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INTRODUCTION

Trichomes are specialized epidermal cells located on aerial parts of plants and are associated
with a wide array of biological processes. Trichomes protect plants from adverse conditions
including UV light and herbivore attack and are also an important source of a number of
phytochemicals. The simple unicellular trichomes of Arabidopsis serve as an excellent
model to study molecular mechanism of cell differentiation and pattern formation in
plants. The emerging picture suggests that the developmental process is controlled by a
transcriptional network involving three major groups of transcription factors (TFs): the R2R3
MYB, basic helixloop-helix (bHLH), and WD40 repeat (WDR) protein. These regulatory
proteins form a trimeric activator complex that positively regulates trichome development.
The single repeat R3 MYBs act as negative regulators of trichome development. They
compete with the R2R3 MYBs to bind the bHLH factor and form a repressor complex. In
addition to activatorrepressor mechanism, a depletion mechanism may operate in parallel
during trichome development. In this mechanism, the bHLH factor traps the WDR protein
which results in depletion of WDR protein in neighboring cells. Consequently, the cells
with high levels of bHLH and WDR proteins are developed into trichomes. A group of
C2H2 zinc finger TFs has also been implicated in trichome development. Phytohormones,
including gibberellins and jasmonic acid, play significant roles in this developmental
process. Recently, microRNAs have been shown to be involved in trichome development.
Furthermore, it has been demonstrated that the activities of the key regulatory proteins
involved in trichome development are controlled by the 26S/ubiquitin proteasome system
(UPS), highlighting the complexity of the regulatory network controlling this developmental
process. To complement several excellent recent relevant reviews, this review focuses on
the transcriptional network and hormonal interplay controlling trichome development in
Arabidopsis.
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number gradually decreases on the main inflorescence stem and

Trichomes are epidermal protuberances that, depending on
species, are located on the aerial parts of plants such as the leaves,
stems, petioles, petals, and seed coat. They are generally clas-
sified into two types: simple, or non-glandular, and glandular
secreting trichomes (GSTs; Wagner etal., 2004). Trichomes play
an important role in plant growth and development by protecting
them from UV light, insect predation, and excess transpiration.
The phytochemicals secreted by GSTs provide protection against
pathogens and pests, and also attract pollinators (Wagner, 1991;
Wagner et al., 2004; Schilmiller etal., 2008). GSTs can also be con-
sidered “chemical factories” as they synthesize and secrete many
economically important compounds (Schilmiller et al., 2008). The
unicellular non-glandular trichomes of Arabidopsis serve as an
excellent experimental system to study molecular mechanism of
cell differentiation and pattern formation in plants.

The production and distribution of trichomes is spatially and
temporally controlled. During the early vegetative phase, tri-
chomes are present only on the adaxial side of the rosette leaves,
whereas they are found on both adaxial and abaxial surfaces in the
adultvegetative phase. During the reproductive stage, the trichome

flowers (Telfer etal., 1997). Trichomes originate from the proto-
dermal cells of the developing leaf primordia. The protodermal
cells destined to become trichomes cease to divide and enter an
endoreduplication cycle in which DNA replication continues in
the absence of nuclear and cellular division. The mature trichome
has a stalk with two to three branches and an average DNA content
of 32C, suggesting that trichome cells undergo at least four rounds
of endoreduplication during development (Hulskamp et al., 1994;
Schnittger and Hulskamp, 2002). Over 30 different genes are
known to control the developmental processes (Schellmann and
Hulskamp, 2005). Extensive genetic and molecular analyses sug-
gest that a network of transcription factors (TFs), belonging to
three major groups: the R2R3 MYBs, the basic helix-loop-helix
(bHLH) factors, and the WD40 repeat (WDR) protein, plays a
crucial role in trichome development. These three groups of TFs
form a trimeric activator complex, MYB-bHLH-WDR (MBW)
that positively regulates the expression of downstream targets,
which, in turn, induces trichome formation. The single repeat R3
MYBs act as negative regulators of trichome development. They
compete with the R2R3 MYB to bind the bHLH factors and form
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a repressor complex (Serna and Martin, 2006; Ishida etal., 2008;
Yang and Ye, 2013; Wang and Chen, 2014). Additionally, a group of
C2H2 zinc finger TFs has been implicated in trichome formation
on inflorescence stems and flowers in Arabidopsis (Gan et al., 20006,
2007a; Zhou etal., 2011, 2013).

