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Phyto-endoparasitic nematodes induce specialized feeding cells (NFCs) in their hosts,
termed syncytia and giant cells (GCs) for cyst and root-knot nematodes (RKNs),
respectively. They differ in their ontogeny and global transcriptional signatures, but
both develop cell wall ingrowths (CIs) to facilitate high rates of apoplastic/symplastic
solute exchange showing transfer cell (TC) characteristics. Regulatory signals for TC
differentiation are not still well-known. The two-component signaling system (2CS) and
reactive oxygen species are proposed as inductors of TC identity, while, 2CSs-related
genes are not major contributors to differential gene expression in early developing
NFCs. Transcriptomic and functional studies have assigned a major role to auxin and
ethylene as regulatory signals on early developing TCs. Genes encoding proteins with
similar functions expressed in both early developing NFCs and typical TCs are putatively
involved in upstream or downstream responses mediated by auxin and ethylene. Yet, no
function directly associated to the TCs identity of NFCs, such as the formation of CIs
is described for most of them. Thus, we reviewed similarities between transcriptional
changes observed during the early stages of NFCs formation and those described during
differentiation of TCs to hypothesize about putative signals leading to TC-like differentiation
of NFCs with particular emphasis on auxin an ethylene.

Keywords: plant-nematode interaction, giant cells, early transcriptomic signatures, syncytia, auxin, ethylene,
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INTRODUCTION
Phyto-endoparasitic nematodes interact with their hosts in a
subtle manner. They induce cells from the vascular cylinder to
differentiate into specialized feeding cells (NFCs), syncytia, and
giant cells (GCs), the nourishing cells for cyst and root-knot
nematodes (RKNs), respectively (Jones and Goto, 2011; Sobczak
and Golinowski, 2011). Although these two cell types clearly differ
in their ontogeny, both develop cell wall ingrowths (CIs) believed
to facilitate high rates of apoplastic/symplastic solute exchange
typical of transfer cells (TCs; Jones and Dropkin, 1976; Siddique
et al., 2012). In GCs the amplification of the plasma membrane
surface area could be up to 20 fold (reviewed in Jones and Goto,
2011). CIs are less abundant in male-induced syncytia, suggest-
ing a control probably associated with lower nutrient demand as
the development of males inside the plant ends at the J3 stage
(reviewed in Sobczak and Golinowski, 2009). Young syncytia are
symplastically isolated, although this is lost at later stages (10–15
days post-infection, dpi; Hofmann et al., 2007) and symplastic
isolation of GCs is under discussion (Hoth et al., 2008; Hofmann
et al., 2010). Thus, amplification of plasma membrane area might
be crucial for efficient apoplastic exchange at certain NFC devel-
oping stages. Polarized deposition of a thickened wall would need
cell signals leading to this specialized differentiation. Those puta-
tive signals are still uncertain. Yet, some of the genes described to
change their expression during TC differentiation participate in

downstream cascades for gene expression driven by ethylene and
auxin in epidermal cells of Vicia faba (Dibley et al., 2009) or in
barley endosperm (Thiel et al., 2008, 2012a). In addition, genes
involved in the biosynthesis of hormones such as auxin, ethylene
jasmonic acid, brassinosteroids, gibberellins, and abscisic acid in
maize basal endosperm (Xiong et al., 2011) are also differentially
expressed in TCs.

Global transcriptomic changes of laser micro-dissected GCs
at early developing stages (3 dpi; Barcala et al., 2010) and of
micro-aspirated young syncytia (5 dpi; Szakasits et al., 2009) in
Arabidopsis indicated that only 529 genes out of 1161 in GCs
and 7225 in syncytia (representing 45.5 and 7.3% of the differ-
entially expressed genes in each transcriptome, respectively) are
shared. This indicates that transcriptomic similarities are not high
between both nematode-induced cell types. However, key changes
in the expression of genes related to several hormones such as
auxin, ethylene, jasmonic acid, or abscisic acid are shared between
both NFCs (Cabrera et al., 2013).

