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When plants are threaten by microbial attacks or treated with elicitors, alkalization
of extracellular space is often induced and thus pH-dependent extracellular
peroxidase-mediated oxidative burst reportedly takes place, especially at the site of
microbial challenge. However, direct stimulus involved in activation of peroxidase-catalyzed
oxidative burst has not been identified to date. Here, we would like to propose a likely
role for free ferrous ion in reduction of ferric native peroxidase into ferrous enzyme
intermediate which readily produces superoxide anion via mechanism involving Compound
[ll, especially under alkaline condition, thus, possibly contributing to the plant defense
mechanism. Through spectroscopic and chemiluminescence (CL) analyses of reactions
catalyzed by horseradish peroxidase (HRP), the present study proposed that plant
peroxidase-catalyzed production of superoxide anion can be stimulated in the absence
of conventional peroxidase substrates but in the presence of free ferrous ion.
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INTRODUCTION

In plants, two major mechanisms leading to the production of
reactive oxygen species (ROS) involving either NADPH oxidases
or peroxidases (POXs) have been proposed (Yoshioka et al., 2008).
Events of plant defense against pathogenic microorganisms, rep-
resented by plant cellular perception of microbial molecules
contributing to so-called microbe-associated molecular patterns
(MAMPs) such as bacterial flagellin, referred to as pattern-
triggered immunity, reportedly trigger a rapid and transient accu-
mulation of ROS (O’Brien et al., 2012a). In Arabidopsis, molecular
evidence for involvement of two identified cell wall POXs, namely,
PRX33 and PRX34, in MAMPs-responsive apoplastic ROS gener-
ation has been reported (Bindschedler et al., 2006; O’Brien et al.,
2012a,b).

In fact, plants are rich sources of enzymes involved in produc-
tion and removal of ROS (Yoshioka et al., 2008). A Swiss group
of POX research specialists metaphorically described that plant
enzymes belonging to POXs (EC 1.11.1.7) display more functions
than a “Swiss army knife” (Passardi et al., 2005). As suggested,
highly diversified roles of plant POXs including regulation of
hydrogen peroxide (H,O;) level, oxidation of various substrates,
generation of ROS coupled to oxidation of aromatic monoamines
(AMAs) such as phenylethylamine (Kawano et al., 2000a,b) and
phenolics such as salicylic acid (SA) (Kawano et al., 2004; Kawano
and Bouteau, 2013) in living plants have been documented to
date. By using a variety of electron (e™)-donating substrates and
H,0,, the common e~ acceptor, plant POXs achieve a great deal
of oxidation reactions essential for the functions of living cells
(Kawano, 2003a). Through production of certain POX isoforms
at specific timing and localization, thus by properly and precisely

making use of a variety of plant POX functions, the growing
plants can respond to and combat a wide variety of stressful chal-
lenges with biotic or abiotic nature (Penel, 2000; Hiraga et al.,
2001).

As intensively discussed in the plant research community, oxi-
dation of phenolics is one of the key functions of POXs (Passardi
et al., 2005). It is widely accepted that, in the presence of H,O,
plant POXs can catalyze the generation of superoxide anion
radical (O57) upon oxidation of substrates, chiefly phenolics
(Kawano, 2003a; Yoshioka et al., 2008). Lower half of Figure 1A
summarizes the mode of O~ production via e~ acceptor-
dependently initiated conventional POX cycle enabling various
substrates (AH) such as SA and AMAs. Apart from such H,O,-
requiring reaction, plant POXs are also capable of O™ gener-
ation via e~ donor-dependently initiated and oxygen-requiring
cycle involving few known substrates such as indole-3-acetic
acid (IAA), the principal form of natural auxin in higher plants
(Gazarian and Lagrimini, 1998; Savitsky et al., 1999; Kawano
et al,, 2001). Therefore, the O5™ -generating reactions catalyzed
by plant POXs can be dissected into (i) the H;O,-dependent POX
cycle and (ii) H,O;-independent oxygenation cycle as illustrated
in Figure 1A. This model dissecting two distinct cycles initiated
by interaction of native POX with e~ acceptor or e~ donor, is
sometimes referred to as the hourglass model due to its shape
(Kawano, 2003a; Takayama et al., 2012; Kawano and Bouteau,
2013).

