soil availability of other nutrients
such as P or Mn (Larcher, 2003). Additional factors such as water
availability and drought resistance (Venturas et al., 2013b) may
affect the distribution of elms, but our results suggest that the
pollen record found in calcareous areas of Eastern Spain probably
belongs to the calcicole U. minor, since U. laevis is largely restricted
to western Spain likely due to its calcifuge nature. In contrast, it
cannot be a priori concluded whether the pollen record in Western
Spain (non-carbonated soils) exclusively belongs to U. laevis, since
calcicole plants may also thrive in siliceous soils.

Our results provide evidence for the important role of Fe as
an essential element for growth and survival of a potentially cal-
cifuge species (i.e., U. laevis). Phosphorus deficiency of calcifuge
plants growing in calcareous soils has however, been suggested to
be a major physiological problem (Tyler, 1996; Zohlen and Tyler,
2004). Soil pH and nutrient availability may determine the eco-
logical distribution of plant species (Viani et al., 2014) but further
studies correlating soil chemistry, species distribution and phys-
iology shall be performed for clarifying the calcifuge or calcicole
nature of U. laevis and U. minor.

CONCLUSION
The different response of U. laevis and U. minor seedlings
to Fe-limiting conditions enabled us to interpret their natural

www.frontiersin.org March 2014 | Volume 5 | Article 104 | 7

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Nutrition/archive


Venturas et al. Root iron uptake of Ulmus

distribution in the soils of the Iberian Peninsula. Results con-
cerning the root ferric reductase activity and proton extrusion
capacity, together with tissue mineral element concentrations and
plant responses to Fe-resupply, provided evidence for the bet-
ter Fe uptake and homeostasis of U. minor as compared to U.
laevis. The development of hydroponic plant nutrition studies
performed with forest species, complemented with field investi-
gations may subsequently prove useful for improving their fitness
and establishment during reforestations, and for characterizing
nutrient absorption and homeostasis mechanisms of wild plants
in relation to their surrounding environment.
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