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Homeostasis of reactive oxygen species (ROS) in the intracellular compartments is of
critical importance as ROS have been linked with nearly all cellular processes and more
importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary
conserved role in the regulation of metabolic and energetic status of cells. Recent
evidence also suggests that polyamines (PA) are major regulators of ROS homeostasis.
In Arabidopsis the backconversion of the PAs spermidine (Spd) and spermine to putrescine
and Spd, respectively, is catalyzed by two peroxisomal PA oxidases (AtPAO). However,
the physiological role of this pathway remains largely elusive. Here we explore the role of
peroxisomal PA backconversion and in particular that catalyzed by the highly expressed
AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst.
Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption,
with Spd exerting the strongest effect. This increase is attenuated by treatment with the
NADPH-oxidase blocker diphenyleneiodonium iodide (DPI). Loss-of-function of AtPAO3
gene results to increased NADPH-oxidase-dependent production of superoxide anions
(O;‘), but not H,O,, which activate the mitochondrial alternative oxidase pathway (AOX).
On the contrary, overexpression of AtPAO3 results to an increased but balanced production
of both HyO, and O3~. These results suggest that the ratio of O37/H,0, regulates
respiratory chain in mitochondria, with PA-dependent production of O~ by NADPH-oxidase
tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3
seems to be an important component in the regulating module of ROS homeostasis, while

a conserved role for PA backconversion and ROS across kingdoms is discussed.
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INTRODUCTION

Polyamines (PA) are low-molecular mass nitrogenous com-
pounds, and the most abundant ones, across kingdoms, are
putrescine (Put), spermidine (Spd), spermine (Spm), and thermo-
spermine (t-Spm); they have been correlated with plethora of bio-
logical processes, including protein regulation (Baron and Stasolla,
2008; Takahashi and Kakehi, 2010), development (Wimalasekera
etal.,, 2011; inter alia), ion channels (Wu etal., 2010; Zepeda-
Jazo etal., 2011), control of nitrogen: carbon balance (Mattoo
etal., 2006; for review see Moschou etal., 2012), stress responses
(Alcazaretal.,2011b; Marco et al., 201 1; Moschou and Roubelakis-
Angelakis, 2013) and in particular homeostasis of reactive oxygen
species (ROS; Chattopadhyay et al., 2006; inter alia).

Polyamines catabolism is mediated mainly by two classes of
amine oxidases (AO), the diamine oxidases (DAO) and the PA oxi-
dases (PAO; reviewed in Moschou et al., 2012). In Arabidopsis, the
AO pathway consists of several, perhaps functionally redundant
genes. For example, Arabidopsis has at least 10 DAO genes (four
have been characterized; Moller and McPherson, 1998; Planas-
Portell etal., 2013) and five PAO genes (AtPAO1-AtPAQO5, all have
been characterized; Ahou etal., 2014). DAOs oxidize Put and

cadaverine (Cad), and with much lower affinity, Spd and Spm.
The action of DAOs on Put yields pyrroline, H,O;, and ammonia
(NH**; Cohen, 1998).

In contrast to DAOs, PAOs oxidize Spd, and Spm but not Put
(Angelini etal., 2010). The apoplastic PAO catalyzes the termi-
nal oxidation of PAs, yielding pyrroline and 1-(3-aminopropyl)
pyrrollinium from Spd and Spm, respectively, along with 1,3-
diaminopropane and H,O;. The plant intracellular (cytoplasmic
or peroxisomal) PAOs interconvert PAs, producing H,O,. Inter-
estingly, they interconvert Spm to Spd and Spd to Put, reversing
the PA biosynthetic pathway (Tavladoraki etal., 2006; Kamada-
Nobusada etal., 2008; Moschou et al., 2008c; Toumi et al., 2010;
Fincato et al., 2012).

Polyamines catabolism has been correlated with numerous
processes including cell growth, development, stress responses,
and programmed cell death (PCD; Moller and McPherson, 1998;
Yoda etal., 2003, 2006; Paschalidis and Roubelakis-Angelakis,
2005a,b; Tisi etal.,, 2011; Moschou etal., 2012; Moschou and
Roubelakis-Angelakis, 2013). We have documented the contri-
bution of tobacco apoplastic PAO (Moschou etal., 2008b) and
peroxisomal (Wu etal., 2010) AtPAO3 in H,O, production. The
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apoplastic pathway has been mostly correlated with the execution
of PCD (Yoda etal., 2003, 2006; Moschou etal., 2008b; Fincato
etal., 2012; Moschou and Roubelakis-Angelakis, 2013). The per-
oxisomal AtPAO3 is critical for the elongation of pollen tube by
modulating a plasma membrane H,0,-dependent Ca?*-influx
channel (Wu etal., 2010). In Arabidopsis, PA oxidation is medi-
ated by PAO with diverse specificities and expression patterns
(Fincato etal., 2011), thereby regulating ROS levels in a complex
manner.

