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The genetic mechanisms regulating dry fruit development and opercular dehiscence have
been identified in Arabidopsis thaliana. In the bicarpellate silique, valve elongation and
differentiation is controlled by FRUITFULL (FUL) that antagonizes SHATTERPROOF1-2
(SHP1/SHP2) and INDEHISCENT (IND) at the dehiscence zone where they control normal
lignification. SHP1/2 are also repressed by REPLUMLESS (RPL), responsible for replum
formation. Similarly, FUL indirectly controls two other factors ALCATRAZ (ALC) and
SPATULA (SPT ) that function in the proper formation of the separation layer. FUL and
SHP1/2 belong to the MADS-box family, IND and ALC belong to the bHLH family and
RPL belongs to the homeodomain family, all of which are large transcription factor
families. These families have undergone numerous duplications and losses in plants, likely
accompanied by functional changes. Functional analyses of homologous genes suggest
that this network is fairly conserved in Brassicaceae and less conserved in other core
eudicots. Only the MADS box genes have been functionally characterized in basal eudicots
and suggest partial conservation of the functions recorded for Brassicaceae. Here we do
a comprehensive search of SHP, IND, ALC, SPT, and RPL homologs across core-eudicots,
basal eudicots, monocots and basal angiosperms. Based on gene-tree analyses we
hypothesize what parts of the network for fruit development in Brassicaceae, in particular
regarding direct and indirect targets of FUL, might be conserved across angiosperms.
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INTRODUCTION
Fruits are novel structures resulting from transformations in
the late ontogeny of the carpels that evolved in the flowering
plants (Doyle, 2013). Fruits are generally formed from the ovary
wall but accessory fruits (e.g., apple and strawberry) may con-
tain other parts of the flower including the receptacle, bracts,
sepals, and/or petals (Esau, 1967; Weberling, 1989). For pur-
poses of comparison we will discuss fruits that develop from the
carpel wall only. Fruit development generally begins after fer-
tilization when the carpel wall (pericarp) transitions from an
ovule containing, often photosynthetic vessel, to a seed contain-
ing dispersal unit. The fruit wall will differentiate into endo-
carp (1-few layers closest to developing seeds, often inner to
the vascular bundle), mesocarp (multiple middle layers, includ-
ing the vascular bundles and outer tissues), and exocarp (for
the most part restricted to the outermost layer, and only occa-
sionally including hypodermal tissues) (Richard, 1819; Sachs,
1874; Bordzilowski, 1888; Farmer, 1889; Roth, 1977; Pabón-
Mora and Litt, 2011). Fruits are classified by their number of
carpels, whether multiple carpels are free or fused, texture (dry
or fleshy), how the pericarp layers differentiate and whether and
how the fruits open to disperse the seeds contained inside (Roth,
1977).

There is a vast amount of fruit morphological diversity and
fruit terminology that corresponds to this diversity (reviewed in
Esau, 1967; Weberling, 1989; Figure 1). For example, fruits made
of a single carpel include follicles or pods (e.g., Medicago truncat-
ula; Figure 1D) and sometimes drupes (e.g., Ascarina rubricaulis;
Figure 1K). Follicles and pods both have thick walled exocarp
and thin walled parenchyma cells in the mesocarp. However, folli-
cles also have thin walled parenchyma cells in the endocarp while
many pods have a heavily sclerified endocarp with 2 distinct lay-
ers with microfibrils oriented in different directions (Roth, 1977).
When follicles mature the parenchyma and schlerenchyma cell
layers dry at different rates causing the fruit to open at the carpel
margins (adaxial suture) while pods open at the carpel margin
and the median bundle of the carpel due to additional tensions in
the endocarp (Roth, 1977; Fourquin et al., 2013). Fruits that are
multicarpellate but not fused can include follicles that are free on
a receptacle (e.g., Aquilegia coerulea; Figure 1H). Fruits that are
multi-carpellate and fused include berries (e.g., Solanum lycoper-
sicum, Carica papaya, and Vitis vinifera; Figures 1B,C,E), capsules
(e.g., Arabidopsis thaliana, Eschscholzia californica, Papaver som-
niferum; Figures 1A,F,G), caryopses (grains of Oryza sativa and
Zea mays; Figures 1I,J), and drupes (e.g., peach). These mul-
ticarpellate fruits differ by the differentiation of the pericarp
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FIGURE 1 | Schematic representation and transverse/longitudinal