Phytohormones, including gibberellins (GA), cytokinins(CK),
and jasmonic acids (JA), are involved in numerous developmental
processes in plants. These phytohormones also play a crucial role
in trichome development in Arabidopsis (Chien and Sussex, 1996;
Perazza et al., 1998; Dill and Sun, 2001; Traw and Bergelson, 2003;
Gan etal., 2007a,b; Maes et al., 2008; Yoshida etal., 2009; Qi etal.,
2011, 2014). In Arabidopsis, microRNAs have been shown to be
involved in trichome development by controlling the expression of
key regulatory genes (Yu etal., 2010). Recently, a posttranslational
control mechanism has been implicated in trichome develop-
ment (Patra etal., 2013a,b). Here, we focus on transcriptional
regulatory network involved in the development of Arabidopsis
trichomes. Furthermore, we discuss the influence of different phy-
tohormones and their interactions on gene expression affecting
trichome formation. The role of miRNA and 26S/ubiquitin pro-
teasome system (UPS) in trichome development is also briefly
discussed.

TRANSCRIPTION FACTOR COMPLEX IN TRICHOME
DEVELOPMENT

In Arabidopsis, trichome development is regulated by a tran-
scriptional network involving several groups of TFs, namely,
the MYB, bHLH, WDR, and C2H2 zinc finger proteins. The
R2R3 MYB family in Arabidopsis is comprised of 126 mem-
bers. Based on the conservation of the DNA binding MYB
domain and the amino acid motifs in C-terminal domain, the
R2R3 MYBs are divided into 25 sub-groups (Stracke etal,
2001; Dubos etal., 2010). The R2R3 MYBs belonging to sub-
group 15, MYBO/GLABROUSI1 (GL1) and AtMYB23/MYB23, are
involved in trichome development (Oppenheimer etal., 1991;
Kirik etal., 2001). These two proteins are functionally equivalent
during trichome initiation but not during trichome branching
(Kirik etal., 2005). Recently, a newly characterized R2R3MYB,
AtMYB82, that does not belong to sub-group 15, has also been
shown to regulate trichome development (Liang etal., 2014).
Expression of AtMYB82 under the control of the GLI pro-
moter complements the trichome defect of the gl mutant,
suggesting that both GL1 and AtMYB2 are functionally equiva-
lent.

The bHLH TF family is one of the largest known groups of TFs
in Arabidopsis with more than 160 members divided into 12 sub-
groups (Heim etal., 2003). GLABROUS3 (GL3) and ENHANCER
OF GLABROUS3 (EGL3), members of subgroup IIIf, are involved
in trichome development in a partially redundant manner (Payne
etal., 2000; Zhang etal., 2003). Mutation in the GL3 locus results
in fewer trichomes and reduced branching. The nuclei in gI3-1
mutants undergo three, rather than four, rounds of endoredu-
plication, and this correlates with reduced trichome branching
observed in this mutant. The EGL3 locus has a moderate effect
on trichome number. However, g3 egl3 double mutants have a
glabrous phenotype. In addition to GL3 and EGL3, TRANSPAR-
ENT TESTA 8 (TT8) and AtMYCI1, other members of the bPHLH

subgroup IIIf, have also been shown to affect trichome develop-
ment (Maes etal., 2008; Symonds etal., 2011; Zhao etal., 2012).
TT8 controls anthocyanin and proanthocyanidin (PA) biosynthe-
sis in vegetative tissues and the seed coat (Nesi et al., 2000; Baudry
etal., 2004). Maes etal. (2008) have demonstrated that TT8 also
controls trichome development on leaf margins in Arabidopsis.
AtMYCI mutants have less trichomes, compared with the wild
type, indicating AtMYC1 acts as a positive regulator of trichome
initiation (Zhao etal., 2012).

