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Most flowering plant seeds are composed of the embryo and endosperm, which are
surrounded by maternal tissue, in particular the seed coat. Whereas the embryo is
the dormant progeny, the endosperm is a terminal organ for storage of sugars and
amino acids in proteins and carbohydrates, respectively. Produced in maternal leaves
during photosynthesis, sugars, and amino acids are transported to developing seeds after
flowering, and during germination they nourish early seedlings growth. Maize endosperm
usually contains around 10% protein and 70% starch, and their composition ratio is rather
stable, because it is strictly regulated through a pre-set genetic program that is woven by
networks of many interacting or counteracting genes and pathways. Endosperm protein,
however, is of low nutritional value due mainly to the high expression of the α-zein gene
family, which encodes lysine-free proteins. Reduced levels of these proteins in the opaque
2 (o2) mutant and α-zein RNAi (RNA interference) transgenic seed is compensated by an
increase of non-zein proteins, leading to the rebalancing of the nitrogen sink and producing
more or less constant levels of total proteins in the seed. The same rebalancing of zeins
and non-zeins has been observed for maize seeds bred for 30% protein. In contrast to
the nitrogen sink, storage of sulfur is controlled through the accumulation of specialized
sulfur-rich proteins in maize endosperm. Silencing the synthesis of α-zeins through RNAi
fails to raise sulfur-rich proteins. Although overexpression of the methionine-rich δ-zein can
increase the methionine level in seeds, it occurs at least in part at the expense of the
cysteine-rich β- and γ-zeins, demonstrating a balance between cysteine and methionine
in sulfur storage. Therefore, we propose that the throttle for the flow of sulfur is placed
before the synthesis of sulfur amino acids when sulfur is taken up and reduced during
photosynthesis.
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STORAGE PROTEINS IN MAIZE SEED
Angiosperm seeds result from double fertilization and are usually
the primary mode of reproduction. Besides their vital biological
function, seeds are the most frequently harvested organs in agri-
culture. Therefore, their production has tremendous economic
importance for humans and livestock. For this reason, maize has
become one of the most productive cereal crops in the world
in respect to yield per acreage. Maize seeds mainly consist of
endosperm and embryo, which account for 90 and 10%, respec-
tively, of the whole dry seed weight (Flint-Garcia et al., 2009).
Starch and protein are mainly stored in endosperm, whereas most
of the oil accumulates in the embryo.

Maize seeds contain ∼10% proteins and ∼70% of them are
classified as storage proteins (Flint-Garcia et al., 2009). Based
on their solubility in different solvents, endosperm proteins are
divided into four groups: albumins, globulins, glutamines, and
prolamins. The latter, called zeins, make up > 60% of total
proteins (Figure 1). Zeins can be divided into four subfami-
lies, α (19 and 22 kDa), γ (50, 27, and 16 kDa), β (15 kDa),
and δ (18 and 10 kDa; Esen, 1987; Coleman and Larkins, 1998;
Figure 1). A common feature of all prolamins is internal tan-
dem variable repeats of blocks of amino acids with primarily

proline and glutamine, as first observed in a maize α-zein (Ger-
aghty et al., 1981). Because of this feature, α-zeins lack essential
amino acids like lysine, methionine, and tryptophan. Due to the
high expression of α-zein genes in maize endosperm, the final lev-
els of these three essential amino acids in total protein are very
low (Osborne and Mendel, 1914). Therefore, maize cannot serve
as a balanced dietary protein source for humans and monogas-
tric animals and has to be supplemented with these amino acids,
raising the cost of food supply worldwide (Mertz et al., 1964).
Interestingly, the level of one amino acid, methionine, can reach
sufficient levels in some cultivars, making supplements redun-
dant (Messing and Fisher, 1991). The reason for this is that minor
zeins, β, γ, and δ, have a high proportion of sulfur-rich amino
acids and can vary in expression levels among maize cultivars.
The δ-zeins are very rich in methionine, whereas the γ-zeins
are abundant in cysteine; β-zein has high percentages of cys-
teine and methionine, while α-zeins lack both of them (Wu et al.,
2012).

PROTEOME BALANCING IN MAIZE ENDOSPERM
Maize domestication from its wild ancestor, teosinte, can be traced
back to the Tehuacan Valley of Mexico as early as 8,000 years ago.
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FIGURE 1 | Maize storage proteins. Prolamin proteins in maize are called zeins and the others are all classified as non-zeins. Adapted from Wu et al.
(2012).

