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The recent advances in gene expression analysis as well as protein and metabolite
quantification enable genome-scale capturing of complex biological processes at the
molecular level in crop field trials. This opens up new possibilities for understanding
the molecular and environmental complexity of field-based systems and thus shedding
light on the black box between genotype and environment, which in agriculture always
is influenced by a multi-stress environment and includes management interventions.
Nevertheless, combining different types of data obtained from the field and making
biological sense out of large datasets remain challenging. Here we highlight the need
to create a cross-disciplinary platform for innovative experimental design, sampling and
subsequent analysis of large-scale molecular data obtained in field trials. For these
reasons we put forward the term field-omics: “Field-omics strives to couple information
from genomes, transcriptomes, proteomes, metabolomes and metagenomes to the
long-established practice in crop science of conducting field trials as well as to adapt
current strategies for recording and analysing field data to facilitate integration with
‘-omics’ data.”
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INTRODUCTION
In the nineteenth century agricultural field experiments became
widely practiced and have since been a central part of crop
science. These trials have on several occasions driven scientific
discovery forward and given valuable insights on, for example,
the effects of fertilization and crop-rotation on yield or the trans-
mission of plant pathogens. The results have been applied both
in extension services and environmental regulations (Alm, 2007).
They have also formed the basis for conceptual frameworks such
as Ronald Fisher’s pioneering work on the theory of experimental
design driven by the extensive collection of field data, which paved
the way for new statistical methods. Traditionally, external param-
eters for weather and soil composition have been recorded in field
trials whereas assessment of crop performance has been limited
to external measurements of variables such as disease progression
and yield, or limited analysis of levels of amino acids, sugars and
nutrients often related to crop quality.

The recent flurry of technological advancements by, e.g., Next-
Generation sequencing (NGS) and mass spectrometry (MS), have
enabled genome-scale capturing of biological processes at the
molecular level (Weckwerth, 2011). Rather than being limited to
a handful of measured compounds, it is now possible to cap-
ture thousands of molecular variables. However, these techniques
have mostly been applied in the laboratory and controlled envi-
ronments. The generation of such large datasets—often referred
to as “-omics” data—demands partly new considerations for

experimental set-ups, sampling, data analysis and visualization.
Combining different types of data and making sense of large
datasets remains challenging and, so far, relatively few studies
have related molecular processes to environmental factors in the
field and the effects of a multi-stress environment remain poorly
studied.

It is well-known that developmental and morphological dif-
ferences caused by the artificial environment imposed in a lab-
oratory setting can mask important crop traits. For example, a
saline hydroponic lab set-up could not reliably predict differ-
ences in salt tolerance between barley cultivars when subsequently
grown in natural saline soils (Tavakkoli et al., 2012) and a
meta-analysis found contradicting results between studies esti-
mating crop responses to herbicides when done in greenhouse
vs. field settings (Clark et al., 2004). Strikingly, the growth-data
variance between the different settings was on the same level
as that found from entirely different species within the same
genus.

Light in field conditions have a large impact on plant growth.
For example, outdoors the model plant Arabidopsis displays
changed leaf morphology with altered pigment composition and
fitness performance (Külheim et al., 2002; Mishra et al., 2012).
This can be ascribed to rapidly changing outdoor light intensities
that influence genes in photo-oxidative stress. Natural light con-
ditions also influence the infection success of pathogens (reviewed
in Kangasjarvi et al., 2012), which is important to consider
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since plant-pathogen interactions in the laboratory mostly are
conducted in relatively low light intensity.

Field resistance is something only observed in a field situation
but not in the laboratory. It is assumed to be controlled by more
than a single genetic locus and subject to environmental cues.
For example, in the late blight-resistant potato cultivar, Sarpo
Mira, a discrepancy between resistance in laboratory tests and
field trials was discovered and later linked to an additional resis-
tant factor conferring field resistance (Rietman et al., 2012). These
selected examples illustrate the importance of moving from a lab-
oratory to a field setting to understand phenomena only observed
there.

