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INTRODUCTION
A key node in number of essential cel-
lular processes in eukaryotes, Armadillo
was originally characterized in Drosophila
as the component of Wingless/Wnt
signal transduction pathway (Nusslein-
Volhard and Wieschaus, 1980). β-catenin
is the mammalian homolog of Armadillo
playing dual role in structural and tran-
scriptional regulation during embryonic
development (Conacci-Sorrell et al.,
2002). Even though initially charac-
terized in animals, members of the
Armadillo proteins are also known to
exist in non-animals including slime
mold (Dictyostelium discoideum) and
plants (Wang et al., 1998; Barelle et al.,
2006; Veses et al., 2009). The existence
of Armadillo repeat family of proteins
across species suggests ancient evolution-
ary origin and functional conservation
of these proteins in multicellular organ-
isms (Coates, 2003). The intricate role
of β-catenin raises several doubts about
the mechanism by which it mediates
interaction with diverse partner pro-
teins using common interface, and how
this interaction influences adhesion and
transcription?

The ARM family proteins have been
identified with multiple functional
domains in more than one species.
Genome-wide studies in plants have
shown the existence of large number of
Armadillo homologs in Physcomitrella
patens, Arabidopsis and Oryza sativa
(Mudgil et al., 2004; Sharma et al., 2014).
One assumption is that, Armadillo fam-
ily being evolutionary conserved, perform
similar role in all organisms. However, the
existence of multigene Armadillo family

with various subfamilies indicate novel
species specific functions of these proteins
in plants. Several recent studies have made
known the function of numerous ARM
proteins in Arabidopsis and rice. Apart
from their analogous role in regulation of
gene expression and developmental pro-
cesses, various proteins were discovered to
be predominantly involved in plant stress
responses.

Thus, an intriguing and important
question remains as in what way the
similar effector proteins of Wnt path-
way function and how similar canonical
response is prevented or exist in plants.
Recent progress in studies of ARM pro-
teins in plants has suggested some pos-
sible answers to this question. However,
the Wnt signaling mechanism regulated
by ARM repeat proteins is still unknown.
Regarding this, many underscoring ques-
tions are just beginning to emerge that
remains to be answered.

Wnt SIGNALING—DEVELOPMENTAL
REGULATION IN PLANTS AND
ANIMALS
Wnt proteins are one of the foremost sig-
naling molecule essential for cell polarity,
embryonic development and the determi-
nation of cell fate in metazoa (Cadigan
and Nusse, 1997; Wodarz and Nusse,
1998; Logan and Nusse, 2004). A com-
bination of molecular and genetic stud-
ies has provided evidences for how Wnt1,
Wnt3a, and Wnt8 specifically induce
the activation of “canonical β-catenin”
pathway in animals (Du et al., 1995;
Shimizu et al., 1997; Kuhl et al., 2000).
However, no evidence for a Wnt, Frizzled
(Fz) and low-density-lipoprotein-related

protein receptors has been obtained in
plants. Despite this, few homologs of
proteins, which act as negative regula-
tor of Wnt signaling has been unveiled
in plants. Based on BLAST searches, the
serine/threonine kinase GSK-3 (glycogen
synthase kinase-3), CK1 (casein kinase 1)
and APC (Adenomatous polyposis coli),
which together form a destruction com-
plex to stimulate degradation of β-catenin
in animals were found to be conserved
in plants (Figure 1) (Li et al., 2001). This
has been proven in animals that activ-
ity of GSK3/CK1 complex is inhibited in
response to Wnt signal perception at the
cell surface to relieve its inhibitory effects
on downstream β-catenin (He et al., 2004;
Tamai et al., 2004; Nusse, 2005). The con-
servation of β-catenin destruction com-
plex in plants points toward novel targets
and modulation of Wnt signaling.

