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Ubiquitin is a small, highly conserved, ubiquitously expressed eukaryotic protein with
immensely important and diverse regulatory functions. A well-studied function of ubiquitin
is its role in selective proteolysis by the ubiquitin-proteasome system (UPS). The UPS has
emerged as an integral player in plant response and adaptation to environmental stresses
such as drought, salinity, cold and nutrient deprivation. The UPS has also been shown
to influence the production and signal transduction of stress-related hormones such as
abscisic acid. Understanding UPS function has centered mainly on defining the role of
E3 ubiquitin ligases, which are the substrate-recruiting component of the ubiquitination
pathway.The recent identification of stress signaling/regulatory proteins that are the subject
of ubiquitin-dependent degradation has increased our knowledge of how the UPS facilitates
responses to adverse environmental conditions. A brief overview is provided on role of the
UPS in modulating protein stability during abiotic stress signaling. E3 ubiquitin ligases for
which stress-related substrate proteins have been identified are discussed.
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INTRODUCTION
The covalent attachment of ubiquitin molecules to selected
proteins (referred to as ubiquitination) can influence activity,
abundance, trafficking, or localization. The versatility of the ubiq-
uitination pathway lies in the different ways in which ubiquitin
molecules can be attached to a selected substrate protein (Koman-
der and Rape, 2012). A single ubiquitin molecule can be attached
to one (monoubiquitination) or multiple (multimonoubiquitina-
tion) lysine residues within a substrate protein. Another type of
modification is the assembly of a chain of ubiquitin molecules
(polyubiquitination) on a specific lysine residue within the sub-
strate protein. Ubiquitin contains seven lysine residues each of
which can be used to create ubiquitin-ubiquitin linkages, pro-
ducing structurally diverse polyubiquitin chains (Nakasone et al.,
2013). A polyubiquitin chain can be homogeneous using the same
lysine residue to build the polymer, or of mixed topology with
different lysine residues used to create ubiquitin-ubiquitin link-
ages. The significance of every type of modification is unknown.
However, of the modifications that are understood, each confers
a distinct outcome on a specific substrate protein. For exam-
ple, monoubiquitination, or the attachment of a lysine 63-linked
polyubiquitin chain, may serve as a signal for intracellular traffick-
ing or protein activation, respectively (Chen and Sun, 2009). The
assembly of a lysine 48-linked polyubiquitin chain is known to
signal for the destruction of the modified protein (Thrower et al.,
2000).

Ubiquitin-dependent protein degradation involves two distinct
and successive steps: the attachment of a polyubiquitin chain con-
sisting of at least four lysine 48-linked ubiquitin molecules to
the substrate protein and degradation of the modified protein
by the 26S proteasome, a large multi-catalytic protease complex.
At the cellular level, the ubiquitin-proteasome system (UPS) is

an essential part of regulatory networks that carefully controls
the abundance of important enzymes, structural, and regulatory
proteins. Plants utilize the UPS to facilitate changes in cellular
protein content required for continuous growth, development,
and adaptation to their ever changing environment (Stone and
Callis, 2007; Vierstra, 2009). In the model research plant Ara-
bidopsis thaliana (At ; Arabidopsis), almost 6% of the genome is
dedicated to the UPS (Hua and Vierstra, 2011). The majority of
these genes encode for ubiquitin ligases (E3s), a central compo-
nent of the ubiquitination pathway. Recently, E3s have emerged as
modulators of plant response to abiotic stresses including drought,
cold, salinity, heat, radiation, and nutrient deprivation (Yee and
Goring, 2009; Lyzenga and Stone, 2012). Importantly, the action
of a single E3 can regulate plant responses to multiple abiotic
stresses. The impact of the UPS on abiotic stress tolerance is
usually associated with regulating the actions of stress hormones
such as abscisic acid (ABA). The significance of the UPS is fur-
ther exemplified by the finding that multiple ubiquitin ligases are
involved in regulating stress hormone signaling. Our understand-
ing of how the UPS facilitate plant responses to various abiotic
stresses is aided by recent studies that identified substrates for
stress-related E3s. This review provides a brief overview of the
role of these E3 ligase-substrates pairings during plant responses
to abiotic stresses.