The interaction between genotype and environment on
phenotype has been reviewed extensively and the advantages
of systems-biology-based approaches have been proposed

(Keurentjes et al., 2011; Weckwerth, 2011). Here, we want to
draw attention to the importance of recording and analyzing
different types of molecular data obtained in field trials and relate
it to other factors, such as environment and phenotype, and how
exploration of these relationships can be used for management
intervention and molecular-level discovery (Figure 1 gives
a general overview and future challenges). Sampling design
and data collection need careful attention in order to capture
representative high-dimension datasets for meaningful systems
biology in a field setting. If done properly, it can form a corner-
stone in the previously coined concept of Crop Systems Biology,
which includes modeling of complex crop traits by combining
functional genomics with crop physiology and biochemistry (Yin
and Struik, 2007). Table 1 outlines certain aspects of Field-omics
in relation to other areas.

FIGURE 1 | Field-omics: context and main challenges. Crop genotypes are
influenced by the management practices employed as well as the
multi-stress and multi-organism environment present in an agricultural field,
which is the central entity in Field-omics. Here the field is illustrated by a
multispectral image to visualize the relative vigor of individual vines in a
vineyard, which can be one of many considerations for plot layouts and
sampling design. A combination of external factors gives rise to a crop
phenotype which in turn determines yield and quality. One type of
management practice, which has been explored by genome-wide
transcriptomics, is the shading or exposure of grape bunches as illustrated in
the top right image (Young et al., 2012; Photo: Zelmari Coetzee). A key
element in Field-omics is the collection of multivariate molecular data, as

shown in the figure where a mobile lab is used for high-throughput, on site
isolation of plant secretome samples for proteomic analysis (Dr Åsa Lankinen
as photographed by Erik Andreasson). Note that the gene-gun equipment
seen in the picture is used for efficient vacuum-infiltration of leaves. “-omic”
profiles can subsequently be analyzed in conjunction with phenotypic traits
and the environmental factors measured in the field. From this one can
identify robust sets of biomarkers for biological processes, pathogens and
stress conditions. These can then be used in breeding programs or for the
creation of decision support systems for management intervention. “-omic”
profiles can also be used for Crop Systems Biology (CBS). As indicated in the
boxed text, a number of key issues have to be addressed in order to create a
Field-omics platform.
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Table 1 | Nine aspects highlighting the similarities and differences between field-omics and the emerging areas of Crop Systems Biology (CSB)

and phenomics as well as the established areas of plant molecular lab and ecological field studies.

Field-omics CSB Phenomics Plant molecular

lab

Ecological field

studies

Experimental setting Agricultural fields Agricultural fields or
lab

Agricultural fields or
lab

Lab Natural fields

Main study focus “-omics” profiles in
agricultural systems

Creating models for
agricultural systems

Measuring multiple
traits

Molecular functions Populations and
evolution

#Variables measured 100–10,000 s 100–10,000 s 5–100 1–10,000 s Ca 10

Number of environmental factors Medium High-low High-low Low High

Agricultural management interventions Yes Yes Yes/No No No

Statistical analyses In development In development In development Established Established

Modeling No Yes Yes Yes/No Yes

Biomarker discovery Yes, molecular Yes, molecular Yes, phenotypical Yes, but
robustness?

No

Cross-disciplinary High High High-medium Low Low

“-OMICS” TECHNIQUES FOR FIELD STUDIES
Genome-wide transcriptome analysis of field samples has high-
lighted the high variance caused by spatial and temporal dif-
ferences in the field and identified both plastic and non-plastic
genes (e.g., Bläsing et al., 2005; Lund et al., 2008; Dal Santo et al.,
2013), a fact that was previously overlooked. NGS-techniques
make it feasible to study organisms with an un-sequenced genome
as well as different cultivars. In addition, it enables meta-
transcriptomics, the observation of changes in gene expression
in multiple, interacting organisms simultaneously and opens new
possibilities for metagenomic approaches studying genetic mate-
rial sampled directly from the field. Coupling metagenomics
and meta-transcriptomics to agricultural practices is likely to
have a large impact on the understanding of biocontrol agents,
plant defence induction, pathogens spread, spraying-regimes and
integrated pest management.

