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cycle enzymes

PLANT PEROXISOMES: TYPES, TRANSITION, AND PROTEIN
DEGRADATION

Plant peroxisomes are versatile organelles that participate in many
metabolic pathways such as fatty acid p-oxidation and photores-
piration (reviewed by Hu etal., 2012). In addition to the enzymes
needed for these pathways, peroxisomes contain antioxidant
enzymes, for example, catalase, to protect plants from oxidative
damage, since hydrogen peroxide is generated from fatty acid p-
oxidation and photorespiration and other oxidation reactions in
the peroxisome.

Peroxisomes are dynamic organelles with the capacity to change
their appearance, their association with other organelles, and their
enzyme composition. These changes depend on the developmental
program and metabolic needs of the cell. For example, when oil-
storing seeds such as cucumber (Cucumis sativus) and Arabidopsis
(Arabidopsis thaliana) germinate, peroxisomes contain the glyoxy-
late cycle enzymes. The enzymes are needed for the consumption
of acetyl-CoA (the product of fatty acid B-oxidation) for synthesis
of organic acids that can be used to generate sugars by gluco-
neogenesis (reviewed by Pracharoenwattana and Smith, 2008).
These seedling peroxisomes, formerly called glyoxysomes, are
closely associated with lipid bodies supplying fatty acids (Trelease
etal, 1971). When the seedlings are exposed to light, peroxi-
somal glyoxylate cycle enzymes, such as isocitrate lyase (ICL)
and malate synthase (MLS), are rapidly degraded and enzymes
involved in photorespiration accumulate. These peroxisomes are
referred to as leaf peroxisomes. The change in peroxisomal
enzyme composition may result from the transition of seedling
peroxisomes to leaf peroxisomes (the “one-population model”),
rather than from the degradation of seedling peroxisomes and
the formation of new leaf peroxisomes (the “two-population
model”; Beevers, 1979; Nishimura etal., 1996). Light also trig-
gers changes in the position of peroxisomes. Seedling peroxisomes
are associated with lipid bodies, while leaf peroxisomes are posi-
tioned near chloroplasts (Trelease etal., 1971; Gruber etal., 1973)
from which glycolate, a photorespiration intermediate, enters the

Peroxisomes play a critical role in many metabolic pathways during the plant life cycle. It
has been proposed that the transition between different types of peroxisomes involves the
degradation of obsolete peroxisomal enzymes via proteolytic activities in the peroxisome
matrix, the cytosol, or the vacuole. Forward and reverse genetic studies recently
provided evidence for autophagic degradation of peroxisomes in the vacuole of Arabidopsis
seedlings. Here, we briefly review a model of pexophagy, or selective autophagy of
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peroxisome for oxidation. Interestingly, a reverse transition from
leaf peroxisomes to peroxisomes containing ICL may occur dur-
ing starvation and organ senescence (reviewed by Nishimura et al.,
1996; Pracharoenwattana and Smith, 2008).

When seedling peroxisomes are transformed to leaf peroxi-
somes, obsolete ICL and MLS must be degraded. In recent studies,
three mechanisms have been proposed for the degradation of these
proteins during post-germinative growth of Arabidopsis seedlings
(Figure 1). In one mechanism [herein designated intraperoxiso-
mal degradation (IPD)], it is proposed that peroxisomal proteins
are degraded by resident proteases. However, known peroxiso-
mal proteases, which include Lon-related protease 2 (LON2), have
not been implicated in full degradation of peroxisomal matrix
proteins (Lingard and Bartel, 2009). This argument was mainly
based on the observation that ICL and MLS levels in lon2 mutant
were not higher than those in wild-type (Lingard and Bartel, 2009;
Burkhart etal., 2013). According to a second mechanism, obso-
lete proteins are retranslocated from peroxisomes and degraded
in the cytosol by the 26S proteasome. During this process, called
peroxisome-associated protein degradation (PexAD), the proteins
are polyubiquitylated before they are recognized by the protea-
some, analogous to ER-associated protein degradation (ERAD;
reviewed by Smith etal., 2012). The possibility of polyubiquity-
lation is supported by a survey of Arabidopsis ubiquitylome, in
which ICL was identified as a ubiquitylated protein (Kim etal.,
2013a). Furthermore, the PEROXIN4 (PEX4) gene, which may be
involved in ubiquitylation, is necessary for the degradation of ICL
and MLS (Zolman etal., 2005; Lingard et al., 2009). A third mech-
anism for peroxisomal degradation is pexophagy, a selective type
of autophagy in which peroxisomes are targeted to the vacuole.