Superoxides (O37) and H,O; are the most well studied ROS;
they are important players in physiological and pathological pro-
cesses (Pitzschke etal., 2006; Dikalov etal., 2011; Suzuki etal.,
2013). NADPH-oxidase catalyzes the conversion of molecular
oxygen to O3, and its activation accounts mostly for the large
consumption of oxygen that characterizes the respiratory burst
in mammalian phagocytic cells (Vignais, 2002). In mammals
NADPH-oxidase is composed of membrane-bound and cytoso-
lic proteins. In the center of the NADPH oxidase complex lies
the heterodimeric NADPH-binding flavocytochrome b558, con-
sisting of the glycosylated transmembrane protein gp91phox and
the non-glycosylated p22phox subunit. Upon activation, the
cytosolic proteins p47phox and p67phox become phosphory-
lated and translocate, together with p40phox and p2lrac, to
the membrane components, to form the active NADPH-oxidase
complex (Segal and Abo, 1993). Plants deficient in gp91phox
homologs have compromised responses to stress and have a
reduced ability to accumulate ROS. Antisense tomato lines (Ler-
bohl) show reduced ROS accumulation and compromise wound
response (Sagi etal., 2004). Arabidopsis plants disrupted in the
gp9Iphox homologs, the respiratory burst oxidase homolog D
(AtrbohD) and AtrbohF, exhibit reduced ROS production and
treatment with the avirulent bacterium Pseudomonas syringae
pv tomato DC3000 results to cell death (Torres etal., 2005),
whereas they have diminished stomatal closure in response to
abscissic acid (ABA; Kwak etal., 2003). These data suggest that
NADPH-oxidase homologs in plants are important for ROS
accumulation.

Another important source of ROS is the mitochondrial elec-
tron transport chain (ETC; Muller etal., 2004; Vacca etal., 2004).
It consists of four complexes, tightly bound to the intermembrane
space of mitochondria. Electrons derived from the tricarboxylic
acid (TCA) cycle in the matrix move toward the ETC and in turn
pass through the four complexes. Transfer of electrons between
complex 3 and 4 of the ETC is facilitated via the electron carrier
cytochrome-c (cyt-c pathway). The electron motion generates a
proton gradient which in turn drives an ATPase. Dysfunction of
the mitochondrial ETC leads to the leakage of electrons toward
oxygen resulting in the generation of O3~ (Muller etal., 2004). In
order to dissipate the excess electrons, the mitochondria possess
another pathway, the alternative pathway, which depends on an
alternative terminal oxidase (AOX; Atkin etal., 2002). AOX alle-
viates mitochondrial ETC from the excess electron load (Yip and
Vanlerberghe, 2001).

Previous work from our lab suggested that a regulatory crosstalk
between PAs and NADPH-oxidase takes place during tobacco pro-
toplast regeneration (Papadakis and Roubelakis-Angelakis, 2005).
PAs seem to be necessary for protoplasts to retain their totipotent

state, and prevention of PCD. The interaction between main cel-
lular sources of ROS, such as mitochondria and NADPH-oxidases,
however, remains obscure. More importantly, a feed-forward reg-
ulation of different ROS sources has been reported (Dikalov et al.,
2011). Therefore, the regulatory crosstalk between ROS sources
merits further examination.

Here, we report that exogenous PAs stimulate oxygen con-
sumption in Arabidopsis in an NADPH-oxidase dependent
manner. Plants overexpressing the peroxisomal AtPAO3 show
decreased oxygen consumption rate, in strict contrast to loss-
of-function Atpao3 plants which show increased consumption
through the AOX pathway. Surprisingly, this increase is attenu-
ated by diphenyleneiodonium iodide (DPI) but not by ascorbate
(ASA), suggesting that NADPH-oxidase is upstream of a res-
piratory increase mediated by AOX. By delving the regulatory
function of O™ in oxygen consumption rate, we found that
AtPAO3 overexpressing plants show a balanced production of
both O3~ and H,0,, while Atpao3 loss-of-function plants show
a high ratio of O~ versus HyO, production. These data sug-
gest that NADPH-oxidase and AtPAO3 cross-talk for balancing
intracellular O57/H,O, which in turn affect the cyt-c/AOX
pathways.

MATERIALS AND METHODS

PLANT MATERIAL AND GROWTH CONDITIONS

Arabidopsis thaliana wild type (WT) plants of the ecotype
Columbia (Col-0) were used along with transgenic plants over-
expressing the peroxisomal AtPAO3 (S-AtPAO3) and Atpao3
T-DNA loss-of-function insertional mutants, previously described
(Moschou et al., 2008c; Wu et al., 2010; Fincato et al., 2011). Plants
were grown in a cabinet using an 8/16 h (light/dark) photoperiod
and a constant temperature of 23°C. Developing seedlings were
transferred to 96-well plates filled with 1/4 strength Murashige
and Skoog (MS; Murashige and Skoog, 1962) culture medium. All
treatments were carried out by supplementing the culture medium
with the corresponding agent. More specifically, the PAs Put, Spd,
and Spm were added as aqueous solutions at a final concentration
of ImM. Control plants were mock treated with dH,O.