WD40 repeat proteins contain highly conserved 40—-43 amino
acid tandem repeats usually ending with Trp-Asp (WD). They are
involved in the regulation of a number of processes, including
cell cycle, cell fate determination, and cell signaling (Neer etal.,
1994). In Arabidopsis, the WDR gene, TRANSPARENT TESTA
GLABRA 1 (TTGI), is a single copy gene (Walker etal., 1999).
The ttgl mutant has pleiotropic phenotype, which is glabrous and
deficient in anthocyanin accumulation (Walker etal., 1999).

In addition to the R2R3 MYBs, a group of seven R3 MYBs, that
include TRIPTYCHON (TRY; Schnittger etal., 1999; Schellmann
etal., 2002), CAPRICE (CPC; Wada et al., 1997), ENHANCER OF
TRY, and CPC 1 (ETC1, ETC2 and ETC3; Kirik etal., 2004a,b;
Wester etal., 2009), and TRICHOMELESS 1 (TCL1 and TCL2;
Wang etal., 2007; Gan etal., 2011), are also involved in trichome
development. Analyses of loss-of-function mutants reveal that
these R3 MYBs act as negative regulators. Loss-of-function muta-
tion in CPC causes increased trichome density (Schellmann etal.,
2002) whereas mutation in TRY results in a trichome clustering
phenotype (Schnittger et al., 1999; Schellmann et al., 2002). Muta-
tion in ETCI does not dramatically affect the trichome phenotype
whereas mutation in ETC2 or ETC3 results in increased trichome
numbers. The higher order ETC mutants (etcl etc3 and etcl etc2
etc3) exhibit significantly higher numbers of trichome compared
to the respective single or double mutants, suggesting a redundant
function by these regulators in trichome development (Kirik et al.,
2004a,b; Wester etal., 2009). Loss-of-function mutations in the
TCL1 or TCL2locus result in ectopic trichome formation on inflo-
rescence stems and pedicels (Wang etal., 2007; Gan etal., 2011).
The number of trichomes on inflorescence stems and pedicels
increase significantly in the cpc tclI double mutant. The higher
order cpc etcl etc3 tcll quadruple mutant, exhibits more trichomes
on internodes and pedicels, compared to the tclI or cpc tcll double
mutant, suggesting a role of CPC, ETC1 and ETC3 in trichome
formation on inflorescence stems and pedicels (Wang et al., 2007,
2008).

The MYB (GL1)-bHLH (GL3/EGL3)-WDR (TTGI1) proteins
form a trimeric MBW complex that activates the expression of the
homeodomain protein, GLABROUS2 (GL2; Rerie etal., 1994),
which, in turn, induces trichome formation. GL3 contains three
different protein-protein interaction domains: the N-terminal
MYB-interacting region (amino acid 1-97) that interacts with
GL1/CPC/TRY, the middle portion that includes the transacti-
vation domain (amino acid 212-401) interacting with TTG1, and
the C-terminal bHLH and ACT-like domain (amino acid 400-
637) that homo/heterodimerize (Payne etal., 2000; Zhang etal.,
2003). Recent studies demonstrate that the C-terminal domain
of GL3/EGL3 also interacts with a number of factors involved
in phytohormone signaling and protein degradation (Qi etal,
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2011,2014; Patra etal., 2013b). The MYB TFs contain a conserved
amino acid signature motif, [D/E]Lx, [R/K]x3LxsLx3R, that is cru-
cial for interaction with the bHLH proteins (Zimmermann etal.,
2004). Physical interaction between GL1 and TTGI has not been
demonstrated. These findings suggest that the bHLH factors act
as docking sites for a number of regulatory proteins, including
the MYB and WDR proteins in the MBW complex. AtMYCI, like
GL3/EGL3, has also been shown to interact with GL1 and TTGI,
but does not dimerize. An arginine (Argl173) residue in AtMYCl is
found to be critical for its interaction with GL1. This Arg residue
is conserved in GL3 and EGL3, and is essential for interaction with
MYB partners (Zhao etal., 2012). The R3 MYBs typically lack the
activation domain and compete with the R2R3 MYB, GL1, to bind
GL3/EGL3, and form a repressor complex, thereby affecting the
expression of downstream targets. There is a marked difference
in the ability of these single repeat MYBs to disrupt the GL1-GL3
interaction. Using yeast three hybrid assay, CPC has been demon-
strated as the most potent inhibitor of this activation complex,
followed by ETC1, TRY, ETC2, and ETC3 (Wester et al., 2009). In
a protoplast assay, TCL1 has been shown to be stronger than CPC
in binding to GL3 (Wang etal., 2008). Using YFP-tagged CPC
and ETC3, it has been demonstrated that these RAMYBs move
from cell-to-cell and the strong binding of CPC to GL3 affects
the mobility of CPC (Wester et al., 2009). Although the cell-to-cell
movement signature motif (WxM) is conserved in all RAMYBs
(Wang and Chen, 2014), the movement of TCL1 has yet to be
experimentally demonstrated. Whether the strong interaction of
TCL1 with GL3 affects its movement and biological activity still
remains to be elucidated.