During this process, teosinte underwent dramatic changes, not
only in plant morphology, but also in seed composition (Flint-
Garcia et al., 2009). Teosinte contains ∼30% protein and has a
high level of the methionine-rich δ-zeins (Swarup et al., 1995),
but modern maize has only ∼10% total protein and a low level
of methionine-rich proteins in cultivars grown for consumption.
Although one can achieve among all crops the highest yields of
grain with maize, its protein level is much lower than soybean,
which contains ∼35% protein with sufficient lysine levels.

To investigate whether artificial selection can significantly
change seed compositions, a long-term selection experiment has
been carried out for more than one century at the University of
Illinois. This has yielded four strains with substantially differ-
ent protein levels: Illinois high protein (IHP), Illinois low protein
(ILP), Illinois high protein reverse (IHPR), and Illinois low protein
reverse (ILPR) with protein levels of 30, 4, 7, and 15%, respectively
(Hopkins, 1899; Dudley and Lambert, 2004; Moose et al., 2004;
Dudley, 2007). However, elevated protein levels are mainly due to
zeins, which of course lack lysine (Osborne and Mendel, 1914).
Therefore, IHP contains even relatively lower lysine levels (Lysrel)
than those in normal maize (Wu and Messing, 2012).

An unexpected finding was when zein levels are lowered by
the opaque-2 mutation the relative lysine content was improved
to a nearly sufficient level. This mutation affects an endosperm-
specific transcription factor belonging to the bZIP family that
is required for transactivation of several zein gene subfamilies
(Schmidt et al., 1992; Cord Neto et al., 1995). The reduction in
zein gene expression results in seeds with an opaque appearance.
In the o2 mutant, the main zein components, the α-zeins, are
reduced by more than 60% in certain inbred lines. However, the
total protein level remains almost unchanged by a compensatory
increase of non-zein proteins with higher lysine levels (Holding
and Larkins, 2009). As a consequence, the percentage of overall

lysine is elevated. This compensation phenomenon indicates that
nitrogen storage is controlled at the level of protein synthesis, lead-
ing to a more or less constant amount of total protein. However, as
o2 is recessive, pleiotropic and its penetration can vary in different
α-zein haplotypes (Song and Messing, 2003), this trait requires
two parental lines that are homozygous for o2 and have addi-
tional QTLs for seed quality for hybrid seed production. Such
QTLs, namely o2 modifiers, are required to convert the starchy
o2 endosperm, which is unfavorable for storage and transport
of large volumes of maize, to a hard kernel texture. This mod-
ified o2 maize mutant is known as “Quality Protein Maize” or
QPM (Vasal et al., 1980; Holding et al., 2008). Because of the
loss of the opaque phenotype in QPM, it becomes difficult for
breeders to maintain o2 homozygosity through visual scoring.
To simplify QPM breeding, high lysine maize lines can be cre-
ated with RNA interference (RNAi) mutants, which reduce α-zein
mRNA in a dominant and more targeted fashion. However, in
the absence of o2 modifiers, the resulting transgenic seeds also
present an opaque phenotype (Segal et al., 2003; Huang et al., 2006;
Wu and Messing, 2011).

Although QPM has a hard endosperm and contains higher
lysine than normal (Vasal et al., 1980), the total protein lev-
els are still lower than in soybeans (Prasanna et al., 2001). If
one could create maize lines that rival the nutritional quality
of soybeans being high-protein and high-lysine, while hav-
ing a hard-endosperm texture, one could investigate whether
total protein could also be rebalanced by the mechanism
operating in IHP. Indeed, when an α-zein RNAi event was
crossed with IHP, the total protein level was maintained,
although zeins were substantially reduced. Consequently, the
non-zein fraction was dramatically increased to compen-
sate for the loss of zeins (Figure 2). Moreover, suppres-
sion of zeins with an α-zein RNAi is incomplete, leaving a
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FIGURE 2 | Proteome rebalancing in o2 mutant and IHP with

suppressed α-zeins. Lane 1 and 4, W64A and W64Ao2; lane 2 and 4, two
F1 progeny of IHP × α-zeinRNAi/− not inheriting and inheriting the RNAi.
Adapted from Wu and Messing (2012).

considerable amount of residual zeins that provide a hard vit-
reous endosperm texture without the need for o2 modifiers
(Wu and Messing, 2012).