Only some data on TC regulatory signals in NFCs have been
described, i.e., ZmMRP-1 codes for a primary sensor of the
putative signals for TCs and the activity of this TC-specific
promoter ZmMRP-1 (Gomez et al., 2002) was monitored in
Arabidopsis transgenic plants; GUS activity was detected in the
feeding sites induced by Meloidogyne javanica. Those are swollen
parts of the roots (galls) where GCs are embedded surrounded
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by heterogeneous tissues. Although gall microscopy sections were
not examined, the confined GUS activity observed suggests that
the promoter is probably active in GCs (Barrero et al., 2009).
Further research will elucidate whether this TC-specific molecu-
lar signature is also present in syncytia formed by cyst nematodes.
In order to unveil some clues on putative signals leading to
TC-like differentiation of NFCs, we review similarities between
transcriptional changes observed during the early stages of NFCs
formation and those described during differentiation of TCs.
Global gene expression studies comparing syncytia and GCs to
TCs signatures could be a starting point to find some answers.

AUXIN AND ETHYLENE AS PUTATIVE SIGNALS INITIATING
TC-LIKE MORPHOLOGY OF NFCs
During the last few years, several transcriptomic studies on early
developing TCs have assigned a major role to hormone regu-
lation on the processes leading to the differentiation of these
cell types. Auxin (Dibley et al., 2009) and ethylene (Thiel et al.,
2008, 2012a,b; Dibley et al., 2009; Zhou et al., 2010; Xiong
et al., 2011) raised as the two major phytohormones implicated
in the differentiation of TCs from different plants and tissues.
In adaxial epidermal cells of cultured V. faba cotyledons trans-
differentiating to TCs, auxin and ethylene cis-responsive elements
were over-represented in the promoters of induced genes. There
is a clear functional demonstration that both hormones regulate
CI formation in V. faba epidermis, based mainly in pharmacolog-
ical experiments, indicating their participation in the signaling
events leading to TCs differentiation (Dibley et al., 2009; Zhou
et al., 2010). Moreover, an increase in auxin and ethylene lev-
els boosts TC formation in tomato roots (Schikora and Schmidt,
2002). Accordingly, a clear over-representation of auxin-regulated
genes among the 310 up-regulated genes in Arabidopsis 3 dpi
GCs, relative to the total number of hormone responsive genes
described in Nemhauser et al. (2006), was observed (Cabrera
et al., 2013). Among those upstream genes regulated by auxin
are genes in the AUX/IAA group, as IAA8 (Table 1). Genes in
this category were also induced in the transcriptome of V. faba
developing TCs, such as GH1 (Dibley et al., 2009). The develop-
ment of Heterodera shachtii, a syncytia-forming nematode, was
impaired in the axr2 mutant, that also corresponds to the IAA
group member IAA7 (Goverse et al., 2000), and IAA26 is induced
in the transcriptome of 5 dpi microaspirated syncytia (Table 1;
Szakasits et al., 2009). AUX/IAA proteins function by interact-
ing with auxin responsive factors (ARFs) that were also induced
in GCs, like MONOPTEROS (MP; ARF5) or ARF19 (Table 1). In
syncytia, ARF4 and ARF6 are up-regulated, but not co-regulated
with GCs. ARF4 has been defined to be preferentially expressed in
the phloem companion cells of Arabidopsis (Table 1; Brady et al.,
2007), the TCs found in loading and unloading areas of vascular
tissues. Therefore, ARFs are induced in both NFCs triggered by
cyst and RKNs at early infection stages, although different family
members are involved in each NFC type. Strikingly, 20% of the
genes defined by Brady et al. (2007) as preferentially expressed
in the companion cells of Arabidopsis are also up-regulated in
syncytia (44 out of 222 genes; Cabrera et al., 2013).

Other genes in the TCs induced in the epidermis of V. faba
include those that could alter auxin transport through PINs

relocalization or enhanced biosynthesis, as nitrilases (Dibley et al.,
2009), proposed to alter the pattern of auxin redistribution to
drive CI formation. Redistribution of PINs and reduction of
nematode reproduction in PIN-related mutants such as pin2,
pin3, pin4, pin7, and several double mutants, together with
pharmacological treatments with inhibitors of auxin transport,
demonstrated that cyst nematodes are able to hijack the auxin
distribution network (Grunewald et al., 2009). Similarly, the
nematode effectors Hg19C07 and Hs19C07 of H. glycines and
H. schachtii directly interact with the auxin influx transporter
LAX3 and infectivity in aux1/lax3 double mutants was severely
affected (Lee et al., 2011). Interpretations pointed as a process
to facilitate the infection and establishment of nematodes dur-
ing early stages of the plant-nematode interaction. However, the
ability of CIs formation that lead to the TCs nature of NFCs, have
not been ever studied in those mutants. Thus, further research
with loss of function mutants will be needed to characterize
auxin signaling pathways involved in TC character of syncytia
and GCs.