We view here that the role of IAA in POX-catalyzed generation
of O3~ is one of effective e~ donors converting native enzyme into
ferrous intermediate in the oxygenation cycle (Figure 1A, upper
half). Idea on the IAA-dependent reduction of native plant POX
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FIGURE 1 | Effects of key substrates for plant POXs on the
inter-conversion of enzyme intermediates differed in redox-status. (A)
Summary of known reactions involving IAA, SA, and AMAs leading to
spectroscopic changes reflecting the presence of native ferric enzyme
(absorption peaks at 403, 500, and 639 nm), ferrous enzyme (absorption
maxima at 438 and 580 nm), Compound | (absorption maxima at 577, 622, and
650 nm), Compound Il (absorption maxima at 420, 527 and 556 nm) and
Compound Il (absorption maxima at 545 and 578 nm). In this article, ferrous
jon is proposed as the stimulus converting native enzyme to the ferrous
enzyme complex. (B) Effect of Fe2t on dissolved O,-dependent conversion of
native HRP into Compound Il. To the reaction mixture (final total volume,

400 l; prior to Fe supplementation, 383 ul) contained K-phosphate (256 mM,
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pH 7.0), HRP (15 wM), 17wl of 5 mM Fe?* (as FeSQy, final conc., 200 wM) was
added. Then sample was spectroscopically scanned within 1 min (immediate)
and at 15 and 30 min after addition of Fe. (C) Similarly to (B), to the reaction
mixture (final total volume, 1 ml; prior to Fe supplementation, 940 /)
containing K-phosphate (26 mM, pH 7.0) and HRP (15 wM) and presence of
native enzyme was spectroscopically confirmed (top). To the above reaction
mixture, Fe2t was added (40 ul of 5mM FeSQy; final conc., 200 wM), but only
after deoxygenation with N, gas (N2 bubbling) which was passed through
using the syringe needle for 15's (bottom). (D) The likely paths of Fe2*-induced
conversion of native HRP to Compound Il via of O3~ generating steps followed
by release of H,O2. Note that the O3~ -to-H, O, conversion can proceed without
enzyme at acidic condition and free Fe2+ may accelerate the processes.

to ferrous enzyme intermediate has been proposed by Smith et al.
(1982). The series of reactions triggered by IAA further proceeds
under the atmospheric condition rich in O, therefore, the ferrous
complex might be short-lived and readily converted to O,-bound

form of enzyme intermediate known as Compound III (CIII) in
which the state of heme iron can be described as O,-heme-Fe!l

OE_-heme-FeIII (Kawano et al., 2002a). Then, gradual decay of
this complex into native enzyme at heme-Fe!'! state accompanies
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the release of O3~ (Figure 1A) as confirmed with IAA-stimulated
horseradish peroxidase (HRP) using O3~ -specific chemilumines-
cence (CL) probe, Cypridina luciferin analog (CLA) (Kawano
etal., 2001).

Assuming that the hypothetical model mechanism proposed
in Figure 1A is correct, we should be able to screen or identify
some effective e~ donors from a variety of single e~ reducing
agents which target the native enzyme to trigger the onset of oxy-
genation cycle in plant POXs, eventually leading to a robust and
long-lasting burst of O5™ production. After testing a wide range
of chemicals, we observed that free ferrous ion (Fe?T) acts as a
novel inducer of O3~ production in aid of plant POX, possibly
by behaving as an effective e~ donor for Fe!!-to-Fe!! conversion
of heme in a model POX, HRP. The aim of the present article
is to share our novel finding on the Fe-driven O3~ production
mechanism involving HRP.