TRICHOMELESS 1 binds the GLI promoter in a chromatin
immunoprecipitation (ChIP) assay and negatively regulates GLI
expression (Wang etal., 2007). TCL1 probably acts as a negative
regulator of trichome development by affecting the expression of
GL1I, as well as competing with GL1 for binding to GL3. Although
the expression of most single repeat MYBs appears to be regulated
by the MBW complex (Morohashi etal., 2007; Morohashi and
Grotewold, 2009), it is unclear whether MBW also controls TCL1
(Wang et al., 2007; Wang and Chen, 2014).

The C2H2 zinc finger proteins constitute one of the largest
families of regulatory proteins, with 176 members in Arabidopsis,
and are involved in numerous developmental and physiolog-
ical processes in plants (Englbrecht etal., 2004). GLABROUS
INFLORESCENCE STEMS (GIS), GIS2, ZINC FINGER PRO-
TEIN 8 (ZFP8; Gan etal., 2006, 2007a), ZFP5 (Zhou etal.,,
2011, 2012), and ZFP6 (Zhou etal., 2013), which encode C2H2
zinc finger TFs, are involved in trichome formation in inflo-
rescence stems and floral organs. Gene expression analyses
of knockout mutants reveal a transcriptional hierarchy with
ZFP6 acting upstream of ZFP5 which regulates the expres-
sion of GIS, GIS2, and ZFP8. GL1 and GL3, key TFs in the
MBW complex, function further downstream of GIS2 and ZFP8
(Zhou etal., 2013).

Collectively, these findings suggest that a regulatory loop
involving a group of activators and repressors fine tunes the expres-
sion of downstream gene targets and ultimately trichome forma-
tion. The activator complex (GL3/EGL3-GL1-TTG1) induces the
expression of genes encoding the repressors (TRY/CPC) which

can move into neighboring cells to form a repressor complex
(GL3/EGL3-CPC/TRY-TTGI) and inhibit function of the activa-
tors. In addition to an activator—repressor mechanism, a depletion
mechanism has also been proposed to operate, in parallel, during
trichome development (Bouyer et al., 2008; Balkunde etal., 2011).
In the depletion process, GL3 traps TTGI, resulting in deple-
tion of TTGI protein in neighboring cells. Consequently, cells
with high levels of GL3 and TTG1 proteins are developed into
trichomes. The depletion model is derived from the following
findings: (a) TTG1 protein moves between cells, (b) TTG1 protein
is preferentially accumulated in trichome initials and depleted in
surrounding cells, and (c) depletion of TTG1 protein in neighbor-
ing cells, and its accumulation in trichome initials, is lost in the
¢I3 mutant. Supporting this model, Balkunde etal. (2011) show
that GL3 controls TTG1 movement, and interaction between GL3
and TTGI is necessary for intracellular movement and epidermal
distribution.

PHYTOHORMONES AND TRICHOME DEVELOPMENT
Phytohormones, including GA, JA, and CK, play pivotal roles in
controlling a wide array of biological processes in plants. Accu-
mulating evidences suggest that these phytohormones are also
crucial in trichome development. Here, we discuss the influence of
different phytohormones and underlying molecular mechanisms,
which control trichome formation in Arabidopsis.