Other downstream auxin responsive genes up-regulated in
GCs are WES1 and GH3 (Table 1). In syncytia, there is also the
GH3-like, DFL1 that regulates lateral root formation through the
auxin signaling pathway (Table 1; Nakazawa et al., 2001). The
synthetic promoter DR5, derived from the GH3 promoter, has
been extensively used to check early increases in local auxin also
in NFCs (Karczmarek et al., 2004). It is interesting to point that
DR5::GUS expression is located in the GCs and vascular sur-
rounding tissues (Cabrera et al., unpublished results). This sug-
gests that auxin concentration is very high at early infection stages
in GCs as compared to the rest of the gall tissues. There are several
hypotheses to explain this local increase in auxin levels, i.e., the
presence of auxins in the nematode secretions (De Meutter et al.,
2005), or the manipulation of auxin homeostasis through the
interaction of nematode effectors as chorismate mutase with the
plant biochemical machinery (Jones et al., 2003). Interestingly,
local production of isoflavonoids could also result in a local
auxin increase as they inhibit polar auxin transport. Promoters
of genes encoding chalcone synthases involved in the first step of
flavonoid biosynthesis are induced in galls of clover (Grunewald
et al., 2009), and genes in the category of flavonoid metabolism
were induced in syncytia (Cabrera et al., 2013). However, sev-
eral Arabidopsis mutants impaired in isoflavonoid biosynthesis
were not affected in either syncytia or GCs formation (Jones et al.,
2007; Wasson et al., 2009). These studies indicate that it is unlikely
that flavonoids mediate changes in auxin transport needed for
nematode feeding site organogenesis, although galls of Medicago
truncatula flavonoid-deficient roots were shorter (Wasson et al.,
2009). These findings suggest that the local flavonoid increase
encountered in galls (Hutangura et al., 1999; Wasson et al., 2009)
might have an alternative role not directly related to the process
of infection and establishment. Perhaps flavonoids are related to
CI formation needed for the acquisition of TCs characteristics,
as suggested by Dibley et al. (2009) in TCs from epidermal cells
of V. faba. This is another open question that deserves further
investigation.

During differentiation of TCs in the endosperm of barley
(Thiel et al., 2012a) or trans-differentiation of epidermal cells in
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Table 1 | Genes induced in the 3 dpi GCs and 5 dpi syncytia transcriptomes (Szakasits et al., 2009; Barcala et al., 2010), that are also described

to be regulated by auxin and/or ethylene in Nemhauser et al. (2006) and in Mapman (Thimm et al., 2004).

Syncytia 5 dpi

CELL

AT1G10740 IAA 1.0 Unknown protein

AT3G10530 IAA 2.3 Transducin family protein/WD-40 repeat family protein

CELL WALL

AT1G53840 IAA 2.1 PME1: encodes a pectin methylesterase

AT2G39700 IAA 4.2 EXPA4: putative expansin. Naming convention from the Expansin Working Group

AT4G25810 IAA 5.1 XTR6: xyloglucan endotransglycosylase-related protein (XTR6)

AT5G06860 IAA 3.4 PGIP1: Encodes a polygalacturonase-inhibiting protein involved in defense response

AT5G57560 IAA 4.4 TCH4: Encodes a cell wall-modifying enzyme

AT5G66460 IAA 3.1 MAN7: (1-4)-beta-mannan endohydrolase

DEVELOPMENT

AT5G57390 ACC 1.1 AIL5: Encodes a member of the AP2 family of transcriptional regulators

AT1G01470 IAA 2.0 LEA14: Encodes late-embryogenesis abundant protein

HORMONE METABOLISM

AT1G48420 ACC 1.4 D-CDES: Encodes an enzyme that decomposes D-cysteine into pyruvate, H2S, and NH3

AT2G42680 ACC 1.1 MBF1A: One of three genes in A. thaliana encoding multiprotein-bridging factor 1