POLAROGRAPHIC MEASUREMENT OF RESPIRATORY OXYGEN
CONSUMPTION

The rate of oxygen consumption was essentially determined as
previously described (Andronis and Roubelakis-Angelakis, 2010).
In brief, polarography was performed at 30°C with a Clark type
electrode system (Hansatech Instruments, Kings’s Lynn, Norfolk,
UK), in the presence and absence of the alternative respiratory
inhibitor salicylhydroxamic acid (SHAM). Oxygen consumption
was measured for a period of 5 min. For inhibitor treatments,
leaves were incubated in 15 mM SHAM in 3% (v/v) methanol
for a period of 10 min prior to measurement. Control leaves
were incubated in dH,O or 3% (v/v) methanol. In all cases,
the rate of oxygen consumption was expressed as per g fresh
weight.

NADPH OXIDASE NATIVE PAGE AND ACTIVITY STAINING
Separation of NADPH oxidase isoenzymes and activity staining
were carried out according to Carter etal. (2007). Arabidopsis leaf
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tissue was collected and ground using liquid N;. The powder was
homogenized in a buffer containing 50 mM sodium phosphate,
pH 6.8, supplemented with 0.5% (v/v) Triton X-100. 100 g of
protein were separated using native PAGE at 40 mA. Gels were then
incubated in 0.5 mg mL ™! nitroblue tetrazolium (NBT) in 10 mM
Tris, pH 7.4, and 134 mM NADPH until bands were detected.

IN SITU DETECTION OF H,0, AND O3~

In situ accumulation of H,O;, was detected using the method
of Thordal-Christensen etal. (1997) and of O3~ according to
Jabs etal. (1996). Arabidopsis seedlings were destained using boil-
ing pure ethanol and photographed using a Nikon Coolpix 4500
digital camera.

PROTEIN GEL BLOT ANALYSES AND IN-GEL ACTIVITIES OF APX AND
soD

Protein extractions and gel blots were performed as previously
described (Moschou etal., 2013). One hundred mg of leaf mate-
rial was mixed with 100 WL of urea extraction buffer [4 M urea,
100 mM DTT, and 1% (v/v) Triton X-100] and incubated in ice
for 10 min. The samples were boiled with Laemmli sample buffer
for 10 min and centrifuged at 13,000 rpm for 15 min. Equal
amounts of the supernatants were loaded on 10% (v/v) polyacry-
lamide gels and blotted on a polyvinylidene difluoride (PVDF)
membrane.

For the activity staining of ascorbate peroxidase (APX), 10 mM
ASA were added to isoelectric focusing electrophoresis buffer (Rao
etal,, 1995), and 10% gels were pre-run for 30 min at 20 mA.
Subsequently, the gels were incubated in the dark in a solution
containing 50 mM potassium phosphate buffer, pH 7.0, and 2 mM
ASA; the gels were incubated in the dark for another 30 min in
50 mM potassium phosphate buffer, pH 7.0, 4 mM ASA, and
2 mM H,0;. Bands were visualized after the incubation of gels
in coloring solution (50 mM potassium phosphate buffer, pH 7.8,
14 mM tetramethylethylenediamine, TEMED; and 1.2 mM NBT).
The activity staining of superoxide dismutase (SOD) has been
previously described (Beauchamp and Fridovich, 1971).

IMAGE AND STATISTICAL ANALYSIS

The image analysis was performed using Image] v 1.41 software!.
Statistical analysis was performed with SPSS v14? or JMP v 9
software®. We used Dunett’s test with alpha values set at o = 0.1.

RESULTS

EXOGENOUS PAs STIMULATE OXYGEN CONSUMPTION RATE

Our previous work established the effect of abiotic stress on
the respiratory activity of WT tobacco plants (Andronis and
Roubelakis-Angelakis, 2010). Under abiotic stress conditions, cyt-
¢, an electron carrier located between complexes III and IV of
the ETC, dissociates leading to malfunction of the mitochondrial
ETC and accumulation of ROS. As a result, the AOX pathway is
activated in order to dissipate the excess electrons “leaking” from
the ETC. Taking into consideration the link between PAs and plant

Uhttp://rsb.info.nih.gov/ij/index.html

Zwww.spss.com

3www.jmp.com

responses to stresses, we attempted to reveal a potential correlation
between PAs and respiratory activity in Arabidopsis thaliana.

Two-week old Col-0 Arabidopsis seedlings were treated with
exogenous Put, Spd, and Spm and oxygen consumption rate was
determined 10 min post-treatment. Respiration rate increased in
the presence of all PAs used, in terms of oxygen consumption.
Spd exerted the strongest effect on the respiration rate, result-
ing in a 2.6-fold increase compared to the mock treated plants
(Figure 1). Put and Spm increased respiration, by 1.8- and 2.1-
fold, respectively, compared to mock treated plants. These findings
revealed an apparent link between PAs and ETC regulation in
plants.