Gibberellin is known to regulate a number of developmen-
tal processes in plants including seed germination, hypocotyl
elongation, flowering, and trichome development. Evidence for
the involvement of GA in trichome development comes from
the analyses of several mutants in GA biosynthesis and signal-
ing pathways in Arabidopsis. The GA biosynthesis mutant gal-3
has completely glabrous leaves, and application of exogenous
GA to these plants restores trichome development. Additionally,
GA stimulates the expression of GLI, and relative to wild type
plants, the gal-3 mutant contains less GLI transcripts (Perazza
etal., 1998). SPINDLY (SPY) is a repressor of GA signaling in
Arabidopsis. Mutation in the SPY locus results in increased tri-
chome formation (Chien and Sussex, 1996; Perazza etal., 1998).
The Arabidopsis DELLA proteins are inhibitors of GA signal-
ing and encoded by a family of five genes: GIBBERELLIC ACID
INSENSITIVE (GAI), REPRESSOR OF gal-3 (RGA), and three
RGA-LIKE genes (RGLI, RGL2, and RGL3). Among the five
DELLA proteins, RGA, and GAI play significant roles in trichome
formation. Mutations in RGA and GAI restore trichome initia-
tion in the gal-3 mutant (Dill and Sun, 2001). Consistent with
this, the expressions of several trichome regulators, including GL1
and GL3, are up-regulated in DELLA-defective gal-3 mutants,
whereas conditional over-expression of RGA-GR (RGA fused to
rat glucocorticoid receptor) in these mutants reduces the expres-
sion of these trichome regulators (Gan etal., 2007b). Maes etal.
(2008) have demonstrated that GA stimulates trichome forma-
tion through up-regulation of key TF genes. Expression of GLI,
MYB23, GL3 and EGL3 are induced, whereas expression of TRY,
ETCI, and ETC2 are reduced, in response to GA treatment. TTGI
expression is not significantly affected following GA treatment
(Maes etal., 2008). Taken together, these findings suggest that
GA regulates trichome formation by modulating the expression
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of key regulatory genes. These conclusions are further substan-
tiated by the elegant demonstrations that individual TFs in the
MBW complex are direct targets of DELLA proteins (Qi etal.,
2014). RGA or RGL2 physically interact with GL3, EGL3, and
GL1 to repress the transcriptional function of the MBW complex.
Furthermore, analysis of the DELLA mutant, penta (gai-t6 rga-t2
rgll-1 rgl2-1 wild type for RGL3), gI3 egl3 double mutant, and
penta gl3 egl3 mutants, suggest that the MBW complex acts down-
stream of DELLA proteins. Based on these findings, it is proposed
that upon perception of the GA signal, protein—protein interac-
tions between DELLA-GL1/GL3/EGL3 are disrupted as DELLA
proteins are recruited to the SCFSY complex, and subsequently
degraded by the 26S proteasome system. GL3, EGL3, and GL1
are consequently released to form a complex with TTG1 and acti-
vate the expression of GL2, which, in turn, mediates trichome
formation.

Recent studies suggest that TFs other than MYB and bHLH
proteins, also operate in the GA signaling pathway to regulate
trichome development in inflorescence stems and flowers. The
expression of C2H2 zinc finger TF genes, GIS, GIS2, ZFPS8, ZFP5,
and ZFP6, is stimulated in response to exogenous application of
GA (Gan etal., 2006, 2007a,b; Zhou etal., 2013).