MATERIALS AND METHODS

CHEMICALS

Purified HRP was purchased from Sigma (St. Louis, MO., USA),
and used without further purification. CLA (2-methyl-6-phenyl-
3,7-dihydroimidazo[1,2-a]pyrazin-3-one), a chemiluminescent
probe for O™, was purchased from Tokyo Kasei Kogyo Co.
(Tokyo, Japan). Luminol, SA, TAA, metals, and other chemicals
except for enzyme were purchased from Wako Pure Chemical Co.
(Osaka, Japan). IAA (100 mM) was first dissolved in ethanol and
diluted to the desired concentrations with heated water (80°C).
Then IAA solution was kept on ice in darkness until used. Final
ethanol concentration in the reaction mixture was adjusted to be
0.1% (v/v).

SPECTROSCOPY

Concentration of HRP was determined spectroscopically by mea-
suring the concentration of heme (¢ 403 nm = 102 mM~l.em™)
(Gazaryan et al., 1996). Changes in absorption spectra of HRP
in 20 mM K-phosphate buffer (pH 7.0) were recorded on spec-
trophotometer (Shimadzu UV-1800, Kyoto, Japan) at room tem-
perature with a spectral bandwidth of 1.0 nm in a cuvette with
I-cm light path. Compounds II (CII) and CIII derived from
native HRP (7.5 wM) were determined spectroscopically.

CHEMILUMINESCENCE (CL) ANALYSIS

Generation of H;O; and O3 in the HRP reaction mixture were
monitored with H,O;-specific CL of luminol and O™ -specific
CL of CLA using a luminometer (Luminescensor PSN AB-2200-
R, Atto Corp., Tokyo, Japan) and expressed as relative lumi-
nescence units (rlu) as previously described for HRP-catalyzed
generation of ROS (Kawano et al., 2001).

RESULTS

PRELIMINARY SPECTROSCOPIC ANALYSES

Basically, formation of CII from native ferric POX in the conven-
tional peroxidase cycle requires the presence of H,O,, as we have
previously observed that addition of excess H,O, to HRP reac-
tion mixture readily results in transient formation of Compound
I (CI) followed by increase in CII without supplementation of any
additional molecules known as POX substrate such as phenolics

or amines (Kawano et al., 2002¢,d). However, we observed that
addition of Fe>* to HRP resulted in accumulation of CII without
addition of exogenous H,O, (Figure 1B), suggesting that H,O,
is formed after a series of reactions involving redox changes in
POX/Fe?* system. Interestingly, conversion of native HRP to CII
by Fe?t was completely inhibited by deoxygenating treatment
such as bubbling with N, gas (Figure 1C) and addition of sodium
dithionite (data not shown), indicating the involvement of molec-
ular oxygen at least at a certain step in the course of native-to-CI
conversion.

IRON-INDUCED GENERATION OF ROS
As expected from the behavior of Fe?t converting the native
enzyme to CII, release of H;O, could be detected in FeZt-added
HRP reaction mixture (Figure 2). Therefore, it is tempting to
conclude that Fe?*-dependently produced H,O; plays a key role
in conversion of native enzyme to CII via transient formation
of CL

Similarly to the profile of H,O,, robust production of O3~
was also observed after addition of Fe?* to HRP (Figure 3). Note
that the addition of Fe?* resulted in biphasic increase in CLA-
CL, consisting of an immediate short-lasting spike followed by
secondary but intense and long-lasting peak depending on the
concentration of Fe’t added. As far as we understand, the ini-
tial spikes sized similar to the water control are kinds of artifacts
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FIGURE 2 | Transient production of H,0; following addition of Fe?* to
HRP reaction mixture. Reaction mixture (0.2 ml) contained 26 mM
K-phosphate (pH 7.5 or 8.0), 1.5 wM HRE 10 wM luminol, and 50 uM FeSOQOy.
For comparison, 50 WM FeSO4 was added to the mixture lacking HRP (FeZt+
alone). The resultant H,O, might be used for further reactions converting
native enzyme to unstable Compound | and eventually to Compound II.
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FIGURE 3 | Fe?*-induced O3~ generation in HRP reaction mixture. (A)
Temporal changes in Fe?*-induced O3~ -dependent CLA-CL. (B) Effect of
FeZ* concentrations (as indicated) on the yield of CLA-CL summed up within
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300 after addition of Fe2t or control water. Bars, SD (n = 3). (C) Successive
addition of 50 WM FeZ*+ until CLA run out. Conditions: total volume, 0.2 ml;
K-phosphate, 25 mM (pH 7.0); HRR 1.5 wM; CLA, 10 uM (A,B), 40 uM (C).