AT3G16050 ACC 2.0 PDX1.2: Encodes a protein with pyridoxal phosphate synthase activity

AT3G58680 ACC 1.6 MBF1B: One of three genes in A. thaliana encoding multiprotein-bridging factor 1

AT4G26200 ACC 1.2 ACS7: Member of a family of proteins in Arabidopsis that encode ACC synthase

AT4G34410 ACC 1.5 RRTF1: encodes a member of the ERF (ethylene response factor) subfamily B-3

AT5G20550 ACC 1.7 Oxidoreductase, 2OG-Fe(II) oxygenase family protein

AT5G43440 ACC 1.3 Encodes a protein whose sequence is similar to ACC oxidase

AT5G43450 ACC,
IAA

1.2 Encodes a protein whose sequence is similar to ACC oxidase

AT1G17350 IAA 3.3 Auxin-induced-related/indole-3-acetic acid induced-related

AT1G50580 IAA 1.5 Glycosyltransferase family protein

AT1G56150 IAA 3.1 Auxin-responsive family protein

AT1G60690 IAA 0.9 Aldo/keto reductase family protein

AT2G02560 IAA 1.4 CAND1: Arabidopsis thaliana homolog of human CAND1

AT3G25290 IAA 1.6 Auxin-responsive family protein

AT3G25780 IAA 1.2 AOC3: Encodes allene oxide cyclase

AT3G30300 IAA 1.2 FUNCTIONS IN: molecular_function unknown; INVOLVED IN: biological_process
unknown

AT3G63440 IAA 3.2 CKX6: encodes a protein whose sequence is similar to cytokinin oxidase/dehydrogenase

AT4G12410 IAA 2.8 Auxin-responsive family protein

AT4G12980 IAA 0.7 Auxin-responsive protein

AT4G27450 IAA 1.1 Unknown protein

AT4G34760 IAA 1.5 Auxin-responsive family protein

AT5G20810 IAA 0.4 Auxin-responsive protein

AT5G54510 IAA 2.7 DFL1: Encodes an IAA-amido synthase that conjugates Ala, Asp, Phe, and Trp to auxin

AT5G55540 IAA 0.8 TRN1: Encodes a large plant-specific protein of unknown function

AT5G64600 IAA 2.3 Unknown protein

METAL HANDLING

AT2G37330 IAA 1.3 ALS3: Encodes an ABC transporter-like protein

MISCELLANEA

AT2G29440 ACC 1.7 GSTU6: Encodes glutathione transferase belonging to the tau class of GSTs

AT3G11210 ACC,
IAA

1.2 GDSL-motif lipase/hydrolase family protein

AT1G30760 IAA 6.2 FAD-binding domain-containing protein

AT2G30140 IAA 2.8 UGT87A2: UDP-glucoronosyl/UDP-glucosyl transferase family protein

AT3G11210 IAA 1.2 GDSL-motif lipase/hydrolase family protein

(Continued)
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Table 1 | Continued

Syncytia 5 dpi

AT3G62720 IAA 1.3 XT1: Encodes a protein with xylosyltransferase activity

AT5G19440 IAA 2.3 Similar to Eucalyptus gunnii alcohol dehydrogenase

N-METABOLISM

AT3G49640 IAA 1.5 FAD binding/catalytic/tRNA dihydrouridine synthase

NOT ASSIGNED

AT3G02490 ACC 1.2 Pentatricopeptide (PPR) repeat-containing protein

AT4G33560 ACC 3.6 Unknown protein

AT5G49410 ACC 0.5 Unknown protein

AT5G02550 ACC,
IAA

1.1 Unknown protein

AT1G03820 IAA 3.0 Unknown protein

AT1G08430 IAA 4.1 ALMT1: Encodes a Al-activated malate efflux transporter

AT1G18850 IAA 1.6 Unknown protein

AT1G28400 IAA 3.0 Unknown protein

AT1G32190 IAA 0.7 INVOLVED IN: N-terminal protein myristoylation; LOCATED IN: plasma membrane