Jasmonic acid and its derivatives, collectively known as jas-
monates (JAs), act as key signaling molecules that regulate
numerous developmental processes in plants. JA biosynthesis is
triggered in response to a variety of signals including wounding.
Traw and Bergelson (2003) have shown that mechanical wounding
and JA significantly induce trichome development in plants. The
Arabidopsis aos mutant, deficient in JA biosynthesis due to a knock-
out mutation in the ALLENE OXIDE SYNTHASE (AOS) gene,
produces less trichomes compared to wild type plants and this
defect can be rescued by JA treatment (Yoshida et al., 2009). Maes
etal. (2008) have also demonstrated that JA stimulates trichome
development by modulating the expression of several regulatory
genes. In Arabidopsis, the F-box protein CORONATINE INSEN-
TIVE1 (COI1), along with ASK1/ASK2, Cullinl, and Rbx1, form
the SCF“C! complex that mediates JA signal transduction (Xie
etal., 1998; Devoto etal., 2002). JA induction of trichome forma-
tion is attenuated in the coil-2 mutant, which is defective in JA
signaling and produces less trichomes compared with wild type
plants (Qi etal,, 2011). Collectively, these findings show that JA
plays an important role in trichome formation. Recent findings
by Qi etal. (2011) elucidate the molecular mechanism under-
lying this process. They demonstrate that the MBW complex
is involved in JA-induced trichome development in Arabidop-
sis. The expression of GL3 and GLI is significantly induced in
response to JA treatment in wild type plant, but severely weakened
in the coil-2 mutant. Moreover, GL3 and GL1 physically inter-
act with the JA-ZIM domain (JAZ) proteins in yeast, as well as
plant cells. The JAZ proteins are known negative regulators of JA
signaling. They are recruited to the SCF“®! complex upon per-
ception of the JA signal and are subsequently degraded by the
26S proteasome system (Chini etal., 2007; Thines etal., 2007).
These observations suggest that, in the absence of JA, the JAZ
proteins bind to GL3, EGL3, and GLI and inhibit the forma-
tion of the MBW complex. Upon perception of the JA signal,
the JAZ proteins are degraded by the 26S proteasome system,

thereby releasing GL3, EGL3, and GL1 to form the complex with
TTG1, and activate the downstream targets to promote trichome
formation.

Cytokinin (6-benzylaminopurine, BAP) acts as a positive reg-
ulator of trichome development in Arabidopsis (Maes et al., 2008).
Plants treated with BAP produce more trichomes per leaf; how-
ever, the trichomes are shorter and nuclear DNA content is less
than in untreated plants, indicating that BAP affects endoredu-
plication in trichomes. The expression of GLI, MYB23, GL3, and
EGLS3, is also stimulated following BAP treatment. The expression
of GIS2, ZFP5, ZFP8, and ZFP6, that regulate trichome formation
on inflorescence stems, is also influenced by cytokinins (Gan et al.,
2007a; Zhou etal., 2013).

Trichome formation is also affected by brassinosteroids (BR),
ethylene (ET), and salicylic acid (SA). The Arabidopsis bls] mutant,
impaired in BR response, develops fewer trichomes on both abaxial
and adaxial surfaces of the leaf, indicating a possible involve-
ment of BR in trichome development (Laxmi etal., 2004). The
ET receptor mutant etr2-3, has completely unbranched trichomes.
Through epistatic and gene expression analysis, it has been shown
that the ET signaling cascade involves CHROMATIN ASSEM-
BLY FACTOR 1 (CAF1) and TRY to control trichome branching,
and is independent of the GL3, GL2 pathway (Plett etal., 2009).
Application of SA significantly reduced the number and density of
trichomes in different cultivars of Arabidopsis, indicating its nega-
tive regulatory role in trichome development (Traw and Bergelson,
2003).

PHYTOHOMONE CROSS-TALK AND TRICHOME
DEVELOPMENT

Phytohormones are known to act synergistically as well as antag-
onistically to regulate different developmental processes in plants.
The antagonistic action of GA and JA regulate hypocotyl elonga-
tion, root growth, and flowering (Hou et al., 2010,2013; Yang et al.,
2012), whereas their synergistic action regulates stamen develop-
ment and trichome formation (Traw and Bergelson, 2003; Song
etal., 2013; Qi etal., 2014). Trichome density and number are sig-
nificantly higher in plants treated with a combination of GA and JA
compared with plants treated with only JA. Consistent with this,
the expression of GL2 and MYB23 are found to be significantly
up-regulated by combined treatment of GA and JA. Moreover, the
GA biosynthetic inhibitor, paclobutrazol, represses JA-induced tri-
chome formation and expression of GL2 and MYB23. JA-induced
trichome formation is also attenuated in the GA biosynthesis
mutant gal-3. Similarly, the coil-1 mutant, defective in JA sig-
naling, inhibits GA-induced trichome formation. Recent studies
by Qi etal. (2014) reveal the molecular mechanism underlying
the GA-JA synergy in trichome development. Both JAZ and RGA
(DELLA protein) bind to trichome regulators, GL3, EGL3, and
GL1. GA and/or JA signals control the level of these repressor
proteins via 26S proteasome-dependent proteolysis and maintain
the stable transcription of the activators that induce trichome
formation.