sections of several fruits. (A–E) Examples of fruits in core eudicots.
(A) Operculate capsule of Arabidopsis thaliana (Brassicaceae) derived
from a bicarpellate and bilocular syncarpic gynoecium. (B) Berry of
Carica Papaya (Caricaceae) derived from a pentacarpellate and unilocular
syncarpic gynoecium. (C) Berry of Solanum lycopersicum (Solanaceae)
derived from a bicarpellate and bilocular gynoecium. (D) Dehiscent pod
of Medicago truncatula (Fabaceae) derived from a recurved single
carpel. (E) Berry of Vitis vinifera (Vitaceae) derived from a bicarpellate
and unilocular gynoecium. (F–H) Examples of fruits in basal eudicots.
(F) Longitudinally dehiscent capsule of Eschscholzia californica

(Papaveraceae) derived from a bicarpellate and unilocular syncarpic
gynoecium. (G) Poricidal capsule of Papaver somniferum (Papaveraceae)
derived from an 8- to 10-carpellate syncarpic gynoecium with numerous
incomplete locules. (H) Longitudinally dehiscent follicles of Aquilegia
coerulea (Ranunculaceae) derived from a pentacarpellate apocarpic
gynoecium. (I–J) Caryopsis of Poaceae (I) Zea mays and (J) Oryza
sativa. In both species the fruit is derived from 3 carpels. (K) Drupe of
Ascarina rubricaulis (Chloranthaceae) derived from a unicarpellate
gynoecium. (Black, locules; light green, carpel wall; dark green, main
carpel vascular bundles; pink, Lignified tissue; blue, dehiscence zones;
white, seeds; arrows, fusion between carpels).

and their dehiscence mechanisms. Berries and drupes tend to
be indehiscent and the pericarp of berries is often fleshy and
composed mainly of parenchyma tissue (Richard, 1819; Roth,
1977). The endocarp and mesocarp of drupes is also fleshy, how-
ever, the endocarp is composed of highly sclerified tissue termed
the stone (Richard, 1819; Sachs, 1874). Caryopses are also inde-
hiscent and have a thin wall of pericarp fused to a single seed
(Roth, 1977). Capsules can have few to many cells in the pericarp

and the different layers of the pericarp can be composed of
parenchyma tissue in most layers and sclerenchyma tissue in
the mesocarp and/or endocarp. Capsules can dehisce at vari-
ous locations including at the carpel margins (septicidal), at the
median bundles (loculicidal) or through small openings (porici-
dal) (Roth, 1977). The extreme fruit morphologies found across
angiosperms, even in closely related taxa suggest that fruits are
an adaptive trait, thus, homoplasious seed dispersal forms and
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transformations from berries to capsules or drupes and vice versa
are common in many plant families (Pabón-Mora and Litt, 2011).

The molecular basis that underlies fruit diversity is not well-
understood. However, the fruit molecular genetic network in
Arabidopsis thaliana (Arabidopsis), necessary to specify the dif-
ferent components of the fruit including the sclerified (lignified)
tissues necessary for the controlled opening (dehiscence) of the
fruit are well-characterized (Reviewed in Ferrándiz, 2002; Roeder
and Yanofsky, 2006; Seymour et al., 2013). Arabidopsis fruits
develop from two fused carpels and are specialized capsules called
siliques, which open along a well-defined dehiscence zone (Hall
et al., 2002: Avino et al., 2012). The siliques are composed of two
valves separated by a unique tissue termed the replum present
only in the Brassicaceae. The valves develop from the carpel
wall and are composed of an endocarp, mesocarp and exocarp.
The replum and valves are joined together by the valve margin.
The valve margin is composed of a separation layer closest to the
replum and liginified tissue closer to the valve. The endocarp of
the valves becomes lignified late in development and plays a role,
along with the lignified layer and separation layer of the valve
margin, in fruit dehiscence (Ferrándiz, 2002).