Pexophagy and its mechanism are well described in methy-
lotrophic yeast and to a lesser extent in mammalian cells (reviewed
by Till etal., 2012). Pexophagy typically removes obsolete or
damaged peroxisomes. For example, peroxisomes are proliferated
when methylotrophic yeast is grown in methanol, and excess per-
oxisomes are eliminated by pexophagy when methanol is replaced
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FIGURE 1 | A model of peroxisomal protein degradation in plant
cells. (A) When autophagy occurs at a basal level or when a core ATG
gene is missing, degradation of matrix proteins like ICL and MLS may
depend on intraperoxisomal degradation (IPD) or peroxisome-associated
protein degradation (PexAD). (B) Pexophagy may be induced by loss of
LONZ2, inactivation of IPD and PexAD, or a developmental process in
which peroxisomes are past a critical level of oxidative stress (for
example, intensive fatty acid p-oxidation during early seedling growth).
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Under pexophagy-inducing conditions, phagophore initiates, expands, and
forms the autophagosome to sequester and target the peroxisome to the
vacuole for degradation. In this model, hydrogen peroxide (HyO5) is
shown as a sole matrix-derived induction signal for pexophagy, although
we cannot exclude the possibility of additional induction signals. Refer to
the main text for possible contributions of PEX4, PEX14, NBR1, and ATG8
proteins to target recognition. Broken arrows indicate highly speculative
steps.

by other carbon source. Two types of pexophagy are known in
yeast: in macropexophagy, peroxisomes are sequestered by the
phagophore (Figure 1) and subsequently targeted to the vac-
uole, and micropexophagy occurs when peroxisomes are directly
engulfed by the vacuolar membrane (Till et al., 2012). It was found
that many core Autophagy-related (Atg) genes are required for pex-
ophagy in yeast and mouse. Despite significant progress in our
understanding of plant autophagy (reviewed by Floyd etal., 2012;
Li and Vierstra, 2012), direct evidence for pexophagy in plant
cells has not been available until recently and will be discussed
herein.

DEGRADATION OF PEROXISOMES BY AUTOPHAGY IN
ARABIDOPSIS

Early electron microscopy studies rarely include snapshots of
autophagic degradation of peroxisomes in plant cells. However,
there is a published example of autophagic vacuoles located
near peroxisomes in castor bean endosperm, taken approximately
6 days after germination (Vigil, 1970). These snapshots alone
were not sufficient for definitive evidence of plant pexophagy
and required confirmation by immunoelectron microscopy and
three-dimensional electron tomography.

A recent study employing a genetic suppressor screen provides
evidence for pexophagy in plants. This was done by Dr. Bonnie
Bartel’s group at Rice University in an attempt to identify the
molecular function and targets of the LON2 protease (Farmer
etal., 2013). The investigators screened for mutations suppressing

lon2 phenotypes of defective p-oxidation activity and incom-
plete processing of peroxisome targeting signal (PTS) 2. In
addition to the phenotypes, lon2 mutant cells had abnormally
large spherical structures labeled by green fluorescent protein
tagged with PTS (GFP-PTS), a widely used peroxisomal matrix
marker. In contrast, the wild-type cells had small GFP-PTS
puncta. Cloning of mutant genes that code for the lon2 sup-
pressors resulted in the identification of several alleles of atg
genes, specifically atg2, atg3, and atg7, two of which had been
previously shown to cause defective autophagy (Doelling etal.,
2002; Inoue etal.,, 2006). Double mutants of lon2 atg2, lon2
atg3, and lon2 atg7 all had normal B-oxidation and PTS2 pro-
cessing, and had small GFP-PTS puncta. Moreover, endogenous
ICL and MLS were stabilized in the double mutants, but not
significantly in atg single-mutant seedlings. Farmer etal. (2013)
presented a model in which autophagy removes a fraction of per-
oxisomes in wild-type Arabidopsis seedlings, while peroxisomal
defects in Jon2 mutation induce pexophagy (Figure 1B). Sim-
ilar results were obtained by Dr. Mikio Nishimura’s group at
National Institute for Basic Biology, Japan (Goto-Yamada etal,,
2014). Lack of autophagy in the lon2 background appears to
prevent the double-mutant seedlings from losing small perox-
isomes, leading to the suppression of lon2 phenotypes (Bartel
etal., 2014; Goto-Yamada etal., 2014). Although the precise func-
tion of LON2 in ICL and MLS degradation has yet to be defined,
data described in Farmer etal. (2013), Goto-Yamada etal. (2014)
indicate that LON2 protease plays a pivotal role in the IPD,
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unfolding, and/or translocation of misfolded peroxisomal proteins
(Figure 1).

A role for pexophagy in ICL and MLS degradation was also
demonstrated in a reverse genetics study performed in our lab-
oratory (Kim etal., 2013b). 5-day-old wild-type hypocotyls had
approximately 50% fewer peroxisomes than 3-day-old hypocotyls,
while the reduction was about 20% in atg7 hypocotyls. Degrada-
tion of ICL and MLS was delayed in atg7 hypocotyls, but this
stabilization effect was not obvious at the whole-seedling scale.
Consistent with the observation that phenotypes were more obvi-
ous in hypocotyls than in the whole seedling, ATG7 transcription
appeared to be induced preferentially in hypocotyls (Kim etal.,
2013b). Thus, autophagy during seedling growth may be spa-
tiotemporally controlled to promote degradation of peroxisomes.
A relatively low level of autophagic activity in cotyledons and roots
would explain why Farmer et al. (2013), Goto-Yamada etal. (2014)
failed to detect stabilization of ICL and MLS in atg7 and atg2
single mutant seedlings. Finally, Kim et al. (2013b) reported ATG7-
dependent degradation of peroxisomes in the central vacuole
and observed autophagic puncta overlapping with peroxisomal
markers.