THE UBIQUITIN ENZYMES
Ubiquitination is a multi-step process involving the sequential
action of three enzymes: E1 (ubiquitin activating enzyme; UBA),
E2 (ubiquitin conjugating enzyme; UBC), and E3 (ubiquitin
ligase). The conjugation process begins with the activation of
ubiquitin by the E1 followed by transfer of ubiquitin to the E2,
forming a thioester linked E2-ubiquitin (E2-Ub) intermediate.
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The substrate-recruiting E3 interacts with the E2-Ub allowing
for the transfer of ubiquitin to the target (Figure 1A). Follow-
ing the attachment of the initial ubiquitin molecule, the process
can be repeated to assemble a polyubiquitin chain (Komander and
Rape, 2012). The conjugation process is also reversible. Proteases
referred to as deubiquitinating enzymes (DUBs) are able to cleave
ubiquitin molecules from modified proteins (Reyes-Turcu et al.,
2009). The ubiquitination pathway is hierarchical in that eukary-
otic genomes are found to contain one or two E1, 10s of E2 and
100s of E3 encoding genes. For example, the Arabidopsis genome is
predicted to encode for two E1 isoforms, 37 E2 enzymes and over
1300 E3s or components of E3 complexes (Hatfield et al., 1997;
Kraft et al., 2005; Stone et al., 2005; Hua and Vierstra, 2011). The
large number of ubiquitin enzymes suggests that many cellular
processes are regulated via protein ubiquitination.

The capacity of the ubiquitination pathway to differentially
modify numerous proteins is made possible by the abundance
and diversity of ubiquitin ligases. The majority of plant E3s
are of the homology to E6-associated carboxy-terminus (HECT),
U-box, or Really Interesting New Gene (RING) type (Figure 1A).
The Arabidopsis genome is predicted to encode for 7 HECT-
type and 64 U-box-type E3s (Downes et al., 2003; Mudgil et al.,
2004). Over 470 Arabidopsis genes are predicted to encode for
RING domain-containing proteins (Stone et al., 2005). Ubiqui-
tin ligases that utilize a RING domain for E2 binding can occur
as monomeric E3s or multi-subunit Cullin (CUL) based RING

E3 ligases (CRLs; Figure 1A). Three types of CRLs have been
described in plants, each utilizing a different CUL subunit, CUL1,
CUL3a/b, or CUL4 (Hotton and Callis, 2008; Hua and Vierstra,
2011). Each CUL serves as a platform upon which the RING
domain-containing (RBX1a/b) and substrate-recruiting sub-units
assemble (Figure 1A). Substrate-recruiting proteins utilized by
plant CRLs belong to either the F-box, Broad complex Tramtrack
Bric-a-Brac (BTB), or DDB1 binding WD40 (DWD) families.
The F-box family is the largest with over 700 members followed
by the DWD and BTB with 85 and 80 members, respectively
(Lechner et al., 2006; Gingerich et al., 2007; Lee et al., 2008). The
CUL1 based E3s (also referred to as Skp1-Cullin-F-box [SCF]) use
the adaptor protein Arabidopsis S-Phase kinase-associated protein
(ASK) to bind to F-box proteins (Bai et al., 1996; Lechner et al.,
2006). CUL4 based E3s are assembled using DNA-damage bind-
ing (DDB1) as an adaptor to bind DWD proteins, while CUL3a/b
interacts directly with BTB proteins (Gingerich et al., 2007; Lee
et al., 2008). The large number of substrate-recruiting subunits
and the ability to assemble E3 complexes using one of three
CUL proteins makes the CRL group the largest class of ubiquitin
ligases.

THE UBIQUITINATION PATHWAY AND ABIOTIC STRESS
TOLERANCE
A plants ability to survive abiotic stresses such as salinity, radia-
tion, heavy metals, nutrient deprivation, cold, and drought relies

FIGURE 1 | Function of E3 ligases in abiotic stress response.

(A) Most common type of plant E3s. Ubiquitin ligases are categorized
based on the presence of a RING, HECT, or U-box E2-binding domain.
RING and U-box domain-containing E3s mediate transfer of ubiquitin (U)
directly from the E2-Ub intermediate to the substrate protein. HECT
domain-containing E3s form an E3-Ub intermediate prior to the transfer
of ubiquitin to the substrate protein. RING domains are found in
monomeric E3s and multisubunit CRLs. (B) Illustrations of the most