Developmental genetic studies in Arabidopsis thaliana have
uncovered the genetic network that patterns the Arabidopsis fruit.
FRUITFULL (FUL) is necessary for proper valve development
and represses SHATTERPROOF 1/2 (SHP 1/2) (Gu et al., 1998;
Ferrándiz et al., 2000a). SHP1/2 are necessary for valve margin
development (Liljegren et al., 2000). REPLUMLESS (RPL) is nec-
essary for replum development and represses SHP1/2 (Roeder
et al., 2003). The repression of SHP1/2 by FUL and RPL keeps
valve margin identity to a small strip of cells. SHP1/2 activate
INDEHISCENT (IND) and ALCATRAZ (ALC), which are both
necessary for the differentiation of the dehiscence zone between
the valves and replum (Girin et al., 2011; Groszmann et al., 2011).
IND is important for lignification of cells in the dehiscence zone
while IND and ALC are necessary for proper differentiation of the
separation layer (Rajani and Sundaresan, 2001; Liljegren et al.,
2004: Arnaud et al., 2010). SPATULA (SPT) also plays a minor
role, redundantly with its paralog ALC in the specification of the
fruit dehiscence zone (Alvarez and Smyth, 1999; Heisler et al.,
2001; Girin et al., 2010, 2011; Groszmann et al., 2011).

FUL, SHP1/2, RPL, IND, SPT, and ALC all belong to large
transcription factor families. FUL and SHP1/2 belong to the
MADS-box family (Gu et al., 1998; Liljegren et al., 2000), IND,
SPT, and ALC belong to the bHLH family and RPL belongs
to the homeodomain family (Heisler et al., 2001; Rajani and
Sundaresan, 2001; Roeder et al., 2003; Liljegren et al., 2004).
Some of these transcription factors are known to be the result
of Brassicaceae specific duplications, others seem to be the result
of duplications coinciding with the origin of the core eudicots
(Jiao et al., 2011). For instance SHP1 and SHP2 are AGAMOUS
paralogs and Brassicaceae-specific duplicates belonging to the C-
class gene lineage (Kramer et al., 2004). FUL is a member of
the AP1/FUL gene lineage unique to angiosperms (Purugganan
et al., 1995). FUL belongs to the euFULI clade, that together with
euFULII and euAP1 are core-eudicot specific paralogous clades.
Nevertheless, pre-duplication proteins are similar to euFUL pro-
teins, hence they have been named FUL-like proteins and are

present in all other angiosperms (Litt and Irish, 2003). Likewise,
ALC and SPT and IND are the result of several duplications
in different groups of the bHLH family of transcription fac-
tors, but the exact duplication points have not yet been iden-
tified (Reymond et al., 2012; Kay et al., 2013). Hence, it is
unclear whether this gene regulatory network can be extrapolated
to fruits outside of the Brassicaceae. Functional evidence from
Anthirrhinum (Plantaginaceae) (Müller et al., 2001), Solanum
(Solanaceae) (Bemer et al., 2012; Fujisawa et al., 2014), and
Vaccinium (Ericaceae) (Jaakola et al., 2010) in the core eudicots,
as well as Papaver and Eschscholzia (Papaveraceae, basal eudi-
cots) (Pabón-Mora et al., 2012, 2013b) suggest that at least FUL
orthologs have a conserved role in regulating proper fruit devel-
opment even in fruits with diverse morphologies. euFUL and
FUL-like genes control proper pericarp cell division and elon-
gation, endocarp identity, and promote proper distribution of
bundles and lignified patches after fertilization. However, func-
tional orthologs of SHP, IND, ALC, SPT, or RPL have been less
studied and it is unclear whether they are conserved in core and
non-core eudicots. The limited functional data gathered suggests
that at least in other core eudicots SHP orthologs play roles in
capsule dehiscence (Fourquin and Ferrandiz, 2012) and berry
ripening (Vrebalov et al., 2009). Likewise, SPT orthologs have
been identified as potential key players during pit formation in
drupes, likely regulating proper endocarp margin development
(Tani et al., 2011). RPL orthologs have not been characterized
in core eudicots, but an RPL homolog in rice is a domestica-
tion gene involved in the non-shattering phenotype, suggesting
that the same genes are important to shape seed dispersal struc-
tures in widely divergent species (Arnaud et al., 2011; Meyer and
Purugganan, 2013). At this point, more expression and func-
tional data are urgently needed to test whether the network is
functionally conserved across angiosperms, nevertheless, all these
transcription factors are candidate regulators of proper fruit wall
growth, endocarp and dehiscence zone identity, and carpel mar-
gin identity and fusion (Kourmpetli and Drea, 2014). In the
meantime, another approach to study the putative conservation
of the network is to identify how these specific gene families have
evolved in flowering plants as duplication and diversification of
transcription factors are thought to be important for morpholog-
ical evolution. Although, based on gene analyses no functions can
be explicitly identified, the presence and copy number of these
genes will provide testable hypothesis for future studies in differ-
ent angiosperm groups. Thus, to better understand the diversity
of fruits and the changes in the fruit core genetic regulatory
network we analyzed the evolution of these transcription factor
families from across the angiosperms. We utilized data in pub-
licly available databases and performed phylogenetic analyses. We
found different patterns of duplication across the different tran-
scription factor families and discuss the results in the context of
the evolution of a developmental network across flowering plants.