POTENTIAL “Wnt-LIKE” SIGNALING
FUNCTIONS FOR PLANT ARM FAMILY
PROTEINS
Arabidopsis comprises a multigene
SHAGGY-related protein kinase (ASK)
gene family, which is 70% identical to
glycogen synthase kinase-3 from mam-
mals, (Bourouis et al., 1990; Siegfried
et al., 1990; Woodgett, 1990) classified into
four distinct subfamilies (Jonak and Hirt,
2002). In the past few years, significant
progress has been made in understand-
ing how GSK3s perform their diverse
functions in plants. The diverged biolog-
ical functions of these members in signal
transduction, cell patterning, cytokinesis
and determination of cell fate has been
established and credited to their diver-
sity within plants (Dornelas et al., 1998).
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FIGURE 1 | Functional comparison of β-cat like-ARM repeats protein in

plants and animals. (A) Adhesion Complex: β-catenin in animals binds
cytoplasmic tail of cadherin to link it with α-catenin. Additionally, β-catenin
together with APC interacts with microtubule complexes. In plants,
ARK1/MRH2 (ARM repeat kinesin1/morphogenesis of root hair 1) interacts
with NEK6 (NIMA-related protein kinase 6) to mediate root epidermal cell
morphogenesis. CC represent coiled coil domain. (B) Destruction Complex:
β-catenin is targeted for proteasomal degradation by a GSK3, APC, CKI, and
Axin complex in the cytoplasm. Similarly in plants, ARM/U-box proteins, in

response to various stimuli target substrate protein for proteasomal
degradation. (C) Transcriptional Complex: Wnt signals inhibits the destruction
complex, free β-catenin enters the nucleus where it links with the
transcriptional regulators to activate transcription of target genes. In plants,
ARIA an ARM protein with BTB/POZ domain binds with ABF2 and NEK6
transcription factors to stimulate transcription of ABA responsive genes.
Additionally, ARABIDILLO1/2 interacts with ASK2/11 through their F-box
domain to mediate degradation of possibly a positive regulator of GA3
signaling to promote transcription of genes related to lateral root development.

Most of the plants GSKs are found to
be involved in brassinosteroid signaling
and salt stress response (Dornelas et al.,
2000; Kim et al., 2009). Brassinosteroids
(BRs) are plant hormones, which signal
through a plasma membrane localized
receptor kinase BRI1. BRI1 interacts with
BAK1 (BRI1 associated receptor kinase 1)
to mediate plant steroid signaling (Nam
and Li, 2002). BES1 has been identified
as a suppressor of BRI1, which in turn
is negatively regulated by a kinase BIN2
(Yin et al., 2002). Interestingly, the BR
signaling pathway mechanism is analo-
gous to the Wnt signaling pathway. In
the proposed model, BIN2 which shares
sequence homology with GSK-3 (Li and

Nam, 2002), phosphorylate and destabi-
lize its substrate BES-1. In response to
brassinosteroids, BES-1 is stabilized and
accumulates in the nucleus to activate
target gene expression (Yin et al., 2002).

It is important to note that both BES-1
and β-catenin does not share homology at
the protein sequence level. Similarly, BRI1
and Wnt are the two different receptors
and does not belong to the same family
(He et al., 2002; Yin et al., 2002; Zhao
et al., 2002). However, it will be inter-
esting to know if any of the protein in
multigene Armadillo family in plants, gets
regulated in the same manner or it is
simply the way in which the pathway is
conserved.

Meanwhile, several lines of evidence
suggest the role of Wnt signaling pro-
teins i.e., Armadillo repeats containing
proteins in the developmental regulation
in both animals and plants (Amador
et al., 2001). p120ctn is an Armadillo
repeat protein identified as a component
of E-cadherin-catenin cell adhesion com-
plex (Daniel et al., 2002). The signaling
and cell adhesion co-factor p120ctn is the
only known binding partner for Kaiso,
a novel BTB/POZ domain zinc finger
transcription factor (Daniel et al., 2002).
Another possible candidate mediating
interaction within actin and microtubule
filaments in plants is ARK/MRH2 kinesin
(ARM repeat kinesin/Morphogenesis of
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root hair). ARK/MRH2 interacts with
NIMA-related protein kinase NEK6, to
regulate epidermal cell morphogenesis by
modulating microtubule dynamics (Sakai
et al., 2008).

In relation to this, Arabidopsis
(AT5G13060) and rice (LOC_Os05G33050)
also possess homologous proteins com-
prising ARM repeats and a BTB/POZ
domain (Figure 1). The Arabidopsis
BTB/POZ ARM protein also known as
ABAP1 has been shown to be involved in
DNA replication and gene transcription
controls (Masuda et al., 2008).