The positive regulatory role of GA and CK on trichome devel-
opment is well documented. A recently identified C2H2 zinc finger
TF, ZFP6, seems to function as an integrative hub of GA and CK
signals in promoting trichome formation in Arabidopsis. ZFP6
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expression is induced in response to GA and CK treatment. More-
over, GA- and CK-induced expression of the downstream targets
of ZFP6, ZFP5, ZFP8, and GL1, is significantly affected in zfp6
mutant (Zhou etal., 2013).

The negative cross-talk between JA and SA-dependent path-
ways in Arabidopsis is well documented. These phytohormones
act antagonistically to regulate trichome development. Arabidopsis
plants treated with a combination of JA and SA produce lower
numbers of trichomes compared with plants treated with JA alone
(Traw and Bergelson, 2003).

microRNA AND TRICHOME DEVELOPMENT

microRNAs (miRNAs) are small endogenous non-coding RNAs
of 20-22 nt in length and present in plants, animals, and proto-
zoa. miRNAs modulate the expression of their target genes at the
posttranscriptional level and thus control many aspects of cellu-
lar functions (Voinnet, 2009; Fabian etal., 2010). Recent studies
indicate that miRNAs regulate trichome development by mod-
ulating the expression of SQUAMOSA PROMOTER BINDING
PROTEIN LIKE (SPL) genes (Yu etal., 2010). SPLs are a group of
plant-specific TFs that share a highly conserved SBP DNA-binding
domain first identified in a protein that binds to the promoter of
the SQUAMOSA gene of Antirrhinum majus (Cardon etal., 1999).
SPLs regulate numerous fundamental aspects of plant growth and
development, including phase transition, trichome distribution
and flowering (Chen etal., 2010). In Arabidopsis, SPLs are nega-
tive regulators of trichome development in inflorescence stem and
floral organs. The SPL gene family has 17 members, 10 of which
are targeted by miRNA156 (Rhoades etal., 2002). Expression of
miRNA156 and SPLs (SPL3/SPL9) are temporally regulated (Wu
and Poethig, 2006; Yu et al., 2010). miRNA156 levels are highest in
young plants and decline as the plant ages. On the contrary, expres-
sion of SPLs, targets of miRNA156, is low in young plants and
increase gradually during the reproductive stage. The expression
pattern fits well with the gradual loss of trichomes on stem and
floral organs. Consistent with this, plants expressing a mimicry
target of miR156 accumulate significant SPL transcripts and show
areduction in trichome density on stems. Similar results are found
when miR156-resistant forms of SPL3, SPL10, SPL13, and SPL9
are over-expressed in plants. By comparison, transgenic Arabidop-
sis plants constitutively expressing miRNA156 produce ectopic
trichomes on stem and floral organs. Moreover, SPL9 directly
binds to the promoters of TCLI and TRY, negative regulators of
trichome development, and activates their expression in a GL1-
independent manner, leading to reduced trichome formation (Yu
etal., 2010). Together, these observations suggest that the tempo-
ral control of trichome development in Arabidopsis is regulated by
the miR156-targeted SPL TFs.

UBIQUITIN/26S PROTEASOME SYSTEM AND TRICHOME
DEVELOPMENT

The 26S proteasome is a multi-subunit ATP-dependent protease
complex assembled from two particles: the 20S core particle (CP)
and the 19S regulatory particle (RP; Zwickl etal., 1999). The
UPS-dependent proteolysis is the most elaborate and complex
regulatory mechanism controlling activities of short-lived pro-
teins in eukaryotes. Over 1300 genes in the Arabidopsis genome

are associated with the 26S proteasome pathway (Vierstra, 2003).
Loss-of-function mutations in one of the RP components, RPT2a,
result in several physiological abnormalities including aberrant
trichome development. The rpt2a mutant has larger trichomes
with increased branch number. Additionally, trichomes of rpt2a
plants have larger nuclei compared with the wild type, suggesting
RPT2a is involved in regulation of endoreduplication in trichomes
(Sonoda etal., 2009).

