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Plants imperatively have to cope with adverse conditions owing to
their lack of mobility and to the high amounts of reactive oxygen
species (ROS) generated from both respiration and photosyn-
thetic metabolism. Although thiol redox homeostasis in plants
is mainly preserved by the cellular glutathione pool, specific
strategies have been adopted by the plant kingdom during evo-
lution to manage these “extra” pro-oxidative conditions. Unlike
human or yeast, plants generally possess a higher number of
genes coding for antioxidant proteins, including protein fami-
lies responsible of dithiol/disulfide exchange reactions. During
the last decades, redox-dependent post-translational modifica-
tions of proteins proved to be pivotal to many cellular functions.
In particular, this is critically important under some situations of
environmental constraints taking into account the alterations and
fine adjustment of the cellular redox status occurring during and
after any biotic or abiotic stresses.

Indeed, thiol groups of cysteinyl residues are highly sensitive
to oxidation which might critically perturb cellular homeostasis.
Members of the thioredoxin superfamily are key proteins involved
in the regulation of cysteine/protein redox state. They share two
common and well-known features: (i) the presence of an active
center containing at least one catalytic cysteine residue, and
(ii) a highly conserved 3D-structure, the so-called thioredoxin
fold, which consists of a four-stranded anti-parallel β-sheet sur-
rounded by three α-helices. Key members of this super family are
thioredoxins (TRX) and glutaredoxins (GRX). Representatives of
both subgroups are distributed in most cellular compartments
and contain at least one TRX motif in their structures. While
TRXs are generally reduced by thioredoxin reductases (TR), the
reduction of GRXs depends on reduced glutathione (GSH).

The 19 reports of this Research Topic provide timely overviews
and new insights into redox regulation, focusing on both TR/TRX
and GSH/GRX reduction systems in plants. The biochemical
characteristics of these systems as well as their target proteins
and functions in metabolic and signaling pathways are discussed.
Several contributions to this Research Topic deal with the role

of TRX systems in plastid metabolism. Michelet et al. (2013)
summarize the seminal contributions reported in the 70s and 80s
indicating that several Calvin-Benson cycle enzymes are regulated
by the ferredoxin/ferredoxin-thioredoxin-reductase/thioredoxin
system. Besides this, based on the observation that multiple redox
post-translational modifications including glutathionylation and
nitrosylation may affect a single protein, Michelet and collabora-
tors propose that these multiple layers of redox regulation could
serve for the fine-tuning of the Calvin-Benson cycle enzyme activ-
ities in response to changing conditions. Serrato et al. (2013)
reviewed the current knowledge on the functions of plastidial
TRXs and discuss their emerging role in non-photosynthetic
organs. By analyzing transplastomic tobacco plants overexpress-
ing plastidial TRXs f or m, Rey et al. (2013) show that these
types of TRXs fulfill distinct physiological functions and propose
a role of TRXm in linking photosynthetic activity, redox home-
ostasis and antioxidant mechanisms in the chloroplast. In another
report, López-Calcagno et al. (2014) discuss the possibility that
CP12 proteins are part of a redox-mediated metabolic switch in
response to rapid environmental changes, in addition to their
classical regulatory role of the Calvin-Benson cycle.

Within the photosynthetic context, Karamoko et al. (2013)
propose that the enzymatically assisted sulfhydryl oxidation in
plant thylakoid lumen is required for the biogenesis of the energy-
transducing membrane systems associated to photosynthesis.
Their suggestions are based on both the existence of several lumi-
nal disulfide bond containing proteins in Arabidopsis, and on the
discovery of trans-thylakoid redox pathways controlling disulfide
bond formation and reduction.