Identification and quantification of proteins and metabolites
in field-grown plants using “-omics” is a potential fast and
cost-efficient way to discover key components in agronomically
important traits and have been successfully applied to analyze
genetic and/or environmental perturbations (Weckwerth, 2011).
For example, a study employing rapid crop proteomic phenotyp-
ing of 12 tetraploid potato cultivars grown on three plots in two
geographically separated fields misclassified less than 0.5% of the
samples based on more than 4000 proteins despite high biological
variability (Hoehenwarter et al., 2008, 2011). Obtaining global
proteome samples from the field would be labor-intensive and
require complicated fractionation steps impeding large-scale
analysis. Consequently, targeted approaches are currently nec-
essary. The secretome fraction containing apoplastic proteins
is fast and relatively easy to isolate—even in the field—with
a low level of contaminants of other cellular compartments
(Alexandersson et al., 2013). It also constitutes the interface
between intracellular processes and the environment. One way to
overcome the complexity associated with protein quantification
and identification by MS is to subject a set of proteins to selected
reaction monitoring (SRM). SRM has high quantitative accuracy
and can discriminate between protein isoforms in contrast to

shotgun proteomics (Lehmann et al., 2008). A new workflow
has been proposed which initially uses discovery proteomics in
a controlled environment in order to choose amongst candidate
proteins for SRM selection for analysis in samples obtained in
the field (Jacoby et al., 2013). However, it remains to be seen
whether it is more fruitful to choose candidates from more
detailed proteomic studies directly in the field rather from a
controlled environment since little is known about differences
in field and laboratory proteomes (Montes et al., 2011). In field
studies several factors that drive change of metabolites have been
identified (Davies et al., 2010). In a recent long-term experiment
for biodiversity research (http://www.the-jena-experiment.de/)
metabolomics revealed a large variability in phenotypic plasticity
of individual plant species (Scherling et al., 2010). Here, both gas
and liquid chromatography coupled to MS was used to measure
complementary sets of metabolites.

To explore the general effect of spatial variance or management
methods, isolation of RNA is still preferable since it is relatively
easy to sample if the specimen can be flash frozen and gives a
global view of changes taking place, whereas analyzing metabo-
lites currently might be more suitable to study variance in plant-
tissue composition for desired properties, especially if the genes
affecting the metabolites of key-interest are poorly characterized.
Both proteomics and metabolomics are “closer to the phenotype”
than RNA but more dependent on stability of different fractions
or specific molecules. The abovementioned plant-secretome frac-
tion, for example, might harbor more stable proteins and thus be
more suitable for isolation in field conditions.

MAKING SENSE OF MOLECULAR DATA FROM THE FIELD
Conducting experiments in a multi-stress environment requires
that spatial and temporal variance is taken into account and at
least to some extent measured—this is probably why molecu-
lar biologists refrain from field experiments. Micro-climate and
soil composition may in addition vary not only between fields
but also over single plots. Sampling is also dependent on plant
developmental stage and variance of biotic factors such as disease
or symbiont load. Still, the importance of looking at multi-stress
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conditions has been emphasized and it is known that combined
stresses can lead to distinct responses on the molecular level
(Atkinson and Urwin, 2012).

The cumulative environment over the growth season will also
affect mRNA, protein and metabolite levels. During grapevine
berry development and ripening a large degree of transcriptome
plasticity was observed when comparing growth years, agronomic
practices and climate (Dal Santo et al., 2013). Interestingly, the
levels of plasticity as well as the impact of external factors were
dependent on the developmental stage of the berry. At the onset
of ripening the seasonal climate had its greatest effect whereas the
microenvironment and agronomic practices had only marginal
impact. The strong effect of growth year then faded during later
stages of berry ripening (i.e., the importance of developmentally-
controlled genes increased).