common modes of action for E3 ligases in regulating abiotic stress
responses. (1) E3 ligases may function as a negative response
regulators required to supress stress response pathways by targeting
positive regulators for degradation. (2) E3 ligases may promote stress
signaling by functioning as positive response regulators that target
negative regulators for degradation following stress perception. (3) E3
ligases may also function to attenuate stress signaling by targeting
positive regulators for degradation.
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heavily on proteomic plasticity. The UPS plays a crucial role in
enabling plants to alter their proteome in order to effectively and
efficiently perceive and respond to environmental stresses (Smalle
et al., 2003; Kurepa et al., 2008). How the UPS functions to facil-
itate responses to a particular stress depends upon the nature of
the substrate protein. For example, ubiquitin-dependent degra-
dation of a positive regulator may serve to supress the response
pathway until a stress stimulus is perceived (Figure 1B). In this
case, ubiquitination of the substrate would cease allowing for
accumulation of the regulatory protein and promotion of cellu-
lar changes required to acclimate the plant to external conditions.
The ubiquitin ligase involved in modifying the regulatory pro-
tein would be designated a negative response regulator (Chen and
Hellmann, 2013). On the other hand, ubiquitin ligase targeting
a negative regulator for degradation in response to a stimulus
would enable the activation of signaling pathways required for
tolerance of the perceived stress (Figure 1B). Many examples of
the aforementioned scenario have been reported, some of which
are discussed below. Instances of the UPS functioning to atten-
uate stress signaling have also been described. In these cases,
ubiquitin-dependent degradation of a positive regulator occurs
following perception of a stress stimulus (Figure 1B). Mainte-
nance of a certain level of signal intensity and termination of
signal transduction would enable plants to recover and resume
normal growth and development once environmental conditions
improve.

One of the first indications of the importance of the ubiq-
uitination pathway to abiotic stress tolerance is the finding that
ubiquitin gene expression is up-regulated in plants exposed to high
temperature stress (Genschik et al., 1992; Sun and Callis, 1997).
In fact, overexpression of ubiquitin has been shown to increase
plant tolerance of salinity and drought conditions (Guo et al.,
2008). Since this finding, stress-related roles have been demon-
strated for a number of ubiquitin enzymes. Many E2 encoding
genes are stress-inducible. Transcript levels of Glycine max UBC2
(GmUBC2; soybean), Arachis hypogaea UBC2 (AhUBC2; peanut)
and Arabidopsis UBC32 (AtUBC32) are up-regulated in response
to drought and/or salt stress (Zhou et al., 2010; Wan et al., 2011;
Cui et al., 2012). Overexpression of AtUBC32 rendered plants sen-
sitive to salt stress (Cui et al., 2012). Conversely, AtUBC32 mutant
plants are more tolerant of salt stress. Also, transgenic Arabidopsis
plants overexpressing Vigna radiata UBC1 (VrUBC1; mung bean),
AhUBC2, or GmUBC2 were more tolerant of drought stress (Zhou
et al., 2010; Wan et al., 2011; Chung et al., 2013). An increasing
number of ubiquitin ligases have been shown to be involved in
plant responses to various abiotic stresses. A number of excellent
review articles provide a detailed listing of many of these E3s (Yee
and Goring, 2009; Lee and Kim, 2011; Lyzenga and Stone, 2012;
Chen and Hellmann, 2013). This review focuses on examples of
E3 ligases for which stress-related substrate proteins have been
identified.

Plant response to adverse environmental conditions is a com-
plex and coordinated process involving activation of signaling
networks and changes in the expression of hundreds of genes.
By modulating the abundance of transcription factors, the UPS
may affect the changes in gene expression required to mitigate
the potential negative effects of environmental stress. E3 ligases