AT1G32920 IAA 1.6 Unknown protein

AT1G55500 IAA 1.1 ECT4

AT2G34260 IAA 2.3 WDR55: transducin family protein/WD-40 repeat family protein

AT2G39725 IAA 2.5 Complex 1 family protein/LVR family protein

AT3G16310 IAA 2.4 Mitotic phosphoprotein N’ end (MPPN) family protein

AT4G20170 IAA 1.5 GALS3

AT5G52910 IAA 0.6 ATIM: homolog of Drosophila timeless

AT5G64780 IAA 1.1 FUNCTIONS IN: molecular_function unknown; INVOLVED IN: biological_process
unknown

AT5G66440 IAA 1.6 Unknown protein

TRANSPORT

AT1G77380 ACC 2.7 AAP3: Amino acid permease which transports basic amino acids

AT2G39350 ACC,
IAA

1.9 ABCG1: ABC transporter family protein

AT2G23150 IAA 3.2 NRAMP3: Encodes a member of the Nramp2 metal transporter family

PROTEIN

AT1G26270 ACC 2.6 Phosphatidylinositol 3- and 4-kinase family protein

AT5G65450 ACC 1.1 UBP17: Encodes a ubiquitin-specific protease

AT5G63650 ACC,
IAA

2.0 SNRK2.5: encodes a member of SNF1-related protein kinases

AT3G04230 IAA 1.8 40S ribosomal protein S16

AT3G17090 IAA 1.1 Protein phosphatase 2C family protein

AT3G60640 IAA 2.0 ATG8G: microtubule binding

AT4G22380 IAA 1.7 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family protein

REDOX

AT2G16060 ACC 1.3 HB1: Encodes a class 1 non-symbiotic hemoglobin

AT4G14965 IAA 1.0 MAPR4: heme binding

RNA

AT1G21910 ACC 1.0 DREB26: member of the DREB subfamily A-5 of ERF/AP2 transcription factor family

AT1G71450 ACC 0.6 Member of the DREB subfamily A-4 of ERF/AP2 transcription factor family

AT1G77200 ACC 0.7 Member of the DREB subfamily A-4 of ERF/AP2 transcription factor family

AT3G16770 ACC 1.8 EBP: member of the ERF subfamily B-2 of the ERF/AP2 transcription factor family

AT5G43170 ACC 0.8 ZF3: Encodes zinc finger protein

AT5G67180 ACC 0.8 TOE3:|AP2 domain-containing transcription factor, putative

AT2G34140 ACC,
IAA

0.7 Dof-type zinc finger domain-containing protein

AT1G16530 IAA 1.1 ASL9: Symbols: LBD3, ASL9 |ASL9 (ASYMMETRIC LEAVES 2 LIKE 9)

AT1G27730 IAA 1.2 STZ: Related to Cys2/His2-type zinc-finger proteins

(Continued)
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Table 1 | Continued

Syncytia 5 dpi

AT1G30330 IAA 0.9 ARF6: Mediates auxin response via expression of auxin-regulated genes

AT2G33860 IAA 1.3 ARF3 (ETT) encodes a protein with homology to DNA-binding proteins which bind to
AuxREs

AT2G47260 IAA 1.9 WRKY23: Encodes a member of WRKY Transcription Factor

AT3G11580 IAA 1.6 DNA-binding protein, putative

AT3G16500 IAA 1.8 IAA26 (PAP1) phytochrome-associated protein 1

AT3G23250 IAA 1.8 MYB15: Member of the R2R3 factor gene family

AT4G02220 IAA 1.2 Programmed cell death 2 C-terminal domain-containing protein

AT4G21550 IAA 1.4 VAL3: Symbols: VAL3 |VAL3 (VP1/ABI3-LIKE 3); transcription factor

AT5G60450 IAA 0.8 ARF4: member of the ARF family of transcription factors which mediate auxin responses

SECONDARY METAB.

AT5G01210 ACC,
IAA

2.1 Transferase family protein

SIGNALING

AT1G35140 IAA 2.8 PHI-1

AT1G76650 IAA 1.3 CML38: calcium-binding EF hand family protein

AT2G25790 IAA 1.3 Leucine-rich repeat transmembrane protein kinase

AT2G30060 IAA 0.9 Ran-binding protein 1b

AT4G08950 IAA 3.8 EXO: EXORDIUM

AT4G28490 IAA 1.9 HAE: member of Receptor kinase-like protein family

AT5G05160 IAA 1.1 RUL1: leucine-rich repeat transmembrane protein kinase

AT5G12940 IAA 1.1 Leucine-rich repeat family protein

AT5G37770 IAA 2.0 TCH2: Encodes a protein with 40% similarity to calmodulin

STRESS

AT2G42530 ACC 1.8 COR15B: COLD REGULATED 15B

AT5G64900 IAA 1.4 PROPEP1: Encodes a putative 92-aa protein that is the precursor of AtPep1

