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Plants are sessile organisms and therefore they must adapt their growth and architecture
to a changing environment. Understanding how hormones and genes interact to
coordinate plant growth in a changing environment is a major challenge in developmental
biology. Although a localized auxin concentration maximum in the root tip is important
for root development, auxin concentration cannot change independently of multiple
interacting hormones and genes. In this review, we discuss the experimental evidence
showing that the POLARIS peptide of Arabidopsis plays an important role in hormonal
crosstalk and root growth, and review the crosstalk between auxin and other hormones
for root growth with and without osmotic stress. Moreover, we discuss that experimental
evidence showing that, in root development, hormones and the associated regulatory
and target genes form a network, in which relevant genes regulate hormone activities
and hormones regulate gene expression. We further discuss how it is increasingly evident
that mathematical modeling is a valuable tool for studying hormonal crosstalk. Therefore,
a combined experimental and modeling study on hormonal crosstalk is important for
elucidating the complexity of root development.
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INTRODUCTION

Hormone signaling systems coordinate plant growth and development through a range of com-
plex interactions. The activities of hormones such as auxin, ethylene, cytokinin, abscisic acid,
gibberellin, and brassinosteroids depend on cellular context and exhibit either synergistic or
antagonistic interactions. Additionally, auxin is directionally transported through plant tissues,
providing positional and vectorial information during development (Vanneste and Friml, 2009).
Patterning in Arabidopsis root development is coordinated via a localized auxin concentration
maximum in the root tip (Sabatini et al., 1999), requiring the regulated expression of specific
genes. This auxin gradient has been hypothesized to be sink-driven (Friml et al., 2002) and com-
putational modeling suggests that auxin efflux carrier activity may be sufficient to generate the
gradient in the absence of auxin biosynthesis in the root (Grieneisen et al., 2007; Wabnik et al.,
2010). However, other experimental studies show that local auxin biosynthesis modulates gradient-
directed planar polarity in Arabidopsis, and a local source of auxin biosynthesis contributes to
auxin gradient homeostasis (Ikeda et al., 2009). Thus genetic studies show that auxin biosynthesis
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(Tkeda et al., 2009; Normanly, 2010; Zhao, 2010), the AUX1/LAX
influx carriers (Swarup et al., 2005, 2008; Jones et al., 2008;
Krupinski and Jonsson, 2010), and the PIN auxin efflux carri-
ers (Petrdsek et al., 2006; Grieneisen et al., 2007; Krupinski and
Jonsson, 2010; Mironova et al., 2010) all play important roles in
the formation of auxin gradients.

In addition, experimental evidence shows that, in root devel-
opment, hormones and the associated regulatory and target genes
form a network, in which relevant genes regulate hormone activ-
ities and hormones regulate gene expression. For example, ethy-
lene promotes auxin flux in the root, in a process dependent on
the POLARIS (PLS) peptide (Ruzicka et al., 2007; Swarup et al.,

KEY CONCEPT 1| POLARIS (PLS) peptide

The POLARIS (PLS) peptide was identified in the plant species Arabidopsis
thaliana by promoter trapping. The gene encodes a mRNA of ca. 600
bases, at the 3’-end of which is a 36 amino acid open reading frame
(ORF). Translation of the ORF is required for biological activity. The tran-
scriptional start of the gene overlaps with the 3'-UTR of an upstream gene.
Expression of the PLS gene is strongest in root tips, but is also detectable
in young leaves, and is induced by auxin. Mutation of POLARIS leads
to several developmental defects, including a short root phenotype and
reduced vascular complexity in leaves. Recent results show a role for PLS in
repressing ethylene responses, and in promoting ethylene-mediated auxin
biosynthesis.