may prohibit transcription activity by targeting the transcription
factor for degradation under non-stress conditions. A well-
described example is the regulation of dehydration-responsive
element binding protein (DREB) 2A by the RING-type E3 lig-
ases DREB2A-interacting protein (DRIP) 1 and DRIP2 (Qin et al.,
2008; Morimoto et al., 2013). DREB2A is a transcription factor
that regulates the expression of many drought and salt stress-
inducible genes (Sakuma et al., 2006a,b). In accordance with
UPS regulation, DREB2A only accumulates in transgenic plants
treated with proteasome inhibitors (Sakuma et al., 2006a,b; Qin
et al., 2008). DRIP1 and DRIP2 are capable of attaching ubiqui-
tin molecules to DREB2A in in vitro ubiquitination assays (Qin
et al., 2008). Furthermore, DREB2A is stable in drip1drip2 plants
and drought tolerance of the double mutant is further enhanced
by overexpression of the transcription factor (Qin et al., 2008).
This demonstrates that DREB2A is unstable under non-stress
conditions and DRIP1/2 targets the transcription factor for degra-
dation. Exposure to abiotic stresses such as heat and drought
stabilize DREB2A and levels of the transcription factor remain
elevated during the stress period (Sakuma et al., 2006a; Mori-
moto et al., 2013). The mechanism underlying the stress-induced
stabilization of DREB2A is not known. DRIP1 and DRIP2 local-
ize to and interact with DREB2A within the nucleus (Qin et al.,
2008). DREB2A lacking two nuclear localization signals (NLSs)
is observed in the cytosol and is more stable compared to the
wild type transcription factor (Morimoto et al., 2013). Therefore,
under non-stress conditions, DREB2A degradation seems to occur
mainly within the nucleus (Qin et al., 2008; Morimoto et al., 2013).
A possible mechanism for DREB2A stabilization is stress-induced
relocalization of the DRIP1 and DRIP2 to the cytosol. Alterna-
tively, stress-induced ubiquitin-dependent degradation of DRIP1
and DRIP2 may occur within the nucleus. Another example is
Botrytis Susceptible1 (BOS1), a nuclear-localized R2R3MYB tran-
scription factor that is required for tolerance of drought, salt
and oxidative stresses (Mengiste et al., 2003). To demonstrate
proteasome-dependent turnover of BOS1, the stability of the tran-
scription factor was assessed in planta using a β-glucuronidase
(GUS) reporter system. GUS activity was only detected following
treatment with proteasome inhibitors, which indicate inhibition of
BOS1 degradation (Luo et al., 2010). Botrytis Susceptible1 Inter-
actor (BOI) is a nuclear-localized RING-type E3 that interacts
with BOS1 in plant cells (Luo et al., 2010). BOI is capable of
attaching ubiquitin molecules to BOS1 in in vitro assays (Luo
et al., 2010). Consistent with a role in regulating BOS1 abun-
dance, reduction in BOI1 expression resulted in reduced tolerance
of salt stress (Luo et al., 2010). These results suggest that BOI1
mediate the ubiquitin-dependent turnover of BOS1 under non-
stress conditions. Stress-induced stabilization of BOS1 has not
been reported.

The UPS involvement in regulating responses to abiotic stresses
extends beyond the proteolysis of transcription factors. The
RING-type E3 ligases Arabidopsis Toxicos EN Levadura (ATL) 6
and ATL31 control the abundance of a 14-3-3 protein required
for seedling response to carbon/nitrogen (C/N) stress (Sato et al.,
2009, 2011; Maekawa et al., 2012). The ratio between carbon
and nitrogen is tightly regulated and changes in availability dis-
rupt early seedling establishment causing post-germinative growth
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arrest (Coruzzi and Bush, 2001). Overexpression of 14-3-3χ

results in hypersensitivity to C/N stress (Sato et al., 2011). Accord-
ingly, loss of ATL6 and ATL31 results in hypersensitivity to C/N
stress and overexpression of the 14-3-3χ exaggerates the phe-
notypes of atl6atl31 (Sato et al., 2011; Maekawa et al., 2012).
Further evidence for ATL6/ATL31-mediated turnover of 14-3-3χ

includes ubiquitination of 14-3-3χ by ATL6 and ATL31 during in
vitro assays and accumulation of 14-3-3χ in atl6atl31 seedlings
(Sato et al., 2011).14-3-3χ protein levels increase in wild type
seedlings exposed to C/N stress. Importantly, the C/N stress-
induced increase in 14-3-3χ levels does not occur in atl6atl31
seedlings. This suggests that ATL6/31 mediates the turnover of
14-3-3χ under non-stress conditions and degradation is prohib-
ited during exposure to C/N stress. Another example is Oryza
sativa drought-induced SINA protein 1 (OsDIS1), a RING-type
E3 with high sequence similarity to Arabidopsis SINAT5 (Ning
et al., 2011). Loss of OsDIS1 function increased drought tolerance
in rice plants. Conversely, transgenic rice plants overexpress-
ing OsDIS1 displayed reduced drought tolerance. A search for
OsDIS1 interacting proteins identified OsNek6, a microtubule-
associated serine/threonine protein kinase that belongs to the
Never in Mitosis gene A-related kinase family (Vigneault et al.,
2007). Arabidopsis Nek6 (AtNek6) was previously shown to be
involved in microtubule-dependent morphogenesis of epidermal
cells (Sakai et al., 2008). However, a positive role for AtNek6
in salt stress response has been reported (Lee et al., 2010; Ning
et al., 2011). OsNek6 is degraded by the 26S proteasome and
OsDIR1 does contribute to OsNex6 turnover in the absence of
stress (Ning et al., 2011). A role for OsNex6 in plant response
to drought stress was not reported, however OsDIS1-mediated
turnover may function to suppress OsNex6 activity until stress
conditions arise.