What could be the mechanism underlying rebalancing the
seed proteome? Sugars and amino acids produced during pho-
tosynthesis are transported to seeds for deposition as starch and
protein. It seems that developing maize seeds possess compen-
satory mechanisms that sense protein content when zein synthesis
is interrupted, leading to translation of other mRNAs instead of
zein mRNAs. This transfer of ribosomes to a different mRNA pool
could be as simple as mass action, or involve an intracellular signal
transduction to attain a predetermined protein level. Such signal
transduction would likely occur, although not exclusively, at the
transcriptional, posttranscriptional or translational levels (Frizzi
et al., 2010; Jia et al., 2013). No matter how proteome rebalanc-
ing operates to alter seed composition, breeders had to take a
long-term selection approach to accumulate QTLs to regulate this
tightly controlled program (Dudley and Lambert, 2004). When
synthesis of soybean’s major storage proteins, glycinin and con-
glycinin, were suppressed in knockdown mutant lines, the seeds
maintained nearly identical levels of total protein compared to the
untransformed soybean cultivars, with similar seed size and weight
(Schmidt et al., 2011), suggesting that proteome rebalancing in
seeds might be a rather common event, providing a constant sink
for reduced nitrogen during seed maturation. In addition, plant
seeds seem to possess the ability to overcome a protein shortage
by remodeling their protein composition for use during germina-
tion and early seeding growth. Profiling non-zein accumulation
in o2 and α-zeinRNAi mutants appears to follow two distinct pat-
terns, with an overall slight increase of proteins in general and
significant overexpression of several specific proteins (Holding
and Larkins, 2009; Wu et al., 2012; Jia et al., 2013). Among the
specifically enhanced expressed proteins, eIF2 and GAPDH have
been identified as high-lysine containing proteins, which were
thought to add a substantial contribution to the overall lysine
elevation (Habben et al., 1993, 1995; Jia et al., 2013). However,
what regulates their expression when zeins are suppressed remains
unclear.

SULFUR REBALANCING IN MAIZE ENDOSPERM
Sulfur amino acid deficiency differs from lysine deficiency in sev-
eral ways. The essential amino acid methionine is the only amino
acid that is currently chemically synthesized for supplementation
of animal feed, because even soybean proteins do not provide suffi-
cient levels in a dietary ration. However, in contrast to lysine, maize
produces β- and δ-zein proteins that are very high in methionine
residues. But in most maize inbreds, they just do not accumulate
at sufficient levels although it has been shown that increased levels
of sulfur in the soil can increase synthesis of sulfur-rich proteins
in peas (Beach et al., 1985). Screens of seeds from different maize
genetic backgrounds by germinating in the presence of lysine and
threonine (LT) resulted in the discovery of one LT-resistant line
(Phillips, 1985), where the δ-zein gene, rich in methionine codons,
was overexpressed (Kirihara et al., 1988). It also was shown that
this differential expression was subject to parental imprinting in
hybrid crosses (Chaudhuri and Messing, 1994). This high δ-zein
line was sufficient to replace synthetic methionine in a regular feed
for chickens, with a direct impact on weight and feather quality
(Messing and Fisher, 1991). Interestingly, the high expression of
the δ-zein gene is not due to transcription, but rather to post-
transcriptional regulation of its mRNA (Schickler, 1993). In fact,
it appears that the regulation occurs via the un-translated regions
(UTRs) of the mRNA, which was shown in transgenic seeds when
the δ-zein mRNA UTRs were replaced by other sequences (Lai and
Messing, 2002).

The allele-specific regulation of the methionine content, how-
ever, would unlikely be a pathway for rebalancing protein com-
position in seeds. In fact, high-lysine maize lines, like the o2
mutant, where lysine-free α-zein proteins are reduced with a com-
pensatory increase of other proteins, have failed to show any
increase but rather somewhat of a decreased methionine level
(Mertz et al., 1964; Phillips, 1985; Wu et al., 2012). This could
also be an effect on the transcription of δ-zeins by O2 itself, as
it also regulates another methionine-rich zein gene, the β-zein.
Indeed, in knock-out mutants of δ-zeins in combination with a
knock-down of β-zein, the accumulation of methionine is 40%
less than that in normal maize lines (Wu et al., 2012). To elimi-
nate the pleiotropic effects of O2 and only reduce the expression
of α-zeins, methionine levels were also evaluated in the pres-
ence of α-zein RNAi. In this case, the methionine level did not
increase along with lysine, showing that non-zein proteins are
not as rich in sulfur amino acids as in lysine. Indeed, only 8%
of the proteins in the maize protein database have methion-
ine residues above 4%, while about 57% have lysine residues
above 4% (Wu et al., 2012). Therefore, it appears that the sink
for reduced nitrogen and sulfur operate differently during seed
development.