by rapidly injecting the reagent or control water through a syringe
which rapidly causes the mixing of media and air (containing oxy-
gen). This type of spikes can be commonly observed for CLA-CL
monitoring as described in our previous studies (Monetti et al.,
2014). In fact, the increase higher than the level of water con-
trol could have been attributed to the action of Fe. Therefore,
there would be two modes of oxidative burst induced by ferrous
ion, one is rapidly induced by lower range of Fe>* concentrations
observed as the short-lasting increase in initial spike of CLA-CL,
and another follows the initial spike, gradually attaining much
higher peak level of CLA-CL by responding to relatively higher
range of Fe’* concentrations (Figure 3A).

Here, we emphasized the secondary peaks which last for more
than some minutes. Interestingly, depending on the concentra-
tions of Fe?t added to HRP, both the extent and duration of
oxidative burst largely varied. Furthermore, we observed that suc-
cessive additions of Fe?* (6 times an hour) repeatedly caused
the burst of O~ by HRP until the CL probe was completely
consumed (Figure 3C), suggesting that the enzyme has capacity
for continuous and robust oxidative burst if reducing agents are
continuously supplied.

As shown in Figure 4, both ferric and ferrous ions induce the
generation of O3~. However, the temporal profiles of ferric and
ferrous-induced O3~ generation largely differed, suggesting that
the modes of O5™ generation may also differ (at present, such dif-
ference is unknown). The Fe’"-induced O3~ generation last for

5-10 min while the Fe’* induces a short-lived spike of O3~ gen-
eration only. By comparing the yield of CLA-CL (within 300s),
the extent of Fe?*-induced O3~ generation is at 5-fold greater
level compared to the Fe’*-induced one (Figure 4B). Addition
of Fe?*/Fe>* mixture induced a compromised pattern of CLA-
CL (Figure 4A), with much higher yield of CLA-CL (Figure 4B).
These data are indicative of the potential impact of free iron ions
both at ferric and ferrous state may stimulate the oxidative burst
mediated by plant POX although we focus mostly on the action
of ferrous ion in the present study.

INVOLVEMENT OF 0 IN Fe2+-INDUCED HRP REACTION LEADING TO
03~ GENERATION

As the involvement of dissolved oxygen was suggested by pre-
liminary spectroscopic monitoring of N;-sensitive conversion of
Fe’*-treated native enzyme into CII, we examined the require-
ment for O, in Fe’"-induced HRP reaction leading to O3~
generation (Figure 5). The Fe?*-induced increase in CLA-CL was
effectively lowered or delayed by removal of dissolved oxygen
by N, bubbling and inhibited by addition of sodium dithionite
which is a convenient reagent that rapidly removes dissolved oxy-
gen. As the air diffuses back into the reaction mixture even after
replacement with N gas by bubbling, the state of inhibition due
to the lack of O; did not last long. On the other hand, chemically
performed deoxygenation by Na dithionite resulted in clear-cut
inhibition.
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FIGURE 4 | Effects of ferrous and ferric ions on induction of 03~
generation in HRP reaction mixture. (A) Temporal changes in

03~ -dependent CLA-CL following addition of 50 uM Fe ions. (B) Effect of
differently supplied Fe ions on the integral yield of CLA-CL (within 300 s) are
compared. Conditions: total volume, 0.2 ml; K-phosphate, 25 mM (pH 7.0);
HRP 1.5 uM; CLA, 4 pM.