MATERIALS AND METHODS
CLONING AND CHARACTERIZATION OF GENES INVOLVED IN THE FRUIT
DEVELOPMENTAL NETWORK
For each of the gene families, searches were performed by
using the Arabidopsis sequences as a query to identify a
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first batch of homologs using Blast tools (Altschul et al.,
1990) through Phytozome (http://www.phytozome.net/; Joint
Genome Institute, 2010) from all plant genomes available from
Brassicaceae and other core eudicots, Aquilegia coerulea (basal
eudicot) and monocots. To better understand the evolution of
the fruit developmental network we have extended our search to
other core eudicots, basal eudicots, monocots, basal angiosperms,
and gymnosperms using the 1 kp transcriptome database (http://
218.188.108.77/Blast4OneKP/home.php). This is a database that
comprises more than1000 transcriptomes of green plants and
therefore represents a large dataset for blasting orthologous genes
of the core fruit gene network outside of Brassicaceae. It is impor-
tant to note that the oneKP public blast portal does not have the
complete transcriptomes publicly available yet for many species
and that often the transcriptomes available are those from leaf tis-
sue, reducing the possibilities to blast fruit specific genes in some
taxa. In addition we used two additional databases: The Ancestral
Angiosperm Genome Project (AAGP) http://ancangio.uga.edu
to search specific sequences in Aristolochia (Aristolochiaceae,
basal angiosperms) and Liriodendron (Magnoliaceae, basal
angiosperms) and Phytometasyn (http://www.phytometasyn.ca)
to search specific sequences from basal eudicots. The sam-
pling was specifically directed to seed plants, therefore outgroup
sequences included homologs of ferns and mosses of the targeted
gene family (when possible) in addition to closely related gene
groups (Supplementary Tables 1–5). Outgroup sequences used
for the APETALA1/FRUITFULL genes include AGAMOUS Like-6
genes from several angiosperms (Litt and Irish, 2003; Zahn et al.,
2005; Viaene et al., 2010). For AGAMOUS/SEEDSTICK genes
the outgroup includes AGAMOUS Like-12 sequences from sev-
eral angiosperms (Becker and Theissen, 2003; Carlsbecker et al.,
2013). For HECATE3/INDEHISCENT genes outgroup sequences
include the closely related AtbHLH52 and AtbHLH53 from
Arabidopsis as well has HECATE1 and HECATE2 from other
angiosperms (Heim et al., 2003; Toledo-Ortiz et al., 2003). For
SPATULA/ALCATRAZ outgroup sequences include HEC3/IND
from Arabidopsis and other angiosperms (Heim et al., 2003;
Toledo-Ortiz et al., 2003; Reymond et al., 2012), and finally for
REPLUMLESS/POUND-FOOLISH genes the outgroup sequences
include AtSAW1, AtSAW2, and AtBEL1, as well as SAW1 and
SAW2 angiosperm homologs (Kumar et al., 2007; Mukherjee
et al., 2009). Vouchers of all sequences and accession numbers are
supplied in Supplementary Tables 1–5.

PHYLOGENETIC ANALYSES
Sequences in the transcriptome databases were compiled
using Bioedit (http://www.mbio.ncsu.edu/bioedit/bioedit.html),
where they were cleaned to keep exclusively the open read-
ing frame. Nucleotide sequences were then aligned using
the online version of MAFFT (http://mafft.cbrc.jp/alignment/
server/) (Katoh et al., 2002), with a gap open penalty of 3.0, an
offset value of 0.8, and all other default settings. The alignment
was then refined by hand using Bioedit taking into account the
protein domains and amino acid motifs that have been reported
as conserved for the five gene lineages (alignments shown in
Figures 2, 4, 6, 8, 10) Maximum Likelihood (ML) phyloge-
netic analyses using the nucleotide sequences were performed in

RaxML-HPC2 BlackBox (Stamatakis et al., 2008) on the CIPRES
Science Gateway (Miller et al., 2009). The best performing evo-
lutionary model was obtained by the Akaike information crite-
rion (AIC; Akaike, 1974) using the program jModelTest v.0.1.1
(Posada and Crandall, 1998). Bootstrapping was performed
according to the default criteria in RAxML where bootstrapping
stopped after 200–600 replicates when the criteria were met. Trees
were observed and edited using FigTree v1.4.0. Uninformative
characters were determined using Winclada Asado 1.62.