STIMULATION OF OXYGEN CONSUMPTION RATE DEPENDS ON PA-
INDUCED GENERATION OF O3~
Previously, we have shown that exogenous application of Spd to
tobacco plants leads to a significant increase in H,O, content gen-
erated by the action of PAO (Moschou etal., 2008b). A plausible
hypothesis could be that PAO-dependent ROS production is a
component of the pathway which is responsible for the observed
increase of the oxygen consumption rate. To test this hypothesis,
we firstly examined whether exogenous Spd could induce H,O;
and O3~ accumulation in Arabidopsis. To this end, we employed
in situ detection protocols of H,O, and O3™. Indeed, a 10 min
treatment with exogenous Spd (1 mM) led to a significant accu-
mulation of H,O,, as a result of PA oxidation. The use of 1 mM
Spd was based on our previous findings that this concentration
is enough to enter peroxisomes and be backconverted to Put in
Arabidopsis (Fincato etal., 2011). Surprisingly, we found a sig-
nificant increase in O3 content, as well (Figures 2A,B). From
the aforementioned it is evident that the increase in plant res-
piration coincided with elevated H,O, and/or O3~ in treated
plants.

To prove the link between the produced ROS and increased res-
piration, we tested whether quenching of ROS would alleviate the
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FIGURE 1 | Effect of exogenous polyamines on oxygen consumption
rate in Arabidopsis. Arabidopsis Col-0 seedlings were treated with 1 mM
Put, Spd, or Spm for a period of 10 min, and oxygen consumption rate was
estimated by a Clark-type electrode. Data are the means of three
independent experiments +SD. Asterisks indicate statistical significant
differences (***P < 0.001).
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FIGURE 2 | Effect of exogenous Spd and DPI on ROS homeostasis in
Arabidopsis plants. (A) Plants were treated with 1 mM Spd for a period of
10 min and Hy O, or O3~ were estimated by in situ detection methods.
Scale bars, 2.8 cm. (B) Relative pixel intensity of the brownish (detection of
H,O») or bluish (detection of OE’) adduct formed after application of 1 mM
Spd. AU, arbitrary units. Data are the means of three independent
experiments £SD. Asterisks indicate statistical significant differences
(***P < 0.001; **P < 0.01).

effect of Spd on respiration. Spd was added in combination with
ASA, a scavenger of O3~ and H,O,, catalase (CAT), a scavenger
of H,O, and SOD, a scavenger of O3~ . Addition of ASA to the
medium failed to produce a significant effect on Spd-induced res-
piration, whereas CAT led to a 37% decrease over the rate found
in Spd treatments (Figure 3A). The addition of SOD to the Spd-
containing medium alleviated the effect of Spd to a greater extent
leading to an overall reduction of 57% over the Spd treated plants,
to a rate similar to that determined for the untreated plants (con-
trol). Finally, treatment with both, SOD and CAT in addition
to Spd further reduced the respiration rate, rendering it lower
than that determined in the untreated plants. These results sug-
gest that PA-dependent ROS and particularly O3~ are required for
induction of the increased oxygen consumption rate.

Previous work from our laboratory established the role of
PAs and NADPH-oxidase in the developmental fate of isolated
protoplasts (Papadakis and Roubelakis-Angelakis, 2005). Consid-
ering that Spd led to a more significant increase of O3~, than of
H,0; we hypothesized that O5™ is produced via the activation
of the NADPH- oxidase. Indeed simultaneous treatment of Col-
0 Arabidopsis plants with Spd and the NADPH-oxidase blocker
DPI led to a significant reduction in both H,O; and O™ in
the treated plants (Figures 2A,B), providing strong evidence for
the participation of the NADPH-oxidase in the Spd-induced ROS
accumulation.
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FIGURE 3 | Combined effect of exogenous Spd and ASA, CAT or SOD
on oxygen consumption rate of Arabidopsis plants and
dose-dependent response of NADPH-oxidase activity by Spd.

(A) Oxygen consumption rate in plants incubated in the respective medium
for 10 min. Data are the means of three independent experiments +SD.
Asterisks indicate statistical significant differences (***P < 0.001;

*P < 0.05). For Spd+SOD treatment P value is indicated. (B) Effect of
exogenous Spd on NADPH-oxidase activity in Col-0 Arabidopsis plants.
Plants were treated with 0.1, 0.2, 0.5, 1, and 5 mM Spd for a period of
10 min and relative pixel intensity of lane profile after application of 1 mM
Spd was assessed.

So far there are strong indications that there is interplay
between Spd and NADPH- oxidase in the generation of ROS
which induces enhancement of respiration in Arabidopsis. To
further verify this result we studied the effect of Spd as a dose-
response on NADPH-oxidase activity in Col-0 Arabidopsis plants.
Treatment with a range of Spd concentrations resulted to a
dose-dependent effect in the increase of NADPH-oxidase activ-
ity up to a saturation point, and decreased thereafter as indicated
by an in gel enzymatic assay (Figure 3B). Lower concentra-
tions of Spd (0.1, 0.2, and 1 mM) increased NADPH-oxidase
activity compared with the control plants, whereas higher con-
centration (5 mM and above) decreased NADPH-oxidase activity.
These results suggest that low concentrations of Spd can induce
NADPH-oxidase.