Arabidillo-1/-2 and Oryzadillo are
the closest homolog of β-catenin in
Arabidopsis and Oryza sativa respectively,
consisting of an F-box motif near their
N-terminal, and several presumed sites
for GSK-3 phosphorylation (Gagne et al.,
2002; Kuroda et al., 2002; Coates, 2003).
Remarkably, Arabidillo’s are closest to the
β-catenin homolog in Dictyostelium’ Aar
protein that consists of an F-box domain
and is required for the differentiation
and expression of prespore specific genes
(Grimson et al., 2000). Besides, analo-
gous to animals, physical interaction of
Arabidillo-1/-2 proteins through their
F-box domain with ASKs (SHAGGY-like
protein kinase) lead to the formation
of SCF complexes that target various
substrates for ubiquitn/26S proteasome–
mediated proteolysis has been proven
in plants (Changjun et al., 2010). This
suggest an evolutionary conservation of
signal transduction pathway elements and
their site of action within animals and
plants.

BEYOND Wnt SIGNALING: ROLE OF
PLANT ARM PROTEINS
Exposure to abiotic and biotic stress results
in alteration of cellular homeostasis in
plants. The first response to stress fac-
tors, is to activate the signal transduction
pathways that stimulate cell defense and
adaptive mechanisms. Ubiquitination is
a unique protein degradation mechanism
utilized by plants to effectively degrade
detrimental cellular proteins and compo-
nents specific to these stress signalings.
A majority of U-box E3 ubiquitin ligase
encoding ARM proteins related to biotic
and abiotic stress have been identified in
plants. We can certainly anticipate new
insight into the molecular mechanism of

plant β-catenin-like proteins function in
the context of abiotic stress signals.

There are 41 and 47 predicted
U-box/ARM proteins in the genome of
Arabidopsis and rice respectively (Mudgil
et al., 2004; Sharma et al., 2014). A few of
them have been functionally characterized
in Arabidopsis. Many of these proteins
have now been linked to specific stress and
hormonal responses.

A biological role for the U-box/ARM
protein AtPUB9 has been proposed in
ABA (Abscisic acid) signaling (Samuel
et al., 2008). In Arabidopsis, ATPUB18
and ATPUB19 are the two homologous
proteins. Molecular analysis of AtPUB19
showed that it is upregulated in response
to drought, salt, cold and ABA (Liu
et al., 2011). In the consecutive year,
role of ATPUB18 as a negative regulator
has been put forward in ABA-mediated
stomatal closure and drought responses
(Seo et al., 2012). A different homologous
pair of PUB proteins, AtPUB22 and 23
have been shown to play a combinatory
role in the negative regulation of drought
stress (Cho et al., 2008; Seo et al., 2012).
A closely related ortholog of ATPUB22/23
in Capsicum annum known as CaPUB1
was found to be highly inducible in
response to various abiotic stresses such as
drought, cold and salt (Cho et al., 2006).

Another report suggested the role of
AtCHIP, an Arabidopsis U-box/ARM pro-
tein in response to extreme tempera-
ture conditions. Subsequently, AtCHIP
was reported to be involved in the ABA
stress signaling pathway by mediating
interaction with protein phosphatase 2A
(Yan et al., 2003). In rice, SPL11 was
identified as a U-box containg ARM pro-
tein that functions as a negative regu-
lator in the control of cell death and
pathogen defense (Zeng et al., 2004). The
Arabidopsis ortholog of SPL11, ATPUB13
is a functionally conserved protein regu-
lating plant defense, cell death and flower-
ing time (Li et al., 2012a,b). In Nicotiana,
two U-box/ARM proteins NtCMPG1 and
tobacco ACRE276 and their functional
homolog in Arabidopsis, AtPUB17 has
been implicated as positive mediators
of plant defense and stress signaling
(Gonzalez-Lamothe et al., 2006; Yang
et al., 2006). Apart from this, expression
analysis in rice has confirmed many of
the ARM proteins without any associated

domain to be differentially regulated
under abiotic stress conditions suggesting
a role of ARM repeats in the stress regula-
tion (Sharma et al., 2014).

On the basis of facts described above,
it can be concluded that animal and plant
ARM repeat proteins share many resem-
blances. Therefore, it is possible that at
least some transcription effectors involved
in Wnt signaling are evolutionary con-
served. These elements include nuclear
accumulation in response to extracellular
signal, phosphorylation and degradation.
Apart from the common response, plants
possess specific signaling pathways medi-
ated by ARM proteins. In plants, ubiqui-
tination is critically involved in the func-
tion of ARM proteins. The proliferation
of β-catenin-like ARM proteins in plants
suggest their significance in the regula-
tion of diverse biological fuctions in them.
Further study of these proteins in plants
would contribute to our understanding of
the molecular factors involved in response
to abiotic stress.
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