RESULTS
APETALA1/FRUITFULL GENE LINEAGE
APETALA1 (AP1) and FRUITFULL (FUL) are members of the
AP1/FUL gene lineage. Thus, they belong to the large MADS-box
gene family present in all land plants (Gustafson-Brown et al.,
1994; Purugganan et al., 1995; Gu et al., 1998; Alvarez-Buylla
et al., 2000; Becker and Theissen, 2003). Sequences of AP1 and
FUL recovered by similarity in the transcriptomes generally span
the entire coding sequence, although some are missing 20–30
amino acids (AA) from the start of the 60 AA MADS domain. The
alignment includes the conserved MADS (M) and K domains,
approximately with 60 AA and 70–80 AA, respectively, an inter-
vening domain (I) between them with 30 and 40 AA and the
C-terminal domain of approximately 200 AA. The alignment of
the ingroup consists of a total of 180 sequences (i.e., 29 sequences
from 25 species of basal angiosperms, 12 sequences from 4 species
of monocots, 44 sequences from 22 species of basal eudicots,
and 95 sequences from 35 species of core eudicots). Predicted
amino acid sequences of the entire dataset reveal a high degree
of conservation in the M, I, and K regions until position 222. The
C-terminal domain is more variable, but four regions of high sim-
ilarity can be identified: (1) a region rich in tandem repeats of
polar uncharged amino acids (PQN) up until position 285 in the
alignment (Moon et al., 1999); (2) a highly conserved, predom-
inantly hydrophobic motif between positions 290 and 310; (3) a
negatively charged region rich in glutamic acid (E) that includes
the transcription activation motif in euAP1 proteins (Cho et al.,
1999) and (4) the end of the protein that includes a farnesylation
motif (CF/YAA) for euAP1 proteins (Yalovsky et al., 2000) and the
FUL motif (LMPPWML) for euFUL and FUL-like proteins (Litt
and Irish, 2003) (Figure 2).

A total of 1715 characters were included in the matrix, of
which 1117 (65%) were informative. Maximum likelihood anal-
ysis recovered five duplication events, two affecting monocots,
particularly grasses resulting in FUL1, FUL2, and FUL3 genes
(Preston and Kellogg, 2006), another occurring early in the diver-
sification of the Ranunculales in the basal eudicots resulting in the
RanFL1 and RanFL2 clades (Pabón-Mora et al., 2013b) and two
coincident with the diversification of the core-eudicots (Litt and
Irish, 2003; Shan et al., 2007) resulting in the euFULI, euFULII,
and euAP1 clades (Figure 3). Bootstrap supports (BS) for those
clades is above 80 except for the RanFL1 and RanFL2 clades,
however within each clade, gene copies from the same family
are grouped together with strong support (Pabón-Mora et al.,
2013b), and the relationships among gene clades are mostly con-
sistent with the phylogenetic relationships of the sampled taxa
(Wang et al., 2009). Another duplication occurred concomitantly
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FIGURE 2 | Alignment of the end of the K and the complete

C-terminal domain of APETALA1/FRUITFULL proteins (labeled with

the clade names they belong to). Colors to the left of the
sequences indicate the taxon they belong to as per color key in
Figure 3. The box to the left shows a conserved long hydrophobic
motif, previously identified, but with unknown function, followed by a

region variable but consistently with negatively charged amino acids
[i.e., rich in glutamic acid (E) particularly in euFULI, euFULII, and
FUL-like proteins, and in arginine (R), particularly in euAP1 proteins].
The transcription activation and the farnesylation motifs (boxed)
distinguish the euAP1 proteins. The FUL-motif (boxed) is typically
found in FUL-like and euFUL proteins.