2007; Liu et al., 2010a). Furthermore, PIN levels are positively reg-
ulated by ethylene and auxin in Arabidopsis roots (Ruzicka et al.,
2007). Interestingly, cytokinin can negatively regulate PIN lev-
els (Ruzicka et al., 2009), while repressing auxin biosynthesis and
promoting ethylene responses (Nordstrom et al., 2004; Chandler,
2009; Liu et al., 2010a). Cytokinin also has the capacity to mod-
ulate auxin transport, by transcriptional regulation of the PIN
genes (Ruzicka et al., 2009).

Different aspects of hormonal crosstalk in root development
have been reviewed recently (Bishopp et al., 2011; Depuydt and
Hardtke, 2011; Ross et al., 2011; Garay-Arroyo et al., 2012; Hwang
et al., 2012; Vanstraelen and Eva Benkova, 2012). These review
articles have concentrated on the interactions of either a wide
range of hormones or the specific interactions of a couple of hor-
mones. For example, the review by Garay-Arroyo et al. (2012)
covers auxin, ethylene, cytokinin, gibberellins, brassinosteroids
and abscisic acid. The review by Hwang et al. (2012) mainly
discusses the interaction between cytokinin and auxin in detail.
The readers may consult those reviews for different aspects of
hormonal crosstalk. Here our focused review concentrates on a
combined experimental and modeling perspective of hormonal
crosstalk in root development.

KEY CONCEPT 2 | Hormonal crosstalk

Hormonal crosstalk refers to the phenomenon whereby the activities of
hormones such as auxin, ethylene, cytokinin, abscisic acid, gibberellin,
and brassinosteroids exhibit either synergistic or antagonistic interactions,
depending on cellular context.

ROLES OF THE POLARIS PEPTIDE OF ARABIDOPSIS IN
HORMONAL CROSSTALK AND ROOT GROWTH

The POLARIS (PLS) gene of Arabidopsis transcribes a short
mRNA encoding a 36-amino acid peptide (Casson et al., 2002).

Expression of the PLS gene of Arabidopsis is repressed by
ethylene and induced by auxin (Casson et al., 2002; Chilley
et al., 2006). It was also experimentally shown that pls mutant
roots are short, with reduced cell elongation, and they are
hyper-responsive to exogenous cytokinins. Moreover, pls mutant
roots show increased expression of the cytokinin-inducible gene,
ARR5/IBC6, compared with the wild type (Casson et al., 2002).
On the other hand, in the pls mutant, auxin concentration is
reduced (Figurel), cytokinin concentration is enhanced and
ethylene production remains approximately unchanged com-
pared to wild-type (Casson et al., 2002; Chilley et al., 20065
Liu et al., 2010a). In the PLS overexpressing transgenic PLOSox,
auxin concentration is increased, while ethylene production
remains approximately unchanged. In the ethylene resistant pls
etr] double mutant, auxin concentration is approximately recov-
ered to the same level as that in wild-type seedlings (Casson
et al., 2002; Chilley et al., 2006; Liu et al., 2010a). In addition,
immunolocalization studies reveal that both PIN1 (Figure 1) and
PIN2 protein levels increase in the pls mutant, and decrease
in PLSox (Liu et al, 2013). In the ethylene-insensitive etrl
mutant, PIN1 and PIN2 levels are lower than those in wild-
type. In addition, the double mutant pls etrl exhibits reduced
PIN1 and PIN2 levels compared to pls and slightly lower PIN1
and PIN2 levels compared to wild-type (Liu et al, 2013).
Therefore, experimental data have shown that the PLS gene plays

auxin response

PIN1 response

PIN1 WT PIN1 pls

FIGURE 1 | DR5::GFP expression in wild type and p/s mutant, showing
difference in auxin gradients (upper panel), and PIN1
immunolocalization in wildtype and pl/s mutant, showing differences
in PIN protein levels (lower panel). This figure is adapted with permission
from the Figure 4 of Liu et al. (2010a) and the Figure 1 of Liu et al. (2013).
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important roles in the crosstalk between auxin, ethylene and
cytokinin.