Good field sampling calls for an understanding of the hetero-
geneity present at the molecular level and the pitfalls of failing
to account for it. There is a danger that the results of an experi-
ment will reflect the spatial patterns in the field rather than the
experimental perturbation studied. This can lead to a lack of
statistically meaningful results as heterogeneity overwhelms the
effects of the perturbation, or, worse still, false results solely due to
natural spatial patterns. Recently, different agricultural practices
in vineyards were shown to influence the microbial composition,
but also that dramatic spatial species heterogeneity exists within
individual vineyards (Setati et al., 2012). This has profound impli-
cations on study-design and sampling strategies for field trials.
Most of the design and sampling strategies presently used were
developed well before the advent of techniques that point out
the substantial molecular heterogeneity present in field condi-
tions and consequently mainly revolve around optimisation for
a small number of variables. In the “-omics” era, tens of thou-
sands of variables are measured and a sampling design that is
optimized for one of them may well impart bias for the many
other variables of interest. As such, there is a need for new sam-
pling strategies to be developed. For example, it is important to
arrange that the same material can be split up in a representative
fashion for different types of analysis or to analyse metabolites,
proteins and transcripts from the same sample (Weckwerth et al.,
2004; Valledor et al., 2014). In field conditions, light variation,
temperature and relative humidity need to be recorded (and nor-
malized to the extent possible) at least for sampling events and
ideally over the entire growth season in order to capture accumu-
lative effects. Wind strength, direction and precipitation are also
factors to be considered. Regarding water status, leaf water poten-
tial is an example of a measurement that can be easily determined
in the field by a pressure probe. Pesticide and fertilizing schemes
are other important events to record and should be considered
when planning sampling times.

Qualitative and quantitative estimation of biotic factors in
the environment is difficult to perform and often overlooked.
Normally, visual symptoms are recorded in order to estimate
the presence of pathogens. However, these are indirect signs
and field-captured images are difficult to quantify. Furthermore,
similar symptoms can have different causal agents. Infection by
viruses is yet another often neglected underlying factor. To this
end metagenomics and meta-transcriptomics and the detection
of viruses based on NGS could prove to be valuable. Fitness

and yield outcomes as a consequence of cumulative combined
factors are more easily recorded, but causality usually remains
opaque. In general, high variance in the field due to a multi-
stress and multi-organism environment calls for more elaborate
experimental designs to ensure representative sampling.

FIELD MOLECULAR DATA IN A LARGER CONTEXT
An important task in field-omics will be to relate “-omics” pro-
files to field observations and identify the external factors, such
as stresses and management interventions, influencing molecu-
lar processes as well as ranking the importance of these factors.
Such work will also provide relevant parameters to include in a
laboratory setting to improve screening of field-relevant traits.
Luckily, phenotyping and remote sensing of crops in the field is a
rapidly developing area. For scientific applications several pitfalls
still exist as has been pointed out by Walter et al. (2012). These
are primarily associated with problems in retrieving good-quality
images, mainly due to changes in light conditions.

The labor-intensive collecting and handling of field phenotype
data has limited studies to measure a few traits effectively causing
a “phenotyping bottleneck” (Furbank and Tester, 2011) that has
become even more evident with increased availability of “-omics”
techniques. New imaging pipelines facilitating high-throughput
phenotyping (e.g., Hartmann et al., 2011) and novel frameworks
and statistical methods for analysing and relating multiple pheno-
typic traits (Granier and Vile, 2014) are under development. Since
most molecular measurements are destructive in nature, a key
point in Field-omics will be to find non-intrusive characteriza-
tion methods in order to minimize interventions. Knowledge and
inspiration can be gained from post-harvest research including
the use of tomography (Borisjuk et al., 2012).

Knowledge gained from laboratory experiments can be used to
guide discovery when untangling the relationships between mul-
tiple environmental cues and plant responses. Literature mining
is challenging, but descriptive tools such as the Gene Ontology
are available and widely used (Ashburner et al., 2000). However,
apart from these, other ontologies such as plant phenology (see
http://www.ppodb.de/) remain underused and the practice needs
to increase (overview of plant-related ontologies, Walls et al.,
2012). However, usability should be improved. A standardiza-
tion of experimental descriptions, reporting of meta-data and
suitable repositories are also necessary to facilitate data compar-
isons. Ambitious efforts have been made, e.g., to store and share
experimental set-ups (Hannemann et al., 2009) and examples for
international networks and novel database approaches designed
to analyse large-scale datasets are discussed in Weckwerth (2011).