Giant cells 3 dpi

CELL WALL

AT4G25810 IAA 1.1 XTR6: xyloglucan endotransglycosylase-related protein

HORMONE METABOLISM

AT3G23150 ACC 2.1 ETR2: Involved in ethylene perception in Arabidopsis

AT4G20880 ACC 2.4 Ethylene-responsive nuclear protein/ethylene-regulated nuclear protein

AT2G23170 IAA 1.0 GH3.3: IAA-amido synthase that conjugates Asp and other amino acids to auxin in vitro

AT3G50660 IAA 1.0 DWF4: hydroxylase whose reaction is a rate-limiting step in brassinosteroid biosynthetic
pathway

AT4G27260 IAA 0.8 WES1: IAA-amido synthase that conjugates Asp and other amino acids to auxin in vitro

AT4G39400 IAA 1.4 BRI1: plasma membrane localized leucine-rich repeat receptor kinase

AT5G25190 IAA,
ACC

3.2 ESE3: encodes a member of the ERF (ethylene response factor) subfamily B-6 of
ERF/AP2 family

LIPID METABOLISM

AT4G12110 IAA 1.9 SMO1-1: Encodes a member of the SMO1 family of sterol 4alpha-methyl oxidases

METAL HANDLING

AT3G24450 IAA 1.8 Copper-binding family protein

NOT ASSIGNED

AT4G33560 ACC 2.3 Unknown protein

AT2G39370 IAA 2.9 MAKR4: unknown protein

POLYAMINE METABOLISM

AT5G19530 IAA 1.8 ACL5: Encodes a spermine synthase

PROTEIN

AT3G61160 IAA 1.8 Shaggy-related protein kinase beta/ASK-beta (ASK2)

AT3G27580 IAA,
ACC

2.5 ATPK7: a member of a subfamily of Ser/Thr PKs

(Continued)
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Table 1 | Continued

Giant cells 3 dpi

REDOX

AT2G16060 ACC 2.4 HB1: Encodes a class 1 non-symbiotic hemoglobin

RNA

AT1G19220 IAA 1.6 ARF19: auxin response factor

AT1G19850 IAA 4.1 MP: Encodes a transcription factor (IAA24)

AT2G22670 IAA 1.2 IAA8: IAA8 (IAA8) gene is auxin inducible

AT3G02550 IAA 2.5 LBD41: LOB DOMAIN-CONTAINING PROTEIN 41

AT4G17460 IAA 4.3 HAT1: Encodes homeobox protein HAT1

AT4G36540 IAA 1.0 BEE2: BR Enhanced Expression 2

AT5G47370 IAA 2.7 HAT2: homeobox-leucine zipper genes induced by auxin

AT5G65310 IAA 1.1 HB5: class I HDZip (homeodomain-leucine zipper) protein

SIGNALING

AT1G21980 IAA 1.4 PIP5K1: Type I phosphatidylinositol-4-phosphate 5-kinase

AT1G68400 IAA 1.8 Leucine-rich repeat transmembrane protein kinase

AT2G25790 IAA 1.1 Leucine-rich repeat transmembrane protein kinase

Third column shows the Log2 value for each gene in syncytia or GCs.