By combining the experimental data relating to the PLS gene
with a variety of other experimental data in the literature, we have
revealed that PLS, PIN1/PIN2, and three hormones (auxin, ethy-
lene and cytokinin) form an interacting network (Figure 2), in
which expression of PLS and PIN1/PIN2 levels regulate auxin,
ethylene and cytokinin responses, which in turn regulate expres-
sion of PLS and PIN1/PIN2 (Liu et al., 2013). In addition, chang-
ing the concentration of, or response to a given hormone may
also change the concentrations of/responses to other hormones.
Therefore, functions of hormones and the associated genes in
root development must be analyzed as an integrative system, as
exemplified in Figure 2.

CROSSTALK BETWEEN AUXIN AND OTHER HORMONES FOR
ROOT GROWTH

Figure 2 describes the crosstalk network for three major hor-
mones: auxin, cytokinin and ethylene. This network can be fur-
ther expanded by including other crosstalk components. At early
developmental stages, the balance between auxin and cytokinin
signaling is crucial: for example, in the Arabidopsis root meris-
tem, auxin promotes cell division (Dello loio et al., 2008)
and cytokinin promotes cell differentiation (Perilli et al., 2010).
Moubayidin et al. (2010) found that higher gibberellin (GA)
levels in the young meristem repress ARRI expression, which
is accompanied by a drop in IAA3/SHY2 transcription. The
ARRI cytokinin-responsive transcription factor activates the gene
SHY2, which negatively regulates the PIN genes encoding auxin
transport facilitators. Thus, GA forms a circuit regulating the
balance between auxin and cytokinin signaling.

Brassinosteroids (BRs) also interact with auxin. For example,
both BRs and auxin pathways synergistically regulate the expres-
sion of several auxin-responsive genes (Mouchel et al., 2006). BRs
also regulate root development and this activity is concentration-
dependent (Mussig et al., 2003). Thus, a complex relationship
between auxin and BRs is formed (Hardtke, 2007).

Abscisic acid (ABA) is an isoprenoid hormone that is involved
in the regulation of seed development and dormancy, as well
as plant responses to various environmental stresses (Finkelstein
and Rock, 2002). It has been experimentally shown that the
gene VIVIPAROUSI (VP1) in maize and its Arabidopsis ortholog
ABI3, which encodes a transcription factor involved in ABA sig-
naling, is auxin-inducible (Suzuki et al., 2001; Brady et al., 2003).
Therefore, ABA interacts with the crosstalk network via the action
of auxin (Figure 2).

The interaction between auxin, cytokinin and ethylene in
Figure 2 may also be extended to include other signals that reg-
ulate root development. For example, glucose signals regulate
Arabidopsis seedling root directional growth by interacting with
auxin, cytokinin and ethylene (Kushwah et al., 2011). A specific
hexokinase in Arabidopsis (HXK1) has a predominant role in glu-
cose signaling. It has been experimentally shown that catalytically
inactive HXK1 restores auxin sensitivity for callus and root induc-
tion, indicating that the action of the HKX-dependent pathway is
closely associated with the action of the auxin signaling pathway
(Moore et al., 2003). Therefore, glucose signals can be integrated

into the hormonal crosstalk network via interplay with auxin
signaling.

KEY CONCEPT 3| Hormonal crosstalk network
A hormonal crosstalk network is a type of biological network that describes
gene expression, signal transduction and metabolic conversion complexities
associated with hormonal crosstalk activity in plant development. A hor
monal crosstalk network is therefore a mixed-type network that integrates
transcriptomic, proteomic and metabolic networks.

HORMONAL CROSSTALK UNDER OSMOTIC STRESS

Plants remodel their root architecture to deal with osmotic stress,
inhibiting lateral root initiation and altering root growth rates
(van der Weele et al., 2000; Deak and Malamy, 2005). At low to
moderate levels of osmotic stress root growth is increased and at
higher levels it is inhibited (van der Weele et al., 2000; Xu et al.,
2013).