One of the main challenges is still the ability to handle, ana-
lyze and visualize large-scale data so that biologists can take in
and further advance biological understanding. Field studies are
similar to clinical studies in that they face the effects of unknown
orthogonal variables on the “-omics” data being collected and,
as such, make statistical analysis quite difficult. Non-parametric
agglomerative statistical methods such as gene set analysis (GSA)
have been effective in analysing clinical data (Subramanian et al.,
2005) and should be explored further in field-omics. One prob-
lem with GSA methods is incomplete set generation. However,
network-driven set generation holds considerable promise in this
regard (Jacobson and Emerton, 2012). Other exploratory data
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analysis methods such as principal components analysis (PCA)
and partial least squares (PLS) can be helpful but tend to be over-
whelmed by tens of thousands of variables and are solely linear
in nature. Machine learning approaches, such as Random Forests
and Support Vector Machines are also showing promise in han-
dling these types of data. However, further work needs to be
done with regards to statistical significance and variable selection.
Network-based analysis is becoming increasingly popular for the
analysis and visualization of “-omics” data and can seamlessly
integrate different types of data with extant knowledge and thus
merits further exploration (Wienkoop et al., 2008; Weckwerth,
2011).

FUTURE PERSPECTIVES
At first glance, field-omics studies could seem to be restricted
to empirical observations and data compilation. But in fact they
require innovative experimental designs and the ability to come
up with sound research questions in an outdoor setting—skills
which need to be developed when it comes to capturing large-
scale molecular biology data. Furthermore, as exemplified in the
introduction, field studies have on several occasions led to novel
discoveries as well as founded methodological frameworks.

A field-omics approach calls for closer collaborations between
computational biologists, molecular biologists, plant physiolo-
gists and agronomists in order to bridge knowledge gaps and
create economic drivers for comprehensive field studies. A mix-
ture of concepts from plant breeding, microbiology, ecology and
evolutionary biology are also important to create a theoreti-
cal framework and fruitful experimental set-ups. Notably, new
agricultural field experiments might serve as models of how
to develop ecological studies due to its intermediate position
between a laboratory and nature in terms of numbers of control-
lable parameters (Table 1). Compared to ecosystems and clinical
data, the field as an entity is a simplified and more controlled
structure and thus has the power to connect mechanisms in
planta with ecology. Gaining more insight in semi-controlled
environments is also important to advance the understanding of
greenhouse systems.

Biomarkers, which can be used as predictors (e.g., transcripts
or metabolites) of biological processes or states, which are robust
enough to function in the various environments experienced in
field conditions, need to be identified. It is possible that more rel-
evant ones or signatures of several (“-omics” profiles; Figure 1)
could be identified in processing field rather than lab samples.
For example, when sampling different types of vineyards avoid-
ing infected berries for a genome-wide expression study, several
pathogenesis-related (PR) proteins were found to be non-plastic,
i.e., independent of external stress cues (Dal Santo et al., 2013).
In cultivated potato, we have seen surprisingly few samples with
high levels of PR proteins even with a high disease pressure.
These proteins have been identified as classical biomarkers for
stress-induction in the laboratory, but might be unsuitable as
biomarkers in the field where they seem be absent or constitu-
tively expressed.

Besides the potential use in breeding, “-omics” profiles could
be important in precision agriculture and influence crop systems
and farming practices. Several qPCR-based projects and patents
use the expression of certain genes as biomarkers, e.g., to screen

for good elicitors of plant defense in both laboratory and field
(Brisset et al., 2013). Still, in medicine very few individual
biomarkers have entered clinical practice and lessons should be
learned to avoid false positives and improve predictions by using
signatures of multiple biomarkers (Diamandis, 2012). Data inte-
gration strategies are of utmost importance in the future because
each data level from molecular to field observation provides a dif-
ferent readout of the whole process. Furthermore, multivariate
statistical analysis of an integrated data matrix has been shown
to improve the selection and stability of biomarkers (Morgenthal
et al., 2005; Wienkoop et al., 2008). Thus, there is a need to sys-
tematically store, compare and integrate different “-omics” data
(see e.g., Colmsee et al., 2012). Finally, molecular field data should
become integrated in crop performance models using a systems
biology framework (Yin and Struik, 2008). This was illustrated by
insect resistance to transgenic Bt-crops, where a more rapid devel-
opment of resistance was forecast based on lab data than what
actually occurred in the field (Tabashnik et al., 2003). However,
to date there are few large-scale molecular data sets, for example
phosphoproteome, RNA-seq or methylation data, from the field.
These will be crucial to set a baseline for molecular field studies
and learn about the differences in global molecular mechanisms
compared to a laboratory setting.
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