with the core-eudicot diversification and resulted in the euAP1
and euFUL gene clades (90 BS), followed by another duplication
in the euFUL clade resulting in the euFULI and euFULII clades
(Figure 3; Litt and Irish, 2003; Shan et al., 2007). The duplica-
tion itself has low BS, but the euFULI and euFULII clades have
high support with 81 and 74, respectively. Within Brassicaceae
another duplication occurred within the euAP1 clade resulting
in the AP1 and CAL Brassicaceae gene clades (100 BS) (Figure 3;
Lowman and Purugganan, 1999; Alvarez-Buylla et al., 2006).
Major sequence changes are linked with the core-eudicot duplica-
tion. Whereas euFUL proteins retain the characteristic FUL-like
motif present in FUL-like pre-duplication proteins present in
basal angiosperms, monocots and basal eudicots, the euAP1 pro-
teins acquired, due to a frameshift mutation, a transcription
activation and a farnesylation motif at the C-terminus (Cho
et al., 1999; Yalovsky et al., 2000; Litt and Irish, 2003; Preston
and Kellogg, 2006; Shan et al., 2007), that is very conserved in
CAL proteins as well Kempin et al. (1995); Alvarez-Buylla et al.
(2006).

Taxon-specific euFUL duplications have occurred in Solanum
(Solanaceae), Theobroma, Gossypium (Malvaceae), Eucalyptus
(Myrtaceae), Glycine (Fabaceae), Populus (Salicaceae) Portulaca
(Portulacaceae), Silene (Caryophyllaceae), and Malus (Rosaceae)
(Figure 3). On the other hand, euFUL homologs are likely

to be pseudogenized in Manihot (Euphorbiaceae), and Carica
(Caricaceae), where searches on the available genomic sequences,
did not retrieve any euFUL orthologs. Taxon-specific euAP1
duplications have occurred in Malus (Rosaceae), Solanum
(Solanaceae), Manihot (Euphorbiaceae), and Citrus (Rutaceae).
euAP1 homologs seem to be lacking for Eucalyptus (Myrtaceae),
as sequences previously reported as EAP1 and EAP2 by Kyozuka
et al. (1997) are members of the euFULI and euFULII clades.
euAP1 Homologs were also not found in Fragaria (Rosaceae)
but have been previously reported (Zou et al., 2012) suggesting
that the sequence may be divergent enough that is not found
through the phytozome blast search. Similarly, euAP1 sequences
were not found in the transcriptomic sequences available for
Silene (Caryophyllaceae), but have been found before (SLM4,
SLM5; Hardenack et al., 1994). In addition, they are likely missing
or silent (not expressed) in Portulaca (Portulacaceae) but these
data will have to be reevaluated as more transcriptomic data from
these species becomes publicly available.

AGAMOUS/SEEDSTICK GENE LINEAGE
The SEEDSTICK (STK), AGAMOUS (AG), SHATTERPROOF1
(SHP1) and SHP2 proteins belong to the C and D class of the
large MADS-box transcription factor family (Yanofsky et al.,
1990; Purugganan et al., 1995; Becker and Theissen, 2003;
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FIGURE 3 | ML tree of APETALA1/FRUITFULL genes in angiosperms

showing five duplication events (yellow stars). Two duplications in
Poaceae, resulting in three distinct monocot FUL-like clades; one duplication
in basal eudicots resulting in two Ranunculiid FUL-like clades; two

duplications in the core eudicots resulting in the euFULI, euFULII, and euAP1
clades and one additional duplication specific to Brassicaceae resulting in the
CAL clade. Branch colors denote taxa as per the color key at the top left; BS
values above 50% are placed at nodes; asterisks indicate BS of 100.

Colombo et al., 2008). Sequences recovered by similarity in
the transcriptomes generally span the entire coding sequence,
although some are missing 20–30 amino acids (AA) from the start
of the 60 AA MADS domain. The alignment includes the con-
served MADS and K domains, approximately with 60 AA and
60–80 AA, respectively, an intervening domain between them
with 25 and 30 AA and the C-terminal domain expanding ca.
200 AA. The alignment of the ingroup consists of a total of 185