Hormone crosstalk integrates stress responses with develop-
mental control and as with most abiotic stresses, osmotic stress
is characterized by an increase in abscisic acid levels. Increases
in abscisic acid are concentrated in the root cap and are less sig-
nificant than in aerial tissues, but are essential to normal growth
under osmotic stress (Christmann et al., 2005; Deak and Malamy,
2005; Xu et al., 2013).

The increase in root growth rate under moderate osmotic
stress occurs in an ABA-dependent manner (van der Weele
et al., 2000; Xu et al., 2013). Osmotically induced ABA increases
basipetal auxin transport through elevated PIN2 and AUX1 lev-
els, increasing H*-ATPase activity and root elongation (Xu et al.,
2013). High levels of applied ABA also induce expression of ARF2,
a negative regulator of auxin responses and arf2 mutants display
altered auxin transport and shorter roots under ABA application
(Wang et al., 2011).

Cytokinin is also thought to play a role in osmotic stress
responses. Mature plants alter expression of cytokinin biosyn-
thesis and metabolism genes, decreasing cytokinin levels under
dehydration stress (Nishiyama et al., 2011). The AHK2 and
AHK3 cytokinin receptor kinases negatively regulate ABA
and osmotic stress responsive gene expression, and cytokinin-
deficient mutants have increased survival rates under stress
(Tran et al., 2007; Werner et al., 2010; Nishiyama et al., 2011).
Intriguingly, cytokinin-deficient mutants display lower levels of
ABA, implying that a positive feedback on ABA may exist
(Nishiyama et al., 2011).

Osmotic stress can also promote ethylene biosynthesis, which
can have an antagonistic role with ABA on root growth (Ichimura
et al., 2000; Sharp, 2002; Liu and Zhang, 2004; Joo et al., 2008;
Cheng et al., 2009). ABA inhibits ethylene biosynthesis by pos-
itively regulating ERF11 via HY5 to repress expression of ACS5,
which catalyses the rate limiting enzyme in ethylene biosynthe-
sis (Vogel et al., 1998; Li et al., 2011). Ethylene can also limit
ABA biosynthesis, with ethylene-insensitive mutants hyperac-
cumulating ABA, associated with increased expression of ABA
biosynthetic genes such as NCED3 (Ghassemian et al., 2000;
Chiwocha et al., 2005; Wang et al., 2007; Cheng et al., 2009).

Genetically or pharmacologically impairing ethylene signaling
makes plants insensitive to root growth inhibition by ABA, but
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FIGURE 2 | A hormonal crosstalk network of auxin, ethylene and cytokinin
for root development, showing that change in one signaling component
leads to change in other signaling components in the network (modified
with permission from Liu et al., 2013). The reaction rates are: v1, total auxin
influx from all neighboring; v2, auxin biosynthesis rate in the cell; v3, total auxin
efflux from the cell; v4, rate for conversion of the inactive form of the auxin
receptor, Ra, to its active form, Ra*; vb, rate for conversion of the active form of
the auxin receptor, Ra*, to its inactive form, Ra; v6, transcription rate of the
POLARIS (PLS)gene; v7, decay rate of PLS mRNA; v8, translation rate of the
PLS protein; v9, decay rate of PLS protein; v10, rate for conversion of the
inactive form of the ethylene receptor, Re, to its active form by PLS protein
(PLSp), Re*; v11, rate for conversion of the active form of ethylene receptor,
Re*, to its inactive form, Re; v12, ethylene biosynthesis rate; v13, rate for

| BEESEEES
7
?