In addition, the importance of NADPH thioredoxin reduc-
tase C (NTRC) in plastid redox regulation is also reported in
four articles. The paper by Puerto-Galán et al. (2013) discusses
the role of NTRC in the control of the overoxidation status
of chloroplast 2-Cys peroxiredoxins (2-Cys-PRX), thus having
a crucial function balancing the toxic and signaling activities
of hydrogen peroxide. Moreover, Richter and Grimm (2013)
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emphasize the relevant function of NTRC in conjunction with
the FTR/TRX pathway on the redox regulation of tetrapyrrole
biosynthesis. This pathway needs to be tightly regulated to adjust
chlorophyll content of photosynthetic cells and to avoid the accu-
mulation of chlorophyll biosynthesis intermediates, which may
cause oxidative damage. In support of the overarching signifi-
cance of redox regulation for chloroplast function and adaptation
to environmental changes, Chi et al. (2013) discuss the molecular
mechanisms and physiological significance of redox-dependent
structural changes observed for some proteins including tran-
scriptional factors and co-activators, which switch the chaperone
activity of these proteins. Finally, Toivola et al. (2013) report an
in vivo approach showing the positive effect of NTRC overexpres-
sion in plant performance.

The importance of redox regulation in plant mitochondria
is also highlighted in this Research Topic by Lázaro et al.
(2013). These authors update and discuss the complex antioxi-
dant systems of this organelle, including the complex thiol-based
TRX/PRX/Sulfiredoxin (SRX) system. Moreover, these authors
focus on the function of this system in the response of plants
to abiotic stresses and the regulation by redox post-translational
modifications.

Some aspects of the cytosolic redox regulation pathways have
also been developed in this Research Topic. Hara and Hisabori
(2013) analyzed the kinetics of interactions of a cytosolic TRX
h with selected target proteins using surface plasmon resonance.
The presented data reveal a stronger preference of TRX h for
an oxidized target, thus explaining the selective association of
TRX with oxidized proteins. Zaffagnini et al. (2013) review how
cysteine-based modifications of the plant cytosolic glyceraldehyde
phosphate dehydrogenase (GAPDH) provoke the inactivation of
classical enzymatic activity of this enzyme, but provide additional
non-metabolic functions in stress signaling pathways, similar to
those that have been identified in animal cells.

GRXs are oxidoreductases of the TRX family which display a
particularly rich diversity in higher plants. Beyond classification
in three main subgroups based on sequence and structural fea-
tures, Couturier et al. (2013) indicated that class I GRXs can be
subdivided into different groups which can be distinguished by
different biochemical and catalytic properties. The importance
of a GRX-dependent redox regulation is also evidenced here by
Sánchez-Riego et al. (2013) who demonstrate, by performing a
physiological and biochemical characterization of single, dou-
ble and triple grx mutants, that GRXs are essential for stress
adaptation in cyanobacteria. Finally, Knaff and Sutton (2013)
describe an interesting work about the use of GRX to initi-
ate a long-term educational project which will allow examining
the structural and biochemical changes in GRXs according to
single-point mutational replacements.

Glutathione is a key component in regulation and mainte-
nance of cellular thiol redox homeostasis. It also plays key roles in
different aspects of plant development. Here, Rahantaniaina et al.
(2013) provide an overview of the main pathways influencing the
glutathione redox status and their impact on signaling pathways
through regulation of protein thiol status. Schnaubelt et al. (2013)
examine the influence of glutathione in plant development and
stress tolerance in Arabidopsis. The data demonstrate that cellular

glutathione homeostasis influences the root architecture and the
leaf area under optimal and stress conditions. Another aspect
where glutathione and homoglutathione are crucial molecules
is nodule development and in the context of legume-rhizobium
mutualistic interactions. Indeed, these organs are peculiar due to
the formation of a bacteroid in which the oxygen-sensitive nitro-
genase reduces di-nitrogen to ammonia. However, the impor-
tance of other redox systems in this unique organ has been poorly
documented. Frendo et al. (2013) review the current knowledge
on the roles played by redox components in nitrogen-fixing sym-
bioses. Finally, Traverso et al. (2013) summarize the insights of
the precise involvement of thiol/disulfide-containing proteins at
different stages of the sexual plant reproduction, suggesting spe-
cific and critical involvement of thiol-based redox modifications
in different reproductive processes.
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