AtPA03 REGULATES THE BALANCE BETWEEN H,0, AND O3~
Recent data have shed light on the biochemical role of plant
intracellular PAOs, which interconvert Spm to Spd and Spd
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to Put, reversing the PA biosynthetic pathway (Fincato etal,
2011; Ahou etal., 2014). We have previously shown that plants
overexpressing AtPAO3 efficiently oxidize Spd to Put producing
H,0; (Moschou etal., 2008¢c; Wu et al., 2010; Fincato et al., 2011).
S-AtPAO3plants overexpressing the peroxisomal AtPAO3 and loss-
of-function Atpao3 seem to be valuable tools in the study of
PA-induced respiration in Arabidopsis due to the localization of
AtPAO3 in the peroxisomes which are in proximity to mitochon-
dria. Indeed, in situ detection of ROS in the S-AtPAO3 Arabidopsis
plants showed that they exhibited a higher but balanced produc-
tion of H,O, and O3~ compared with Col-0 plants (Figure 4A).
In contrast, Atpao3 plants accumulated significantly lower levels
of H,O, when compared with Col-0 plants, but increased levels
of O™ . Therefore, S-AtPAO3 and Atpao3 plants are good models
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FIGURE 4 | In situ ROS in WT, S-AtPAO3, and Atpao3 Arabidopsis
plants. (A) /n situ ROS detection in WT, S-AtPAO3 and Atpao3 plants. Data
are from a single representative experiment, repeated three times, and
densitometric analysis. Data are the means of three different positions on a
leave. Asterisks indicate statistical significant differences from the Col-0
(***P < 0.001). Scale bars, 2.8 cm. (B) Native electrophoresis and activity
staining of SOD and densitometric analysis of isoenzymes. (C) Native
electrophoresis and activity staining of APX and densitometric analysis.

for studying the differential effects of H,O, and O3~ in oxygen
consumption.

Next, we examined a possible contribution of the antiox-
idant machinery in the observed differences in ROS levels in
S-AtPAO3 and Atpao3 plants. We determined the contribution
of SOD and APX, a well-established H,O; scavenger, in the
observed differences, between Col-0, S-AtPAO3 and Atpao3 in
H,0; and O3 levels. Accumulation of O3~ in S-AfPAO3 and
Atpao3 plants coincided with increased SOD activity in mitochon-
dria and chloroplasts (Figure 4B). In contrast, APX was elevated
in the Atpao3, but reduced in S-AtPAO3 plants (Figure 4C). APX
has a high affinity for H,O, and therefore is downregulated at
higher levels of H,O, (Asada, 1992), which perhaps can explain
the decrease of APX observed in S-AtPAO3 plants, with increased
H,0; levels. These results suggest that at least APX and SOD
mirror the changes of ROS levels observed in S-AfPAO3 and
Atpao3.

DEREGULATION OF AtPAO3 RESULTS TO CHANGES IN OXYGEN
CONSUMPTION RATE

Overall the data presented so far support the role of Spd as an
inducer of mitochondrial respiration via the NADPH-oxidase gen-
erated O3~ in Col-0 plants. This response is alleviated mostly
by the action of the NADPH-oxidase blocker, DPI. Further-
more, loss-of-function mutant plants for the peroxisomal AtPAO3
gene accumulate O3, but not H,O; in contrast to S-AtPAO3
overexpressing plants, which accumulate both O3~ and H,Os.
Considering the above, we determined the oxygen consumption
rate in the S-AtPAO3 transgenics and the Atpao3 mutants to test
whether the differential accumulation of ROS in the two geno-
types leads to altered oxygen consumption. Indeed, the three tested
genotypes exhibited notable differences in their capacity to con-
sume oxygen (Figure 5A). The Atpao3 plants exhibited the highest
rate of oxygen consumption among the tested plants, showing a
2.7-fold increase over the Col-0 plants and a 4.3-fold increase over
the S-AtPAO3 plants. Interestingly, the increase in oxygen con-
sumption of Atpao3 plants resembled the effect of exogenous Spd
in Col-0 plants.

Next, we examined whether the increase in oxygen consump-
tion of Atpao3 plants is O -dependent. To test this, we treated
Atpao3with DPI, and as a control, we treated Col-0 plants simulta-
neously with Spd and DPI (Figure 5A). Treatment of Atpao3 plants
with DPI reduced the respiratory activity to the control levels,
suggesting that increase of oxygen consumption in Atpao3 plants
depends on the production of O3~ by NADPH-oxidase. Similarly,
Spd plus DPI treated Col-0 plants showed similar oxygen con-
sumption rate to the untreated Col-0 plants, producing an effect
equivalent to the DPI-induced decrease in the O~ accumulation
reported earlier.