Ubiquitin-dependent degradation also functions to attenuate
stress signaling. An example of this is the RING-type E3 lig-
ase high expression of osmotically responsive gene 1 (HOS1),
which mediates the degradation of Inducer of CBF Expres-
sion 1 (ICE1), a MYC transcription factor that regulates the
expression of cold-responsive genes. HOS1 is capable of cat-
alyzing ICE1 ubiquitination in vitro and in vivo (Dong et al.,
2006). Consistent with a role in mediating ICE1 degradation,
overexpression of HOS1 results in reduced expression of cold-
responsive genes and increased sensitivity to freezing conditions
(Dong et al., 2006). Exposure to cold stress up-regulates ICE1
expression, however, low temperatures also promote proteasome-
dependent degradation of the transcription factor (Chinnusamy
et al., 2003; Dong et al., 2006). Turnover of nuclear-localized ICE1
is facilitated by cold-induced relocalization of HOS1 from the
cytoplasm to the nucleus (Lee et al., 2001; Dong et al., 2006).
The cold-induced HOS1-mediated degradation of ICE1 is sug-
gested to facilitate the transient expression of cold-responsive
genes (Chinnusamy et al., 2003; Dong et al., 2006). Another
substrate for HOS1 is Constans (CO), a transcription factor
that promotes flowering (Putterill et al., 1995; Jung et al., 2012;
Lazaro et al., 2012). HOS1 interacts directly with and ubiquiti-
nates CO (Jung et al., 2012; Lazaro et al., 2012). HOS1 regulation
of CO abundance provides an explanation for the early flow-
ering phenotype of hos1 plants (Lee et al., 2001; Lazaro et al.,

2012). Similar to the regulation of ICE1, exposure to low tem-
perature promotes HOS1-dependent proteasomal degradation
of CO (Jung et al., 2012). HOS1 regulation of CO abundance
provides a link between cold stress response and control of
flowering.

Another example of the UPS engaging a substrate in response to
stress is provided by the RING-type E3 ligases RING domain Ligase
1 (RGLG1) and RGLG2, which regulate the abundance of ethylene
response factor 53 (ERF53; Cheng et al., 2012). ERF53 is a drought
and salt-responsive AP2/ERF transcription factor (Nakano et al.,
2006; Cheng et al., 2012). Loss of both RGLG1 and RGLG2 gene
function increase drought tolerance, which is consistent with a
role for the E3 ligases in regulating ERF53 abundance (Cheng
et al., 2012). RGLG1 and RGLG2 interact with and ubiquitinate
ERF53 in in vitro assays (Cheng et al., 2012). In addition, overex-
pression of ERF53 in rglg1rglg2 plants further enhances drought
tolerance of the double mutant and the transcription factor is sta-
ble in rglg1rglg2 plants (Cheng et al., 2012). The RGLG proteins
are suggested to be myristoylated and localized predominantly to
the plasma membrane, while ERF53 is nuclear localized (Yin et al.,
2007; Cheng et al., 2012). Although loss of the predicted myris-
toylation site disrupts RGLG2 membrane localization, the mutant
E3 does not localize to the nucleus (Yin et al., 2007). Whether or
not myristoylation regulates E3 ligase activity remains to be seen.
However, salt stress does induce the translocation of RGLG2 to
the nucleus where it interacts with ERF53 (Cheng et al., 2012).
This suggests that RGLG2-mediated degradation of ERF53 occur
in response to abiotic stress.