There is no apparent inferior kernel phenotype in high-
methionine maize, in contrast to high-lysine α-zein RNAi maize,
indicating that single gene manipulation could add a stable trait
without agronomic compromises. Indeed, after several back-
crosses of the chimeric δ-zein gene to a maize line that is low in
methionine, overexpression of the 10-kDa zein gene remained sta-
ble (Lai and Messing, 2002). However, the transgenic line exhibited
an interesting biochemical difference compared to normal maize
(Wu et al., 2012). Unexpectedly, the accumulation of cysteine-rich
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γ- and β-zeins was dramatically suppressed (Figure 3). A recent
study also found that selecting high-methionine variants from a
maize population apparently resulted in low accumulation of the
cysteine-rich 27-kDa γ-zein (Newell et al., 2014). These results
suggest that increased methionine storage requires increased flow
of reduced sulfur from cysteine to methionine, thereby reducing
the translation of 27-kDa γ-zein mRNA. However, this shift could
also be achieved with RNAi against γ- and β-zeins.

Perhaps, this could be explained as follows. Methionine and
cysteine are the only two sulfur-containing amino acids among
the twenty protein-containing L-amino acids. Sulfur is one of the
essential elements for plant growth and is absorbed by root as sul-
fate (SO4

2-) with an oxidation state +6. Sulfate has to be reduced to
−2 through several enzymatic steps to form the intermediate prod-
uct, cysteine. Because γ- and β-zeins are the cysteine-rich storage
proteins, silencing their expression causes a significant reduction
in cysteine level, indicating these proteins are the main sink for
cysteine storage (Wu et al., 2012). If free cysteine is the first stable

FIGURE 3 | Accumulation patterns of zeins in high-methionine

transgenic and WT seeds. Hi-Met transgenic seeds in lane 2 and 4
express much higher levels of the 10-kDa δ-zein, but lower levels of β- and
γ-zeins than WT in lane 1 and 4. Adapted from Wu et al. (2012).

FIGURE 4 | Sulfate reduction and synthesis of cysteine and methionine

pathways. The flow of sulfur is shown to illustrate sink source relationship.
Adapted from Wu et al. (2012).

product with reduced sulfur, the majority of which is incorporated
into cysteine-rich proteins, like γ-zeins and the excess would flow
into methionine, its concentration would drive the translation of
the δ- and β-zein (β-zein is rich both in cysteine and methionine)
mRNA. Indeed, in RNAi against γ- and β-zeins, one can observe a
boost in the accumulation of δ-zeins. Therefore, depriving the cys-
teine sink or increasing the methionine sink has the same result in
that the flux of reduced sulfur flows through cysteine to methio-
nine. This balance is made possible through the expression of
different single/low copy number genes specialized for storage of
these two amino acids (Wu et al., 2012).

Based on the above hypothesis, the major bottleneck for
increasing seed methionine content is the capacity of sulfur
absorption by roots and the efficiency by which sulfur can be
reduced in the leaves during photosynthesis. Three enzymes ATP
sulfurylase, APS reductase (APR) and sulfite reductase in this
pathway combine coordinately to reduce sulfate with oxidation
state +6 to sulfide with oxidation state −2 (Figure 4). Meanwhile,
O-acetylserine (OAS), the other precursor for cysteine syhthesis,
is formed from serine and acetyl-CoA catalyzed by serine acetyl-
transferase (SAT). And last, sulfide reacts with OAS, producing the
end assimilation product of cysteine catalyzed by OAS thiol-lyase
(Leustek et al., 2000). We propose such capacity of sulfur reduction
could be enhanced by specific overexpression of the committing
enzymes APR and SAT in leaf bundle sheath cells, where the sul-
fur reduction occurs and as a consequence improve cysteine and
methionine sinks in seed.
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