Above data are in support of our working hypothesis that,
similarly to IAA-responsive mechanism, Fe’*-mediated conver-
sion of native POX into ferrous enzyme intermediate further
reacts with O to form catalytically inactive CIII which readily
dissociates and releases O3~ and native enzyme (Figure 1D).

EFFECT OF pH ON HRP-CATALYZED OXIDATIVE BURST

Effects of Fe?T (50 wM) on induction of O™ generation was
compared with two known inducers of POX-mediated oxidative
burst, namely, SA and IAA (each 50 wM) under neutral and alka-
line pH (pH 7.0 and 8.0; Figure 6). Among three O3~ inducers,
IAA was shown to be most active in induction of the spike of
O35~ while Fe?* was the only chemical active in stimulation of a

4000 rlu
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HRP

/

HRP + N, gas ——

1

Fe2*

HRP + Na dithionite

FIGURE 5 | Involvement of dissolved O2 on Fe?+-induced 03~
generation in HRP reaction mixture. Increase in CLA-CL induced by
50 uM Fe2* was inhibited by two distinct de-oxygenating treatments,
namely, by bubbling with N2 gas (30s) and addition of 20mM sodium
dithionite (sodium hydrosulfite). Conditions: total volume, 0.2ml;
K-phosphate, 26 mM (pH 7.0); HRP 1.5 uM; CLA, 4 M.

gradual and long-lasting mode of O3 production. As reported
(Kawano and Muto, 2000; Takayama et al., 2012), SA-induced
production of O3~ was not impressive in the absence of initial
H, 0, supplementation.

Despite of difference in the temporal profiles of induced O3~
generation, the cumulative yields of O3~ in response to Fe*™, SA,
and TAA under neutral condition (pH 7.0) were at similar level
(Figure 6C). It is noteworthy that the burst of Fe?*-stimulated
O~ generation drastically increased under alkaline condition
(pH 8.0) while SA and IAA showed no significant pH response
(Figures 6B,C). Effect of pH on the Fe*™-induced O3~ genera-
tion in HRP reaction mixture was further assessed by altering the
medium pH between pH 4.26 and 8.95 (Figure 7). In the alkaline
range (pH >7.0), the height of CLA-CL was shown to be dras-
tically elevated. However, integral yield of CLA-CL was slightly
lowered at highest pH examined as the pattern of O3~ generation
likely becomes spiky and less sustainable as pH elevated.

Above data suggested that HRP H,0O,-independently catalyzes
the production of O3~ from dissolve oxygen in the presence of
ferrous ion. This model is distinct from the previously known
mode of ROS production catalyzed by plant POXs. Therefore,
in the below section, we wish to review and compare the likely
mechanisms.

DISCUSSION

Interestingly, nitric oxygen (NO) is one of known agents that
bind and convert the ferric form of hemoproteins such as non-
symbiotic hemoglobin from Arabidopsis (Perazzolli et al., 2004)
into ferrous hemoproteins. In cases of plant POXs such as of soy-
bean, the consequence of exposure of native POX to gaseous NO
was accumulation of CII without exogenous supplementation of
H,0,, suggesting that protein is once converted to ferrous form
and eventually converted to and arrested as CII (Takayama et al.,
2012). Among the known intermediates of POX and hemopro-
teins, the intermediate with ferrous heme is the only form with
affinity to molecular oxygen; therefore, we should consider the
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FIGURE 6 | Effects of Fe2*, SA, and IAA on 03~ generation in HRP
reaction mixture at pH 7.0 and 8.0. Fe2t, SA, or IAA (each 50 uM) was
added to control buffer or HRP reaction mixture at pH 7.0 (A) and 8.0 (B).
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(C) Integral yields of CLA-CL induced by Fe2t, SA, and IAA under different pH
were compared. Error bats, SD (n = 3). Conditions: total volume, 0.2 ml;
K-phosphate, 25 mM (pH 7.0 or 8.0); HRR 1.5 uM; CLA, 4 uM.

series of steps converting the native POX into ferrous enzyme, and
involvement of dissolved oxygen, in order to obtain the CII.