We hypothesized that the increase observed in the Atpao3 plants
could be due to an increased contribution of the AOX pathway.
To test this, we used the AOX pathway blocker SHAM. Indeed,
application of SHAM to the Afpao3 plants exerted a dramatic
decrease in the oxygen consumption rate, suggesting the participa-
tion of the AOX pathway in the O3~ -induced oxygen consumption
(Figure 5A). In addition, the levels of the immunoreactive AOX
protein in Atpao3 were significantly higher compared to the rest
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Arabidopsis plants. (A) Oxygen consumption rate in Col-0, S-AtPAO3 and
Atpao3 plants. Rate of oxygen consumption was determined in untreated
plants and plants treated with the AOX blocker SHAM, exogenous Spd and
DPI. Data are the means of three different positions on a leave. Asterisks
indicate statistical significant differences from the S-AtPAO3 control

(***P < 0.001). (B) Western blot of AOX immunoreactive protein levels in
Col-0, S-AtPAO3 and Atpao3 plants. Data are from a single representative
experiment, repeated three times. (C) Densitometric analysis of AOX
immunoreactive protein in (B). Data are from a single representative
experiment, repeated three times.

of the tested plants (Figures 5B,C). These results suggest that the
O3~ -dependent increase of oxygen consumption in Atpao3 plants
is exerted through the AOX pathway.

DISCUSSION
Exogenous Spm application to tobacco plants leads to mitochon-
drial dysfunction and to transcriptional activation of the AOX

pathway, while small molecular weight antioxidants efficiently
attenuate this induction, suggesting a possible involvement of
ROS in this Spm-signaling pathway (Takahashi etal., 2003). A
long standing notion proposed that PA oxidation results in induc-
tion of signaling cascades through H,O,, since H,O, is a direct
product of PA oxidation (Moschou et al., 2008b). However, recent
evidence suggests that other ROS types may as well contribute to
PA-dependent signaling cascades and that the PAs-ROS crosstalk
stretches beyond H, O, (Zepeda-Jazo etal., 2011; Velarde-Buendia
etal., 2012).

In this work, application of exogenous PAs to Col-0 Ara-
bidopsis plants stimulated the oxygen consumption rate; the
stronger effect was exerted by Spd. Exogenous application of
Spd is expected to increase H,O, content through the PA oxi-
dation/backconvertion pathway (Yoda etal., 2003; Moschou etal.,
2008b). Therefore, we hypothesized that this product could
be responsible for the increase in oxygen consumption. Sur-
prisingly, H,O, scavenging did not significantly attenuate the
PA-dependent oxygen increase. On the other hand, exogenous
SOD or DPI ameliorated the oxygen increase, caused by the
exogenous Spd application. This denotes that the increase in
oxygen consumption relies on O3~ production, and suggests
that exogenous PA induces O3~ production by NADPH-oxidase
intriguingly, DPI exerts a stronger effect than SOD. This may
be due to the fact that SOD is expected to scavenge intercellu-
lar O; produced by NADPH-oxidase, giving rise to H,O,, while
DPI is a plasma membrane permeable suicidal NADPH-oxidase
inhibitor, that could efficiently prevent production of higher
amount of O5™. Surprisingly, CAT mimicked the DPI effect.
Nevertheless, it should be noted that recent evidence suggests
that CAT participates in the induction of cell death (Hacken-
berg etal., 2013), therefore perplexing the interpretation of the
data obtained with the use of CAT. ASA, on the other hand, did
not alleviate oxygen consumption increase. It should be noted
that ASA is a reducing agent, thereby directly affecting the ETC,
and scavenges both O3~ and H,0, (Foyer and Noctor, 2011).
These results suggest that the PA-derived oxygen consumption
increase depends mostly on O3~ production by the PA-induced
NADPH-oxidase.

Exogenous PA at relatively high concentrations stimulated pro-
duction of O3~ in human neutrophils (Guarnieri etal., 1987). In
our study, exogenous application of Spd in Arabidopsis increased
the content of HyO, produced through PAO, as previously sug-
gested for other plant species (Yoda etal., 2006; Wu etal., 20105
Moschou and Roubelakis-Angelakis, 2011; Tisi etal., 2011). Nev-
ertheless, exogenous Spd induced a significant increase in the
levels of O3~ along with an increase in NADPH-oxidase activ-
ity. Interestingly, previous studies suggested that Spd induces
autophagy (self-consumption) in non-plant models and is an
important surveillance mechanism that rather restricts ROS pro-
duction (Eisenberg etal., 2009). In accordance, during protoplast
isolation from tobacco (Papadakis and Roubelakis-Angelakis,
2005), induction of NADPH-oxidase and the concomitant pro-
duction of O5™ was highly suppressed by PAs. This discrepancy
between our current and previous work could be due to the
fact that in Papadakis and Roubelakis-Angelakis paper, PAs were
added to the protoplasts and then NADPH-oxidase was purified
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and assayed. On the contrary, in this study PAs were added
exogenously and NADPH-oxidase assessment was performed by
an in-gel assay omitting further purification steps. This allows us
to hypothesize that exogenous PAs may antagonize for Ca’*in
NADPH-oxidase preparations. Calcium is required for NADPH-
oxidase activation. Therefore, we assume that NADPH-oxidase
cannot accommodate Ca’™ in the presence of PAs on its binding.
In addition, in the previous study O3~ content was determined
by a chemiluminescence assay, while in this work we used an in
situ detection protocol, which seems to be a more accurate and
reliable method (Song etal., 2006). Therefore, PAs and especially
Spd seem to positively affect NADPH-oxidase in planta, unlike in
in vitro systems. In addition, a species-related differential effect
on NADPH-oxidase of PA cannot be ruled out (tobacco versus
Arabidopsis).