V. faba (Dibley et al., 2009), ethylene is proposed to participate
in a signaling pathway initiating TCs morphology. Similarly to
the auxin responsive genes induced in the NFC transcriptomes,
some genes involved in ethylene perception, transduction, and
responses are also up-regulated in GCs (Table 1; ETR2, ESE3).
Ethylene responsive genes were over-represented among the 310
up-regulated genes in GCs, relative to the total number of hor-
mone responsive genes in Nemhauser et al. (2006), Cabrera et al.
(2013). ETR2 induction coincides with the presence of other ethy-
lene receptors (as ETR1) in developing TCs from barley and
rice endosperm (Thiel et al., 2012b). The ethylene precursor 1-
aminocyclopropane-1-carboxylic acid (ACC) directly enhanced
TC formation in root epidermal cells of tomato (Schikora and
Schmidt, 2002) and adaxial epidermal cells of V. faba cotyle-
dons (Dibley et al., 2009). Consistently, a pool of genes encoding
proteins related with ethylene synthesis like two ACC oxidases
(Table 1), are induced in the transcriptome of microaspirated
syncytia. Functional analysis of the Arabidopsis ethylene over-
producing mutants eto2 and eto3 resulted in hyper-susceptibility
to cyst nematodes (Goverse et al., 2000; Wubben et al., 2001).
Interestingly, ethylene overproduction in eto2 mutants stimu-
lated the formation of CIs or protuberances in syncytia along
the vascular tissue, at late infection stages (Goverse et al., 2000),
providing a direct evidence for a putative role of ethylene in the
stimulation of syncytia TCs characteristics. Accordingly, func-
tional analysis of Arabidopsis mutants compromised in several
steps of the signaling cascade leading to activation of ethylene
responsive genes, as those altered in ethylene-insensitive mutants
(etr1-1, ein2-1, ein3-1, eir1-1, and axr2), were less susceptible to
H. schachtii (Wubben et al., 2001). Hence, several ACC synthase
coding genes were induced at early infection stages, increasing
and reaching a maximum at 20 dpi in soybean infected with
H. glycines (Tucker et al., 2010). Strikingly, ethylene production
upon nematode infection has been long known in tomato infected
with RKNs (M. Javanica), with a peak at medium infection stages
(4–16 dpi; Glazer et al., 1983), similar to several dicotyledonous

species (Glazer et al., 1985). However, not much is known on
the behavior of ethylene-related mutants infected with RKNs.
Experiments on Lotus japonica expressing ETR-1 were not con-
clusive of its putative role on RKN infection (Lohar and Bird,
2003). Undoubtedly, analysis are still lacking on the morphologic
characteristics of developed syncytia in loss of function mutants
of genes related to ethylene transduction pathways that could
confirm their role on the induction of syncytia TCs character-
istics, such us the presence of CI. Regarding RKNs, virtually no
data on the TCs features of GCs in ethylene mutants are still
available.

TWO-COMPONENT SIGNALING SYSTEMS AND REACTIVE
OXYGEN SPECIES AS INDUCERS OF TC IDENTITY IN NFCs
Recently, Thiel et al. (2012b) suggested a role for a two-
component signaling system (2CS) in cellularization and differ-
entiation of barley endosperm TCs, possibly coupled to hormonal
regulation by abscisic acid and ethylene. In plants, 2CSs require a
hybrid histidine kinase (HK; located in the plasma membrane)
with both histidine kinase and receiver domains, a histidine-
containing phosphotransfer protein (HPt), and a response reg-
ulator that mediates downstream signaling through phosphory-
lation. In Arabidopsis, proteins with significant sequence similar-
ities to all elements of the 2CSs have been identified (reviewed
in Schaller et al., 2008). We have searched for genes encod-
ing those components in the early GCs and syncytia transcrip-
tomes (Szakasits et al., 2009; Barcala et al., 2010; Table S1).
In Arabidopsis, genes encoding 8 HK and 9 HK-like proteins
(HKL) have been identified and 2 of them are up-regulated
in GCs (ETR2) or syncytia (PDK). However, most HKs and
HKLs are down-regulated in NFCs. ETR2, HK2, HK3, ERS1,
and PHYA are down-regulated in syncytia and HK1 and CKI1
in GCs (Cabrera et al., 2013; Table S1). Moreover, the two up-
regulated genes in NFCs are HKLs that lack residues essential
to histidine kinase activity. The Arabidopsis genome encodes
five HPt proteins (AHP1-5) that act as signaling intermediates
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between HKs and response regulators. From them, AHP3 is up-
regulated in syncytia while AHP1 is down-regulated, and the
rest of the genes are not differentially expressed in the tran-
scriptome of micro-dissected GCs and syncytia (Barcala et al.,
2010; Cabrera et al., 2013; Table S1). The last components of
the system are the response regulators, with 33 genes identi-
fied in the Arabidopsis genome (23 response regulators and
10 pseudo-response regulators; Schaller et al., 2008), most of
them down-regulated as well in NFCs (only ARR7 and RR14
are up-regulated in syncytia; Cabrera et al., 2013; Table S1).
Thus, the transcriptomic evidence at early differentiation stages
of syncytia and GCs suggests that genes involved in 2CSs do
not contribute substantially to the differential gene expression
observed in NFCs. Thus, 2CSs are not likely participating in the
first signaling steps involved in the acquisition of TCs identify
in NFCs.