By analogy to NO-responsive events, we attempted to propose
a working hypothesis explaining the paths of reactions Fe?*-
dependently converting the native POX into CII in the absence
of exogenous supplementation of H,O, (Figure 1D). Firstly, the
Fe?™-mediated conversion of native POX into ferrous enzyme
intermediate occurs. Then, this intermediate molecule further
reacts with O to form catalytically inactive CIII which readily dis-
sociates and releases O3~ and native enzyme. Eventually, CII can
be formed through interaction between the native enzyme and
H,0; which is derived from O5™. Note that the O5™ -to-H,0,

conversion can proceed in the presence of hemoproteins and
non-heme free iron ions as discussed later.

Our working hypothetic model can be divided into two phases.
In the first phase, conversion of native enzyme into ferrous inter-
mediate must be caused so that finally resulting in production
of O™ upon interaction with molecular oxygen (oxygenation
cycle). After completing this cycle, the enzyme must go into fur-
ther cycles if excess of Fe?* is present. In the second phase, supply
of H,O, possibly derived from O3~ must occur in order to fuel
the conventional POX cycle.

Therefore, we have carried out (a) spectroscopic analysis
of the fate of native HRP following the addition of Fe2t,
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(b) direct measurements of Fe’T-induced oxidative burst rep-
resented by generation of H,O, and O~ and (c) exam-
inations on the involvement of molecular oxygen in (a)

and (b).

POX-CATALYZED ROS PRODUCTION INVOLVING HYDROGEN PEROXIDE
The formulae shown below originally proposed for describing
the mechanism for SA-dependent generation of O3 in plant
system (Kawano et al., 1998; Kawano and Muto, 2000) suggest
that the byproducts of POX-catalyzed oxidation of phenolics are
necessarily involved in generation of O3~

POXN® 4+ H,0, —» CI® + H,0
C1® + AH — CI1 @ + A®
ClI™® 4+ AH — POXN ¥ 4 A®
2A°4+20; —» 2AT 4205

POX N stands for native ferric enzyme. A® and A" are free rad-
ical species and the two-electron oxidized intermediate product
derived from substrate AH (such as phenolics or AMAs), respec-
tively. The formal oxidation states of the heme within the enzyme
are indicated by numbers in the small brackets. As above, pheno-
lics form a group of e~ donating substrates while H,O; is viewed
as the only e~ acceptor. Then, phenoxy radical (shown as A®)
released thereafter may react with molecular oxygen to form O3 ™.
Since O3 is readily transformed into H,O, in biological systems,
a single cycle of AH-oxidizing POX reactions initiated by single
unit of H,O; results in yield of two units of O3~ which is equiva-
lent to two units of H,O,, and therefore, by this way, ROS could
be amplified (Kawano, 2003a).

In place of phenolics, AMAs could be used as another group
of active substrates (Kawano et al., 2000a,b). Pinontoan and
his colleagues have shown that aromatic monoamine-dependent
oxidative burst can be widely observed not only in plants but also
in yeast cells in vivo (Pinontoan et al., 2002) and pseudo-POX
cycle of human hemoglobin (Kawano et al., 2002b).

In case of SA oxidation by plant enzymes, analytical data in
support of the production of SA radical species (one of A®)
has been obtained using electron spin resonance spectroscopy
by employing a natural spin trapper, ascorbate (Kawano and
Muto, 2000). After above studies, the likely structures of the rad-
ical and derived cationic intermediate were proposed by Gozzo
(2003). In addition, the involvement of CI and CII as the inter-
mediate species required for SA-dependent and AMA-dependent
O3~ generation was spectroscopically confirmed (Kawano et al.,
2002¢,d).