26S/ubiquitin proteasome system comprises E1, E2, and E3
enzymes that act coordinately to conjugate ubiquitin moieties to
the target proteins and pave the way for subsequent degradation
by the 26S proteasome. E3 enzymes determine substrate speci-
ficity by recognizing a single or small group of proteins and in
plants, are divided into two subgroups, RING/U boxes and HECT
ubiquitin ligases (Smalle and Vierstra, 2004). In Arabidopsis, muta-
tion in the UPL3/KAK locus, which encodes a HECT domain E3
ligase, results in trichomes with increased branch number and
higher nuclear DNA content, suggesting that UPL3 regulates of
ploidy level in trichomes by controlling the activities of proteins
that normally promote the endoreduplication cycle (Downes et al.,
2003; EI Refy etal., 2003). GL3 is a potential target of UPL3
because it is a positive regulator of endoreduplication in tri-
chomes, and the supernumerary trichomes in upl3/kak seedlings
is suppressed in kak gI3 double mutant background (Sako etal.,
2010). Our recent demonstration, that GL3 and EGL3 are short-
lived proteins, supports the hypothesis that GL3/EGL3 are targets
of UPL3. UPL3 physically interacts with GL3 and EGL3, and
mediates degradation via UPS (Patra etal., 2013b). Additionally,
we have also shown that TTG1 and TT8, the regulator of tri-
chome formation on leaf margin, are targets of UPS. However,
the specific E3 ligase that mediates this degradation remains to be
identified (Patra etal., 2013a). Endoreduplication cycles in Ara-
bidopsis trichomes are also controlled by another class of ubiquitin
ligases, the RBX1-containing Cullin-RING E3 ubiquitin ligases
(CRLs). Of five known cullin genes, CULI, CUL3A, and CUL4 are
strongly expressed in young trichomes. CULI and CUL3A loss-of-
function mutants are phenotypically indistinguishable from wild
type. However, a knock-down line of CUL4 produces small tri-
chomes with less nuclear DNA content. The CUL4-CRL complex
modulates cyclin-dependent kinase (CDK) activity presumably by
mediating the degradation of a class of CDK inhibitors during
endoreduplication cycles (Roodbarkelari etal., 2010).

CONCLUDING REMARKS

During the past decade, substantial and significant progress has
been made in delineating the elaborate gene regulatory network
that controls trichome development in Arabidopsis. Multiple lines
of evidence suggest that a number of transcriptional activators
and repressors act in concert to fine tune the spatial and temporal
distribution of trichomes. Additionally, phytohormones such as
JA, GA, and CK, act synergistically or antagonistically to modulate
the expression of genes encoding these regulators. Recent findings,
pertaining to miRNAs and 26S/UPS-dependent regulation of TFs
in trichome development, highlight the complexity of the regula-
tory network. Whether other regulators such as GL1/MYB23 and
R3 MYBs are targets of miRNA and/or 265/UPS remains to be
elucidated.
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Our current knowledge about the gene regulatory network
is largely limited to the unicellular non-glandular trichomes in
the model plant, Arabidopsis. Very little is known about the
regulatory network that controls the development of glandular
secretory trichomes. This type of trichomes is found in many
plants, including tobacco, tomato, basil, and mint, and is thus an
important source of phytochemicals. Over-expression of GLI in
tobacco does not augment trichome formation, suggesting that
different regulatory mechanisms control trichome development
in Arabidopsis and tobacco (Payne etal., 1999). Recently, an inte-
grated genomic database, TrichOME (www.planttrichome.org),
has been developed. The database hosts more than a million
EST sequences from both trichome and corresponding non-
trichome tissues from 13 species, including tobacco, basil, and
mint, and provides a potential source for genes involved in
development of glandular and non-glandular trichomes (Dai
etal., 2010). Understanding the regulatory network that con-
trols the development of multicellular trichomes will aid our
efforts to engineer trichomes to produce commercially important
phytochemicals.
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