As seedlings mature, pexophagy may have a role in peroxiso-
mal quality control. This suggestion is supported by the results
from another forward genetic screen performed by Dr. Mikio
Nishimura’s group (Shibata etal., 2013). These authors identified
mutants with aggregated peroxisomes and showed that the arg2,
atg7, and atgl8a mutations were responsible for aggregation. In
line with the findings of Farmer et al. (2013), the atg2 mutation did
not affect peroxisome function. However, leaves from 3-week-old
atg2 mutant plants accumulated more peroxisomal proteins than
the wild-type control, but had the same amount of mitochondrial
and chloroplast proteins as leaves from wild-type plants, suggest-
ing selective degradation of peroxisomal proteins by autophagy.
Shibata etal. (2013) found that exogenously supplied hydrogen
peroxide induced peroxisome aggregation. The aggregated perox-
isomes in atg2 mutants were highly oxidized and contained a high
level of inactive catalase. More recently, Yoshimoto etal. (2014)
observed a phagophore-like structure that formed near the aggre-
gated peroxisomes in atg2 leaves. These observations suggest that
hydrogen peroxide is an induction signal for pexophagy, a pro-
cess that aids in the disposal of damaged peroxisomes in the cell
(Figure 1B).

FUTURE RESEARCH PERSPECTIVES
We can identify several questions concerning pexophagy in plant
cells. First, why have there been few ultrastructure images sug-
gestive of pexophagy in plant cells? The scarcity may be due to
rapid targeting of autophagic vesicles to the vacuole (Zhuang
etal., 2013). This possibility is supported by the observation of
the phagophore-like structures in atg2, where autophagosome
formation may not be completed (Yoshimoto et al.,2014). In addi-
tion, the scarcity may result from a small developmental window
in which seedling peroxisomes are rapidly transformed to leaf
peroxisomes, as our study suggested (Kim etal., 2013b).

Another important question concerns the selectivity of
autophagy. While autophagy in mature leaves may be selective for
peroxisomes over mitochondria or plastids (Shibata etal., 2013),

such selectivity was not clearly demonstrated in hypocotyls. A
more quantitative tool to assess selectivity of autophagy in plant
cells will be useful, and would apply to other types of selective
autophagy, too.

Three of the studies mentioned here (Farmer etal., 2013;
Kim etal., 2013b; Goto-Yamada etal., 2014) focused on perox-
isome transition in young seedlings, while mature plants were
used for the analysis of leaf peroxisomes in two other papers
(Shibata etal., 2013; Yoshimoto etal., 2014). Nevertheless, these
studies all underscore a role for autophagy in homeostasis of
peroxisome number. Is there any unifying concept from the
studies? It seems that the transition of seedling peroxisomes
to leaf peroxisomes involves aggregation of small, highly oxi-
dized peroxisomes that contain damaged or misfolded enzymes.
In fact, aggregated peroxisomes were accumulated in the mes-
ophyll cells of young atg2 seedlings (Goto-Yamada etal., 2014)
and possibly in atg7 hypocotyl cells (Kim etal., 2013b). Hydro-
gen peroxide has been proposed as a signal for autophagy in
plants (reviewed by Pérez-Pérez etal., 2012; Hackenberg etal,
2013). In support of this proposal, cat2 seedlings lacking a
detectable level of catalase showed accelerated degradation of
ICL and MLS (Lingard etal., 2009; see Figure 1B) compared to
wild-type seedlings. Future work should clarify whether hydrogen
peroxide acts as an upstream signal for both general and selective
autophagy.

What proteins are necessary for recognizing peroxisomes tar-
geted for autophagy? In methylotrophic yeast, a pexophagy
receptor Atg30 bridges the molecular interaction between an
autophagic complex and the peroxisomal proteins Pex3 and Pex14
(Farré etal., 2008; Zutphen etal., 2008). In mammalian cells,
Pex14 interacts with LC3, an Atg8 homolog (Hara-Kuge and
Fujiki, 2008). In addition, p62 and Neighbor of BRCA1 gene 1
(NBR1) may form a bridge between an ubiquitylated peroxisomal
protein and LC3 (Kim etal., 2008; Deosaran et al., 2013). Intrigu-
ingly, an Arabidopsis ortholog of yeast Pex14 was identified from a
genetic screen for mutants that showed stabilization of peroxiso-
mal markers (Burkhart et al., 2013). It remains to be seen whether
molecular interaction leading to pexophagy is conserved among
distant eukaryotes (Figure 1).
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