Recently, it has been shown that H2O2 functions downstream
of ethylene to activate cell wall biosynthesis and direct polar-
ized deposition of a uniform wall on which CIs formed in TCs
of V. faba cotyledons (Andriunas et al., 2012). The presence of
a H2O2-generating mechanism dependent upon NADPH oxi-
dase (NOX) activity was suggested (Andriunas et al., 2012).
From the 10 RBOH genes encoding the catalytic subunit of
NOX in Arabidopsis (reviewed in Sagi and Fluhr, 2006), 7 are
down-regulated in syncytia, and none of them are differentially
expressed in GCs (Cabrera et al., 2013). Additionally, defense-
related genes described as related to TCs development, as in
endosperm TCs where the ethylene response is possibly cou-
pled to activated defense mechanisms (Thiel et al., 2008), are
not abundant in NFCs. On the contrary, a general repression
of plant defenses is obvious from the transcriptomes of early
developing syncytia in Arabidopsis, where more than 35 perox-
idases were repressed (Szakasits et al., 2009). Similarly, in early
developing GCs of Arabidopsis and tomato not only peroxidases,
but many genes from the secondary metabolism related to plant
defenses were also down-regulated at 3 dpi (Barcala et al., 2010;
Portillo et al., 2013). All these data suggest that active oxygen
species such as H2O2 very unlikely function as early inducing
signals for TCs identity of NFCs coupled to hormone signaling.
However, it is important to point that we cannot discard the pos-
sibility of the activation of an oxidative burst in medium-late
stages of NFCs development that might be participating in this
process.

FINAL REMARKS
It is interesting to point that many genes induced in early differ-
entiating NFCs correspond to typical categories of downstream
regulated genes that might participate in CIs formation, as those
involved in vesicle trafficking, cell wall biogenesis, cell shape con-
trol and expansion, or nutrient transport, also induced in cells
undergoing differentiation into TCs (Thiel et al., 2008, 2012a;
Dibley et al., 2009; Xiong et al., 2011). Many other downstream
genes are also induced in NFCs contributing to their development
or maintenance (reviewed in Kyndt et al., 2013). Genes associated
to changes in the cytoskeleton include those encoding tubu-
lins, actins, microtubule-binding proteins, as the IAA-induced
ATG8G (Table 1) or AtFH6, a formin encoding gene that regulates

polarized growth by controlling the assembly of actin cables in
Arabidopsis GCs (Favery et al., 2004). However, no functions
directly associated to the TCs characteristics of NFCs have been
yet described for those genes in NFCs (Kyndt et al., 2013). Other
genes possibly related to active nutrient uptake into syncytia and
GCs are also up-regulated by either auxin (NRAMP3), ethylene
(AAP3), or both (ABCG1; Table 1). However, functional studies
of these genes in NFCs are very scarce (reviewed in Kyndt et al.,
2013). In addition, genes encoding cell wall modifying enzymes
as pectin methylesterases, expansins, xyloglucan endotransglyco-
sylases (EXP4, XTR6, PME1, XTR6), all induced by auxin, were
also induced in NFCs (Table 1). Interestingly, the most clarifying
study of a functional implication in TCs characteristic of NFCs, as
the CIs formation, comes from the analysis of UDP-glucose dehy-
drogenase (UGD) coding genes. UGDs act through oxidation of
UDP-glucose producing several cell wall polysaccharides. UGD2
and UGD3 are necessary for the production of CIs in syncytia
and loss of function in double mutants severely affected nematode
development (Siddique et al., 2012).

In conclusion, although genes encoding proteins with simi-
lar functions are differentially expressed in differentiating NFCs
and typical TCs, a clear knowledge of their implication, either
upstream or downstream, in the signaling cascades leading to TCs
characteristics of NFCs is still lacking. Further research will prob-
ably elucidate the contribution of signals such as hormones to
those differentiation events in NFCs.
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