Ethylene signalling module

removal of ethylene; v14, rate for conversion of the inactive form of the
CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) protein, CTR1, to its active form,
CTR1*; v15, rate for conversion of the active form of CTR1 protein, CTR1*, to its
inactive form, CTR1; v16, rate for activation of the ethylene signaling response;
v17, rate for removal of the unknown ethylene signaling component, X; v18, rate
for cytokinin biosynthesis; v19, rate for removal of cytokinin; v20, transcription
rate of the PIN gene; v21, rare for the decay of PIN mRNA; v22, translation rate
of PIN protein; v23, rate for decay of PIN protein in cytosol; v24, rate for
transport of PIN protein from cytosol to plasma membrane; v25, rate for
internalization of PIN protein. When exogenous hormones are applied: v26, rate
for uptake of IAA when exogenous IAA is applied; v27, rate for uptake of ACC
when exogenous ACC is applied; v28, rate for uptake of cytokinin when
exogenous cytokinin is applied.

plants impaired in ethylene signaling have shorter roots under
severe osmotic stress (Beaudoin et al., 2000; Ghassemian et al.,
2000; Wang et al., 2007, 2008). Where limiting ethylene percep-
tion makes plants less sensitive to ABA-induced root shortening,
pharmacologically limiting ethylene biosynthesis makes plants
more sensitive (Ghassemian et al., 2000). This implies that both
hormones are required for correct root growth under osmotic
stress but the antagonistic regulation of each other’s biosynthe-
sis is insufficient to explain inhibition of root growth responses
alone.

Mutant analysis has revealed little interaction between the two
signal transduction pathways (Cheng et al., 2009). However EIN2,
an essential component of ethylene signaling, shows reduced
expression under osmotic stress but not ABA treatment, indicat-

Osmotic stress clearly affects hormone levels in a series of com-
plex interactions which cannot explain root growth adequately
in isolation. Hormones and the associated regulatory and target
genes in plant root form a network in which relevant genes reg-
ulate hormone activities and hormones regulate gene expression.
An important question for understanding these complex interac-
tions is: what are the mechanisms that regulate the fluxes of plant
hormones and levels of the proteins encoded by the regulatory
and target genes? To address this question, it is increasingly evi-
dent that mathematical modeling is becoming a valuable tool to
tackle the complexity of hormonal crosstalk.

MATHEMATICAL MODELING AS A VALUABLE TOOL FOR
STUDYING HORMONAL CROSSTALK

ing ethylene signaling may be mediated by stress independently of A hormonal crosstalk network is a type of network con-

ABA (Wang et al., 2007).

sisting of gene expression, signal transduction and metabolic
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FIGURE 3 | A schematic description of a methodology for a combined experimental data. Then the mathematical models are used to predict novel
experimental and modeling study on hormonal crosstalk in root experiments. The data acquired using the novel experiments are used to
development. Upper panel: Hormonal crosstalk networks are constructed expand the hormonal crosstalk networks and to validate the mathematical
using existing experimental data. The networks are used to check the models again. The expanded hormonal crosstalk networks are used to check
consistency of existing experimental data and they are also used to formulate  the consistency of the novel experiments, and they are also used to develop
mathematical models such as models described using ordinary differential novel mathematical models. Lower panel: the same as the upper panel, but
equations. The mathematical models are validated using the existing root architecture is included.

conversions. For example, in Figure2, hormonal signals are
transduced, auxin, ethylene, and cytokinin are synthesized and
decayed through metabolic processes, and expression of PIN
and PLS genes is realized. Therefore, a hormonal crosstalk
network is a mixed-type network that integrates all these
components. There are different mathematical tools avail-
able for analysing plant biological networks at different levels
(Liu et al., 2010b). In particular, kinetic modeling (Rohwer,
2012) is useful to analyse quantitatively hormonal crosstalk
networks.

KEY CONCEPT 4 | Kinetic modeling

Kinetic modeling is a modeling method that uses differential equations to
analyse how each component (concentration, reaction rate) in a hormonal
crosstalk network changes in space and time. In kinetic modeling, the rate
of a reaction is described by the concentrations of all chemicals involved
in the reaction, and the mass balance of all chemicals is described using
differential equations.