sequences (i.e., 14 sequences from 14 species of gymnosperms,
13 sequences from 11 species of basal angiosperms, 24 sequences
from 18 species of monocots, 35 sequences from 18 species of
basal eudicots, and 89 sequences from 40 species of core eudi-
cots). Predicted amino acid sequences of the entire dataset reveal
a high degree of conservation in the M, I, and K regions until posi-
tion 228. A few positions conserved that distinguish the STK from
the AG/SHP clade such as the typical Q105 always present in the
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STK proteins (with the exception of ChlspiSTK) (Kramer et al.,
2004; Dreni and Kater, 2014). Others that distinguish between
the AG and the PLE/SHP clades are the GI or IS in positions
105/106 in euAG proteins vs. the conserved RD in the same
positions in PLE/SHP proteins. The C-terminal domain is more
variable, but two regions of high similarity can be identified:
(1) The AG Motif I and (2) The AG Motif II both with pre-
dominantly acidic or hydrophobic amino acids. These two motifs
are conserved in both the AGAMOUS/SHATTERPROOF and the
SEEDSTICK gene clades in angiosperms as well as in the pre-
duplication gymnosperm homologous genes (Figure 4) (Kramer
et al., 2004; Dreni and Kater, 2014). Only Poaceae AG/SHP and
STK homologs present noticeable divergence in those motifs
(Figure 4; Dreni and Kater, 2014).

A total of 1720 characters were included in the matrix, of which
915 (53%) were informative. Maximum likelihood analysis recov-
ered five duplication events. The most important one occurred
concomitantly with the origin of angiosperms and resulted in the
AG/SHP and the STK gene clades (Figure 5). BS for this duplica-
tion is low (<50), and the position of the AG/SHP monocot clade
is variable (retested in parsimony analyses, data not shown), nev-
ertheless the two main resulting clades have BS of 82 and within

each clade, relationships among genes are mostly consistent with
the phylogenetic relationships of the sampled taxa (APG, 2009).
This contrasts with the single copy C and D class genes found
in gymnosperms (Kramer et al., 2004; Carlsbecker et al., 2013).
They appear to be paraphyletic with respect to the angiosperm C
and D lineages, but the three clades that they form have strong
supports (Figure 5). Both angiosperm gene lineages underwent
additional duplications in the grasses that for the most part have
two AG/SHP gene clades and two STK gene clades (Dreni et al.,
2013). The STK genes have remained mostly single copy in all
other angiosperms including basal angiosperms and basal and
core eudicots, with only two exceptions. In monocots the radi-
ation of the Poaceae seems to be associated with a duplication
in the STK genes (BS 98), and in the core eudicots, taxon spe-
cific duplications seem to have affected independently Gossypium
(Malvaceae) and Glycine (Fabaceae), each with two STK par-
alogs (Figure 5). In addition, our data supports the idea that STK
genes have been lost or are not expressed in the Eupteleaceae and
the Ranunculaceae (basal eudicots), as STK homologs were not
retrieved from the transcriptomic data available for Euptelea or
the Aquilegia genome. This is consistent with the findings of Liu
et al. (2010) and Kramer et al. (2004).

FIGURE 4 | Alignment of the end of the K and the complete C-terminal

domain of AGAMOUS/SEEDTICK proteins (labeled with the clade

names they belong to). Colors to the left of the sequences indicate the
taxon they belong to as per the color key in Figure 5. Previously identified
conserved AG Motifs I and II in both protein clades are boxed; note that
sequences in between the motifs are very different between the AGAMOUS

and the SEEDSTICK orthologous proteins, and there appears to be a GS/GN
repeat in this region exclusive to Brassicaceae STK sequences; note also the
divergence at the end of the K-domain between the closely related
paralogous SHP1 and SHP2 in the Brassicaceae. The alignment also includes
the atypical paleoAGAMOUS proteins in Papaver (PapsAG1, PapsAG2) due to
alternative splicing.
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FIGURE 5 | ML tree of AGAMOUS/SEEDSTICK genes in seed plants

showing a number of duplication events (yellow stars). A
duplication coincident with the diversification of the angiosperms,
resulting in the D-lineage and the C-lineage clades (also known as
AGL11 and AG lineage, respectively). The D-lineage underwent a
duplication in Poaceae but for the most part has been kept as single
copy in angiosperms (see text for exceptions). The C-lineage duplicated

independently in Poaceae, resulting in two paleoAG grass clades, in
basal eudicots, resulting in two Ranunculaceae specific clades, and in
the core eudicots, resulting in the euAG and the PLE/SHP gene
lineages. An additional duplication occurred with the diversification of
the Brassicaceae resulting in the SHP1 and SHP2 clades. Branch colors
denote taxa as per color key at the top left; BS above 50% are placed
at nodes; asterisks indicate BS of 100.