NON-PROTEOLYTIC FUNCTIONS OF UBIQUITIN DURING
ABIOTIC STRESS SIGNALING
While the requirement for ubiquitin-dependent protein degra-
dation during response to abiotic stresses is firmly established,
the involvement of other types of ubiquitin modification is not
well understood. Of interest are the non-proteolytic functions of
modifications such as monoubiquitination and lysine-63 linked
polyubiquitination. The rice RING-type E3 ligase Oryza sativa
heat and cold induced 1 (OsHCI1) is involved in tolerance of heat
stress (Lim et al., 2013). OsHCI1 is capable of attaching a single
ubiquitin molecule to a number of interacting proteins includ-
ing OsbHLH065, a basic/helix-loop-helix (bHLH) transcription
factor. Golgi-localized OsHCI1 translocates to the nucleus of
cells exposed to heat shock and nuclear-localized OsbHLH065
in observed in the cytosol when co-expressed with OsHCI1. A
role for OsbHLH065 in abiotic stress responses has not been
reported. However, it is postulated that OsHCI1-mediated relo-
calization of nuclear proteins such as OsbHLH065 promotes
heat stress tolerance. Monoubiquitination of the boron trans-
porter BOR1 occurs in the presence of high concentrations of
boron (Kasai et al., 2011). Boron is an essential nutrient for
plant growth and development. Boron deficiency negatively affects
yield, and high concentrations are toxic to plants. Plants uti-
lize BOR1 for boron uptake under boron-limiting conditions
and overexpression enhances tolerance of boron stress (Takano
et al., 2002; Miwa et al., 2006). Boron-induced monoubiquitina-
tion of BOR1 is essential for vacuolar sorting and degradation
of the transporter (Kasai et al., 2011). RGLG2 interacts with
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the E2 enzyme AtUBC35 (also referred to as AtUBC13) and
both enzymes can facilitate the formation of lysine-63 linked
polyubiquitin chains (Kraft et al., 2005; Yin et al., 2007; Wen
et al., 2008). Lysine-63 linked chains have non-proteolytic func-
tions such as endocytosis and protein activation (Chen and Sun,
2009). However, lysine-63 polyubiquitination can also serve as a
signal for proteasomal degradation (Saeki et al., 2009). As dis-
cussed above, RGLG2’s role in abiotic stress response involves
targeting the transcription factor ERF53 for proteasomal degra-
dation (Cheng et al., 2012). Of interest is (1) the requirement
for RGLG2 generated lysine-63 polyubiquitin chains during stress
response and (2) whether RGLG2 modifies ERF53 with the attach-
ment of a lysine-63 or lysine-48 linked polyubiquitin chain.
Although the examples are few, the pervasiveness of the ubiq-
uitin modification system suggests that the different types of
ubiquitination may regulate aspects of plant responses to abiotic
stresses.

UBIQUITIN-DEPENDENT REGULATION OF STRESS HORMONE
SIGNALING
Plants utilize hormones to integrate endogenous and exogenous
signals. A direct link has been demonstrated between the UPS
and the production, perception, signal transduction, and out-
puts of these hormones. A surprising number of ubiquitin ligases
have been shown to control the actions of stress hormones. For
example, at least fourteen E3s have been linked to the regula-
tion of ABA synthesis and signaling (Figure 2; Lee and Kim,
2011; Liu and Stone, 2011). Abiotic stresses such as drought and
salinity increase cellular ABA levels via the induction of ABA
biosynthetic genes including 9-cis-epoxycarotenoid dioxygenase 3
(NCED3) and Arabidopsis aldehyde oxidase 3 (AAO3; Finkelstein,
2013). The U-box type E3 senescence-associated E3 ubiquitin lig-
ase 1(SAUL1)/plant U-box (AtPUB) 44 negatively regulates ABA
biosynthesis by targeting AAO3 for proteasome-dependent degra-
dation (Raab et al., 2009; Salt et al., 2011). Drought tolerance
repressor (DOR), a F-box protein that may participate in a CUL1
based RING E3 ligase, is a negative regulator of ABA-mediated
responses (Zhang et al., 2008). Drought stressed dor plants exhibit
enhanced expression of NCED3 and increased cellular ABA levels.
The stress-induced expression of NCED3 is also enhanced by over-
expression of the RING-type E3 XERICO, which is accompanied
by increased ABA levels and improved tolerance of drought stress
(Ko et al., 2006).

Perception of ABA is mediated by a suite of receptors named
pyrabactin resistance 1(PYR1)/PYR1-like (PYL)/Regulatory com-
ponent of ABA receptor (RCAR; Park et al., 2009; Santiago et al.,
2009; Figure 2). ABA-bound PYR/PYL/RCAR receptors interact
with and inhibit protein phosphatase type 2Cs (PP2Cs), which
prohibits the dephosphorylation of sucrose non-fermenting1-
related protein kinases (SnRKs; Figure 2; Fujii et al., 2009; Ma
et al., 2009; Park et al., 2009). The ABA-activated SnRKs are
then able to phosphorylate and activate transcription factors and
other regulatory proteins involved in facilitating ABA-mediated
process required for abiotic stress tolerance (Fujii et al., 2009;
Rodrigues et al., 2013). Members of all three SnRK subfamilies,
SnRK1, SnRK2, and SnRK3, have been implicated in medi-
ating ABA response/signaling (Fujii et al., 2009; Lyzenga et al.,