In plants, the SA-dependently produced O3~ acts as a chemi-
cal signal required for development of defense mechanism against
pathogenic microbes (Kawano et al., 1998) and closure of stomata
on leaves (Mori et al., 2001; Khokon et al., 2011). In model plant
cells, TPC1 calcium-permeable cation channel is a likely target of
the SA signal transduction pathway mediated with O3~ (Lin et al.,
2005).

H202-INDEPENDENT ROS PRODUCTION CATALYZED BY
IAA-STIMULATED POXs

Metabolism of IAA is common interest to many plant biolo-
gists. Through oxidation of IAA via two different mechanisms,
it has been considered that plant POXs are involved in the
metabolism of IAA. One mechanism involves the conventional
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H,0,-dependent pathway and the other requires the incorpora-
tion of molecular oxygen (O3) but not of H,O; (Gazaryan et al.,
1996; Savitsky et al., 1999; Kawano et al., 2001). The conventional
POX cycle for the oxidation of various substrates coupled to the
consumption of H,O; proceeds as follows:

POXN @ 4+ H,0, — CI1® + H,0
CI®+s—scan®4p
ci® +s+HY > POXN® +H,0+P

where S and P are the substrate and product of its one-electron
oxidation, respectively (Kawano, 2003a).

TAA can be oxidized by a wide variety of plant POXs, as model
has been proposed through the study using HRP focusing on
the conventional H,O,-dependent reactions with no strict sub-
strate specificity (Kawano, 2003a). It is noteworthy that most
plant POXs including HRP oxidize IAA also via an alternative
H,0;-independent pathway requiring O, (Smith et al., 1982).
Reportedly, unlike animal and microbial POXs, most members
of plant POXs are considered to behave as highly specific IAA
oxygenases by sharing the domains required for binding of auxin
(Gazaryan et al., 1996). The proposed H,O;-independent cycle
for TAA oxidation involves the formation of a ternary complex,
enzyme-IAA-dioxygen (Savitsky et al., 1999), finally yielding IAA
cation radicals and O35~ as by-products as follows (Kawano et al.,
2001):

POX 4 IAA < [POX-IAA]
[POX-IAA] + O, <> [POX-TIAA-O,]

[POX-IAA-O,] — POX + IAAT + O3~ 9)
where IAA®™T stands for IAA cation radicals. As above, plant POXs
can catalyze the IAA-dependent generation of O3~ in the absence
of H,O,. However, depending on the concentrations of ROS
and JAA, plant enzymes are readily inactivated and degraded by
forming P-670 pigment which is an irreversibly inactivated form
(Kawano et al., 2002a).

Based on the views that formation of enzyme-substrate com-
plexes such as [POX-IAA-O,] results in release of O3~ (Kawano
et al., 2001), medical application of HRP-labeled antibodies
and IAA has been proposed as a novel O5™ -generating sys-
tem for cancer cell-targeted and controlled cell death induction,
by designing the HRP-conjugated immuno-labeling of cancer-
related molecules or expression of recombinant HRP in mam-
malian cells (Folkes and Wardman, 2001; Folkes et al., 2002;
Kawano, 2003b; Dai et al., 2012). Although the IAA-induced
O in HRP reaction mixture is very intense, the IAA-induced
oxidative burst likely lasts only for few seconds (Kawano et al.,
2001). This is largely due to the fact that IAA behaves as a sui-
cide substrate for plant POXs, in its excess, irreversibly converting
the oxygen-dependently formed CIII into inactivated verdohe-
moprotein (P-670) (Kawano et al., 2002a). In this point of view,
induction of robust and long-lasting oxidative burst by applica-
tion of Fe?* may expand the possible applications of plant POXs
for medical purposes.

POSSIBLE ROLES FOR FERROUS POX INTERMEDIATE AND CllIl

As reviewed elsewhere, the conventional POX cycle involves the
formation of CI in which the localization of second radical could
be on the heme or on amino acid residues around the heme
pocket depending on the nature of protein species (Kawano,
2003a,b). This variation may largely contribute to determination
of the types of reaction catalyzed by hemoproteins. On the other
hand, we have previously proposed the hypothetical reactions in
the oxygenation cycle of plant POXs (Figure 1A) which can be
solely attributed to the chemistry of heme, by analogy to the
behaviors of other hemoproteins such as hemoglobin (Kawano
et al., 2004).