From the aforementioned, it is conceivable that production of
O35~ may depend on a PAO system. There are two main PA oxida-
tion regimes: an apoplastic and an intracellular one. Several plant
species, especially monocots, possess the ability to oxidize higher
PAs in their apoplastic compartments. The oxidative reaction is
executed by DAOs and PAOs residing in this compartment. How-
ever, the former enzymes show low affinity for higher PAs such as
Spd. Notably, apoplastic PAOs in Arabidopsis are missing. There
are five genes encoding for PAOs in Arabidopsis. The inducible
AtPAOI (Tavladoraki etal., 2006) and constitutively expressed
AtPAOS5 (Ahou etal., 2014) encode for cytoplasmic enzymes, oxi-
dizing Spm, while AtPAO2, 3, 4 encode peroxisomal proteins
(Kamada-Nobusada etal., 2008; Moschou etal., 2008c), oxidiz-
ing Spd (AtPAO2, 3) and Spm (AtPAO2,3,4). On the other hand,
in Arabidopsis there are ten genes encoding DAOs, four of which
have been characterized. One of them is an apoplastic enzyme;
however, six remain to be characterized (Moschou etal., 2013;
Planas-Portell etal., 2013). These suggest that most likely the con-
tribution of the apoplast to the Spd-dependent production of O3~
is rather minimal in Arabidopsis.

To further examine whether intracellular PAOs are responsible
for inducing production of O3, we employed genetic means. The
best characterized so far enzymatic activity that oxidizes mostly
Spd and to a smaller extent Spm in Arabidopsis is that of the per-
oxisomal AtPAO3 (Moschou etal., 2008¢; Fincato etal., 2012).
In mammals and plants, PA oxidation has been implicated in
the execution of PCD (Yoda etal., 2003; Tavladoraki etal., 2006;
Moschou and Roubelakis-Angelakis, 2013). It has been exempli-
fied that there is a direct relationship between PCD and the levels of
cytotoxic PA catabolic products, i.e., HyO; and aminoaldehydes.
For example, during Helicobacter pylori infection that contributes
to gastric cancer, PA-derived H,O; coincides with PCD induction
(Chaturvedi etal., 2004). However, PA-derived H,O, seems to
be a double-edged sword since oxidation by SMO could perhaps
contribute to the eradication of tumor cells (Babbar etal., 2007).
In tobacco, overexpression of apoplastic PAO is accompanied by
premature cell death of xylem tissue (Tisi etal., 2011). Interest-
ingly, exogenous supply of Spd to maize root tips highly expressing
PAO alters cell cycle distribution, toward quiescence and induces
PCD (Tisi etal., 2011). In addition, premature cell death of
xylem hinders the proper differentiation of the secondary cell
wall, which is normally deposited before PCD induction in xylem.

Importantly, a H,O, scavenger partially ameliorates Spd-induced
effects. In addition, 4-aminobutanal which is an additional oxida-
tion product of Spd, failed to mimic Spd effects, indicating that
PAO-derived H, 0O, is sufficient to induce PCD independently of
aminoaldehydes.

In contrast to the previous, the PA backconversion pathway
seems to have completely distinct functions, which remain largely
elusive. It was shown that AtPAO3 is an important component
of pollen tube elongation (Wu etal., 2010). More specifically,
AtPAO3 generates H,O, which positively affects the permeability
of a plasma membrane-residing Ca?*influx channel. As a result,
the intracellular concentration of Ca®* increases, thereby promot-
ing pollen tube elongation. In loss-of-function Afpao3 reduction
of pollen tube elongation, and in a physiological context reduced
fertility was evident. In addition, a role for the PA backconversion
pathway was hypothesized with respect to dehydration response of
Arabidopsis (Alcazar etal., 2011a). The putative paralog of AtPAO3
gene, AtPAO2 is upregulated by drought stress in a similar fashion
as RD29A and RD22.