2013; Rodrigues et al., 2013). PYR/PYL/RCAR, PP2C, and SnRK
proteins are considered the core components of the ABA sig-
naling network (Weiner et al., 2010). As shown in Figure 2,
the UPS regulate the abundance of many of these core compo-
nents. A search for ubiquitinated proteins in Arabidopsis isolated
ABA receptor PRY1 and SnRK kinases, SnRK1.1, SnRK2.4, and
SnRK2.6/Open Stomata 1 (OST1; Kim et al., 2013). Ubiquiti-
nation of the identified targets increased after treatment with
proteasome inhibitors, which suggests degradation by the 26S pro-
teasome. De-etiolated 1(DET1)- and DDB1-associated protein 1
(DDA1), which functions as the substrate receptor for a CUL4
based E3 ligase, have been shown to regulate the abundance of
ABA receptors PYL4, PYL8, and PYL9 (Irigoyen et al., 2014). ABA
prohibits the DDA1-mediated degradation of PYL8 via reducing
the ubiquitination of the receptor (Irigoyen et al., 2014). Cal-
cineurin B-like Interacting protein kinase 26 (CIPK26), which
belongs to the SnRK3 subfamily, is a positive regulator of ABA
signaling (Lyzenga et al., 2013). CIPK26 interacts with two PP2Cs,
abscisic acid insensitive (ABI) 1, and ABI2, phosphorylate the
ABA-responsive transcription factor ABI5 in vitro and seedlings
overexpressing CIPK26 are hypersensitive to ABA (Lyzenga et al.,
2013). The RING-type E3 ligases, Keep on Going (KEG) inter-
acts with CIPK26 targeting the kinase for degradation by the 26S
proteasome.

ABA-mediated responses, such as growth arrest of early
seedlings exposed to stress conditions, involve the up or down-
regulation of a large number of genes (Seki et al., 2002; Finkelstein,
2013). Changes in ABA-responsive gene expression are medi-
ated by a number of transcription factors including members
of the basic leucine zipper (bZIP), AP2/ERF, R2R3, and B3
families (Finkelstein, 2013). The UPS regulates ABA-responsive
transcription by modulating the abundance of many of these
transcription factors (Figure 2). The abundance of the nucleo-
cytoplasmic bZIP transcription factor ABI5 is modulated by KEG
(Figure 2). ABI5 promote the growth arrest of young seedlings
exposed to stress conditions (Lopez-Molina et al., 2001). In the
absence of stress, KEG is required to maintain low levels of ABI5
to ensure seedling establishment (Stone et al., 2006; Liu and Stone,
2010). KEG, a trans-Golgi network/cytosol-localized E3, ubiquiti-
nates and targets ABI5 for degradation within the cytosol, which
would prohibit accumulation of the transcription factor in the
nucleus and activation of ABA responses (Gu and Innes, 2011; Liu
and Stone, 2013). Elevated levels of ABA promote ABI5 accu-
mulation via increased gene expression and decreased protein
turnover. ABA-dependent stabilization of ABI5 protein involves
KEG self-ubiquitination and proteasomal degradation (Liu and
Stone, 2010). KEG also targets bZIP transcription factors ABRE-
binding factors (ABF) 1 and ABF3 for degradation via the 26S
proteasome (Chen et al., 2013). Similar to ABI5, ABA prohibits
the proteasomal-dependent turnover of ABF1 and ABF3. Com-
pared to other ABA mutants, the phenotype of keg seedlings is
quite severe and growth arrest occurs in the absence of the hor-
mone. The fact that KEG mediates the degradation of multiple
components (CIPK26, ABI5, and ABF1/3) of the ABA signaling
pathway helps to explain the lethality of the KEG mutation. The
abundance of ABI4, an AP2/ERF transcription factor, is also reg-
ulated by the 26S proteasome, however the E3 involved is not yet
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FIGURE 2 | Ubiquitin ligases that regulate ABA signaling. Illustration of E3 ligases that regulate ABA synthesis, signal transduction and response. Not all E3
ligases are shown, mainly those with identified substrates. Question marks and dashed lines denote instances where proteasomal-dependent degradation is
reported but the E3 ligase involved is unknown.

identified (Finkelstein et al., 2011). The R2R3-type transcription
factor MYB30 negatively regulates ABA signaling (Zheng et al.,
2012). MYB30 is targeted for proteasomal degradation by the
RING-type E3 MYB30-Interacting E3 Ligase 1 (MIEL1; Marino
et al., 2013). MYB30 is multifunctional with additional roles in
cell death and pathogen resistance (Marino et al., 2013). MEIL1-
mediated degradation of MYB30 suppresses defense signaling in
non-infected plants (Marino et al., 2013). Whether or not MIEL1-
mediated degradation of MYB30 modulates ABA signaling is yet
to be determined.