CIII is the temporally inactive POX intermediate (heme-
Fell-O,) which is analogous to oxygen-bound hemoglobin
which is readily auto-oxidized and decomposed into O~
and met-hemoglobin (Arayash, 1999; Kawano et al., 2002b).
Note that met-hemoglobin is a ferric protein analogous to
the native ferric POX and interestingly, pseudo-peroxidase cat-
alytic activity can be found in met-hemoglobin (Kawano et al.,
2002b).

When the heme-oxygen complex in CIII of plant POX dis-
sociates, O3 and the native enzyme are released. Many of
heme proteins, such as POX from French bean, are capa-
ble of generating H,O, (derived from O35™) at higher pH
by a mechanism that involves the formation of CIII (Bolwell
et al., 2002), thus distinct from the conventional POX reaction-
mediated oxidative burst as such involving SA (Kawano et al,,
1998).

The most likely mechanism considered to form CIII is the
direct conversion of ferric proteins into CIII via single step in the
presence of O3~ : heme-Fe!ll + O3~ — heme-Fe!-O, or heme-
Fel-05™ (Arayash, 1999). However, this model fails to explain
the burst of O™ often observed in plant POX model (Bolwell
et al., 1998, 2002).

The missing link in the oxygenation cycle of ROS production
involving CIII is the mechanism for reduction of native ferric
POX (heme-Felll) to ferrous enzyme (heme-Fell). It is tempting
to hypothesize that pH-dependent CIII-mediated ROS produc-
tion requires the formation of CIII via preceding formation
of ferrous enzyme, thereafter allowing spontaneous oxygenation
into CIII (heme-Fe!l + O, — heme-Fe'-O,) as predicted earlier
(Kawano et al., 2004). Therefore, apparently, the formation of fer-
rous enzyme from native POX would be an important step for
supporting the oxidative burst involving CIII.

It is well documented that extracellular alkalization occurs in
plant tissues upon attacked by pathogens or treatments with elic-
itors, eventually allowing the pH-dependent extracellular POX-
mediated oxidative burst at the site of microbial challenges
(Bolwell et al., 1998). Here, we would like to propose a likely role
for free ferrous ion in reduction of ferric POX into ferrous enzyme
which readily produces O3~ via mechanism involving CIII, espe-
cially under alkaline condition possibly contributing to the plant
defense mechanism.

In conclusion, the present study proposed that plant POX-
catalyzed production of O3~ can be stimulated in the absence
of conventional POX substrates but in the presence free Fe?*
through following reactions (Figure 1D):
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POX N @ 4 Fe?t < ferrous-POX @ + Fe’t (10)
ferrous-POX ? + 0, < CIII © (11)
cir® « poxXN® 403~ (12)

We view here that the recorded H,O; could be derived from O3~
Recent study provided us a notation that iron peroxide species
have been identified as important intermediates in a number of
nonheme iron as well as heme-containing enzymes (Namuswe
et al., 2008). Therefore, by analogy, we could possibly expect that
ferrous intermediate of plant POXs also interact with O3~ to yield
H,0O; in a manner similar to bacterial superoxide reductase. Or,
excess of Fe?T/Fe’* unbound to enzymes also non-enzymatically
catalyses the disproportionation of O3~ into H,O,.

Eventually, resultant H,O, may contribute to conversion of
native POX to CII via CI as previously demonstrated (Kawano
et al., 2002¢,d) (Figure 1D). Conversion of native POX to CII in
the absence of initial supply of H,O; reportedly occurs by treat-
ing soybean POX with NO (Takayama et al., 2012). Since NO
converts some heme enzymes such as catalase into CIII (unpub-
lished results), the mechanisms undermined should be similar to
the case of Fe?*-induced redox changes in HRP.
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