A number of PAOs have been implicated in the PA backconver-
sion pathway in Arabidopsis and, unlike in mammals, plant PAOs
did not require acetylated derivatives (Moschou etal., 2008c). We
observed that plants overexpressing AtPAO3 showed increased
content of H, O, consistent with its role in PAs oxidation. Surpris-
ingly, this H>O, production led to a significant O3~ increase, while
Atpao3 mutants showed reduced levels of H,O, but increased
O3~ This implies that loss of AtPAO3 caused an increment of
O3~ versus H,O,. In animal cells, ROS have also been shown
to play an important role in maintaining the balance between
cell proliferation and differentiation. A redox-dependent signal-
ing pathway controls the induction of cell division through the
regulation of cyclinDI expression (Burch and Heintz, 2005). Dis-
tribution of specific ROS appears to act as an important signal
at the transcriptional and posttranscriptional levels during cell-
cycle progression (Menon and Goswami, 2007). In Drosophila,
changing ROS balance can switch the status of hematopoietic cells
from proliferation to differentiation (Owusu-Ansah and Baner-
jee, 2009). In Arabidopsis, it was shown that O3~ accumulates
primarily in the root meristematic zone, whereas H,O, accu-
mulates mainly in the elongation zone (Tsukagoshi etal., 2010).
Moreover, it has been shown that Mn-SOD activity regulates
cell-cycle progression through modulation of ROS levels, which
control expression of both the cyclinBl and cyclinD1 genes in
mouse cells (Sarsour etal., 2008). The authors proposed that
O3 regulates the proliferative cycle, whereas H,O, induces quies-
cence and differentiation. Therefore, in the root elongation zone,
the ratio between O3~ and H,O, is decreased (Tsukagoshi etal.,
2010).

In our study, AtPAO3 was shown to be an important factor
for balancing O3~ and H,O,. Increased levels of O3~ versus
H,0; were detected in the absence of AtPAO3, perhaps due to
the increased activity of APX, which scavenges H,O,. S-AtPAO3
plants show reduced expression of APX but increased expression
of mitochondrial and chloroplastic SOD isoenzymes, while Atpao3
show significantly increased expression of APX, mitochondrial
and chloroplastic SOD. Noteworthy, the increased isoenzymes are
in proximity to peroxisomes. These changes are in accordance
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with the ROS levels detected in these plants. However, further
studies are required to elucidate whether the increased/decreased
expression of these antioxidants controls ROS levels or alterna-
tively, whether ROS levels control the induction/reduction of
these genes/enzymes. Although this may sound like a “chicken
or the egg” question it merits careful examination to further
understand the regulation of ROS homeostasis. We can speculate
that similar regulation of the O3 /H, O, ratio takes place during
other developmental transitions, apart the ones reported in the
root (Tsukagoshi etal., 2010) like for example during pollen tube
growth, which could contribute to the failure of Atpao3 pollen
tube elongation (Wu etal., 2010).

Overexpression of SSAT in mice, an acetylase required to
direct PAs in non-plant models toward the PAO pathway, leads
to increased H,O, and carbonyl content, and reduced SOD,
CAT, and cyt CYP450 2E1 expression, responsible for xenobiotic
metabolism. This suggests that transgenic mice are hypersensi-
tive to stress, leading to cell death, and they also are sluggish
and less hostile (Kaasinen etal., 2004). Interestingly, although S-
AtPAO3 plants accumulate significantly higher amounts of ROS,
they do not show symptoms of chronic stress. Tobacco plants
overexpressing apoplastic PAO exhibit increased SOD and CAT
expression, which do not exert a protective effect, but rather
this increased expression represents an attempt to scavenge sur-
plus H>O, produced by continuous PA oxidation. The previous
suggests that as in animals, constitutive apoplastic PA oxidation
in plants can lead to chronic oxidative stress (Moschou etal.,
2008a).

On the contrary, the AtPAO3 backconversion pathway seems
to have a completely different function. We show that Spd oxida-
tion by AtPAO3 is required for a balanced respiration through
the cyt-c and AOX pathways. Notably, overproduction of PA-
derived H,O; in the S-AtPAO3 plants results in a small decrease
of oxygen rate consumption, but not in induction of the AOX
pathway. To the contrary, Atpao3 plants show increased oxy-
gen consumption through the AOX pathway. Interestingly, this
increase is attenuated by application of DPI, which specifically
blocks O3~ generation by NADPH-oxidase. It was reported that
a microtubule associated kinesin and a mitochondrial channel are
able to regulate the balance between cyt-c and AOX pathways (Yang
etal, 2011). In addition, it has been hypothesized that the ratio
of (singlet + O3~ )/H, O, determines PCD initiation during stress
(Sabater and Martin, 2013). The previous allow us to propose
that an increased ratio of O™ /H,O; leads to increased oxygen
consumption through the AOX pathway. Likewise, it has been
reported that O3~ is sufficient to induce AOX1a/b genes in rice (Li
etal,, 2013). These results demonstrate that depletion of AtPAO3
leads to higher production of O™, which in turn activates the
AOX pathway.

In conclusion, our results allow us to propose that AtPAO3
is required for balancing O3~ /H,0O, production. An imbalance
of the O3~ versus H,O, production leads to activation of AOX
pathway and increases oxygen consumption. The next critical
step to advance our understanding on the role of PA backconver-
sion, and its interplay and crosstalk with ROS will be the genetic
dissection of PA backconverting pathways, and their molecular
effectors.
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