The hormonal crosstalk between auxin, ethylene and
cytokinin via the action of the PLS gene was analyzed using
kinetic modeling (Liu et al, 2010a). On the basis of the
model structure of the hormonal crosstalk network, relation-
ships between auxin biosynthesis pathway(s) and PLS-regulated
hormonal crosstalk can be analyzed. Although the molecular
basis for auxin biosynthesis is poorly characterized, mathemati-
cal modeling reveals that the regulation of auxin biosynthesis by
PLS peptide (PLSp) must be realized through its compounded
effects with ethylene and cytokinin: PLSp cannot regulate auxin
biosynthesis independently of the regulation of ethylene and
cytokinin. This demonstrates that different structures of a hor-
monal crosstalk network may have different auxin concentration
responses, revealing that a combined modeling and experimental
analysis is a powerful tool for dissecting the causal relation-
ship for the interactions between genes and hormonal crosstalk
(Liu et al., 2010a). In addition, the hormonal crosstalk net-
work constructed by iteratively combining experimental data and
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mathematical modeling (Liu et al., 2010a) can further integrate
novel experimental data (Liu et al., 2013). Thus, through the cycle
of modeling predictions and novel experimental measurements,
the hormonal crosstalk network can be used to analyse the func-
tions of hormone signals in root development and predict new
experiments.

The role of the crosstalk between auxin and cytokinin sig-
naling in specifying the root architecture of Arabidopsis has
also been modeled using kinetic modeling (Muraro et al., 2011,
2013). It is found that tissue-specific oscillations in gene expres-
sion can be understood based on the joint activity of auxin and
cytokinin (Muraro et al., 2013). These results reveal that hor-
monal crosstalk can be a mechanism explaining time-dependent
dynamics such as oscillations, although other mechanisms may
also generate oscillations in gene expression (Bujdoso and Davis,
2013; Rue and Garcia-Ojalvo, 2013).

The crosstalk between auxin and BRs signaling has also been
analyzed using a Boolean logic approach (Sankar et al., 2011).
An advantage of this approach is that it does not require kinetic
parameters, which are usually not available (Liu et al., 2010b).
However, the underlying assumptions of Boolean logic and their
relevance to biological reality should be carefully assessed when
applied to the modeling of hormonal crosstalk networks.

PERSPECTIVES

This review has focused on recent progress in (a) experi-
mental measurements relating to hormonal interactions in the
Arabidopsis root; (b) construction of hormonal crosstalk net-
works based on experimental data; and (c) combination of
experimental and mathematical modeling for elucidating and
predicting the roles of hormonal crosstalk in root development.

One of the important features for hormonal crosstalk in root
development (Figure 2) is that change in one signaling compo-
nent leads to change in other signaling components. Therefore,
elucidating the regulation of one signaling component requires
the development of novel modeling methodology (Liu et al.,
2014).

An additional important aspect of hormonal signaling is its
spatiotemporal dynamics. Understanding the roles of hormones
in root development needs an analysis of the dynamics of hor-
monal crosstalk networks in spatial settings within a root. Here
we propose a methodology that combines experimental data and
mathematical modeling to study the spatiotemporal dynamics of
hormonal signaling in root development (Figure 3). The study
of hormonal crosstalk of auxin, ethylene and cytokinin in the
non-spatial setting of a single cell has demonstrated that the
methodology described in Figure 3 is a powerful tool (Liu et al.,
2010a, 2013).

For the spatiotemporal modeling of hormonal crosstalk in
the root, the important spatial aspects include (a) mechanisms
of PIN polarity and auxin transport (van Berkel et al., 2013);
(b) the relationship between auxin distribution and experimen-
tal observation of PIN polarity (Grieneisen et al., 2007); and (c)
integration of multi-scale root systems (Hill et al., 2013). In addi-
tion to what we have discussed in the review, these aspects should
be integrated when the root is modeled as an integrative system
in space and time.
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