A monomeric RING-type E3 and two CRLs have been impli-
cated in attenuating ABA signaling. ABI3, a B3 transcription
factor, is targeted for proteasomal degradation by the RING-type
E3 ABI3-interacting protein 2 (AIP2; Zhang et al., 2005). aip2-
1 accumulate high levels ABI3 compared to wild type and are

hypersensitive to ABA. AIP2 transcript abundance increases in
response to ABA application and this correlates with a decrease
in ABI3 levels. Thus, ABA promotes the turnover of ABI3,
which would assist in suppressing hormone signaling. Nuclear-
localized DWD hypersensitive to ABA 1 (DWA1), DWA2, and
ABA-hypersensitive DCAF1 (ABD1) negatively regulates ABA sig-
naling by promoting the turnover of ABI5 (Lee et al., 2010; Seo
et al., 2014). DWA1, DWA2 and ABD1 proteins function as the
substrate-recruiting component of CUL4 based RING E3 lig-
ases (Lee et al., 2010; Seo et al., 2014). ABA treated dwa1/dwa2
seedlings accumulate higher levels of ABI5 compared to wild type
and the double mutants display hypersensitivity to ABA. ABI5
does not accumulate in dwa1dwa2 in the absence of ABA, which
is consistent with the CRL targeting the transcription factor for
degradation in the presence of the hormone. Similarly, loss of
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ABD1 results in hypersensitivity to ABA, and accumulation of
ABI5 following exposure to the hormone (Seo et al., 2014). The
BTB protein BMP3, which functions as the substrate-recruiting
component of CUL3 based E3 ligase, regulates the abundance of
AtHB6, a homeobox-leucine zipper transcription factor. ATHB6
is a negative regulator of ABA response (Himmelbach et al.,
2002; Lechner et al., 2011). BMP3 promotes the proteasome-
dependent degradation of ATHB6 under non-stress conditions
(Lechner et al., 2011). ABA prohibits the turnover of ATHB6. The
ABA-induced stabilization of ATHB6 may serve to attenuate ABA
responses.

In addition to the above mentioned ubiquitin ligase, many
other E3 ligases have been found to be involved in ABA responses.
Substrate proteins have been identified for only few of these E3 lig-
ases. Stress Associated Protein 5 (AtSAP5) is an A20/AN1-type zinc
finger protein with E3 ligase activity (Kang et al., 2011). AtSAP5
mediate the proteasome-dependent degradation of Arabidop-
sis MBP-1-like protein (AtMBP-1), a positive regulator of ABA
responses (Kang et al., 2013). The RING-type E3 ABA-Insensitive
RING Protein 3(AtAIRP3)/Loss of GDU2 (LOG2) is a posi-
tive regulator of ABA-mediated stress responses (Kim and Kim,
2013). AtAIRP3/LOG2 interacts and ubiquitinates Glutamine
Dumper1 (GDU1) and responsive to dehydration 21 (RD21).
AtAIRP3/LOG2 ubiquitination of GDU1 is non-proteolytic and
regulates the export of amino acids from plant cells (Pratelli
et al., 2012). Whereas, AtAIRP3/LOG2 targets RD21 for degra-
dation via the 26S proteasome (Kim and Kim, 2013). RD21 is
drought-inducible Cys proteinase (Kim and Kim, 2013). However,
it is not known if AtAIRP3/LOG2-mediated degradation of RD21
modulates drought tolerance or ABA responses. ABA-related E3
ligases with no known substrates include U-box-type E3s AtPUB9,
AtPUB18, and AtPUB19. Down-regulation of AtPUB9, AtPUB18,
and AtPUB19 results in hypersensitivity to ABA, which suggests
that the U-box-type E3s are negative regulators of ABA signaling
(Samuel et al., 2008; Liu et al., 2011). Interestingly, in the presence
of ABA, AtPUB9 is translocated from the nucleus to the plasma
membrane. The significance of the ABA-induced relocalization is
not known, however, the change in subcellular location may serve
to inhibit E3 activity and promote ABA responses. The RING
type E3s Salt and Drought Induced RING Finger 1(SDIR1), Ara-
bidopsis ABA-insensitive RING protein 1(AtAIRP1), RING-H2 E3
ligase (RHA) 2a, and RHA2b are all positive regulators of ABA-
mediated stress responses (Zhang et al., 2007; Bu et al., 2009; Ryu
et al., 2010; Li et al., 2011). The identification of substrates for these
orphan E3 ligases will shed further light on how the UPS facili-
ties plant responses to and tolerance of adverse environmental
conditions.
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