The AG/SHP genes have undergone additional duplications
during angiosperm diversification. One such duplication seems
to have occurred in basal eudicots, before the diversification of
the Ranunculaceae, that has two gene clades with strong support
(100BS) however, the exact time is unclear as sampling is limited

(Figure 5; Yellina et al., 2010). Members of the Papaveraceae, also
have two paralogous AG genes, however, at least in Papaver species
and the closely related Argemone, the two transcripts seem to be
the result of alternative splicing, identical to the case reported in
P. somniferum by Hands et al. (2011). Two additional duplications
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occurred in the AG/SHP genes, one connected with the diver-
sification of the core eudicots resulting in the euAG and the
PLE/SHP clades (90BS), and the second one in the PLE/SHP clade
in Brassicaceae resulting in the SHP1 and SHP2 gene clades (97BS;
Figure 5; Kramer et al., 2004; Zahn et al., 2006).

Taxon-specific euAG duplications have occurred in Gossypium
(Malvaceae) and Phyllanthus (Euphorbiaceae). Likewise,
PLE/SHP specific duplications have affected Glycine (Fabaceae)
and Brassica (Brasicaceae). On the other hand, euAG homologs
are likely to be pseudogenized or have diverged dramatically in
sequence in Malus (Rosaceae), Glycine (Fabaceae), and Carica
(Caricaceae), as an exhaustive search in their available genomic
sequences did not result in any significant hit. Similarly, PLE/SHP
homologs have diverged considerably or have been lost in Populus
(Salicaceae) and Mimulus (Phrymaceae). Our analysis did not
find any PLE/SHP homologs in Lonicera (Caprifoliacaeae),
Lobelia (Campanulaceae), Stylidium (Stylidiaceae), Sylibum,
Erigeron (Asteraceae), Coriaria (Coriariaceae), Heracleum
(Asteraceae), Polansia (Capparaceae), Ipomoea (Colvolvulaceae),
and Linum (Linaceae). Some of the same cases were also noticed
by Dreni and Kater (2014) (i.e., loss of euAG in Carica, and
loss of PLE/SHP in Populus and Mimulus), suggesting that
pseudogenization likely happened in PLE/SHP genes of many
core eudicots after the duplication event, however these data
would have to be confirmed as a larger set of transcripts from
these species becomes publicly available. This scenario is very
different in Brassicaceae, where additional duplications occurred
as a result of a Whole Genome Duplications (WGD) (Barker
et al., 2009; Donoghue et al., 2011) but functional paralogs only
remained in the PLE/SHP clade with two SHP homologs. The
Brassicaceae specific copies resulting from this duplication in the
euAG and the STK clades have been likely pseudogenized.

ALCATRAZ /SPATULA GENE LINEAGE
ALCATRAZ (ALC) and SPATULA (SPT) belong to the large
bHLH transcription factor family (Toledo-Ortiz et al., 2003;
Reymond et al., 2012). Sequences recovered by similarity in
the transcriptomes generally span the entire coding sequence.
Alignment of the ingroup consists of a total of 139 sequences
(i.e., 7 sequences from 7 species of gymnosperms, 5 sequences
from 5 species of basal angiosperms, 16 sequences from 13
species of monocots, 14 sequences from 14 species of basal
eudicots, and 97 sequences from 53 species of core eudicots).
Predicted amino acid sequences of the entire dataset reveal a
high degree of conservation in the M, I, and K regions until
position 222. The alignment includes a first region extremely
variable of 310 AA, where only a few local blocks of conserved
amino acids (AA) are observed in closely related species. A second
region follows this from 311 to 349 AA with a largely conserved
motif DDLDCESEEGG/QE rich in hydrophobic and negative
amino acids, in all members of the SPT/ALC proteins in gym-
nosperms and angiosperms. The exceptions are: The SPT-like2
grass clade with the sequence E/Q H/QLDLVMRHH/Q and the
ALC Brassicaceae clade with the sequence VAETS/AQE/DKYA
that have more polar uncharged amino acids accompanying the
hydrophobic and negatively charged ones (not shown; this region
is located immediately before the N-flank shown in Figure 6).

Right after this region and before the bHLH domain there is
a region from 350 to 357 AA in the alignment, rich in polar
uncharged and positively charged amino acids fairly conserved
across angiosperms and gymnosperms (R/PS/PRSSS/L) with the
exception of the SPT-like1 paralogous grass genes that have
instead Glycine (G) repeats in this region, labeled as N-flank
in reference to the bHLH domain (Figure 6). Within the bHLH
domain that goes from AA 359 to 410, the SPT/ALC proteins as
most other AtbHLH proteins have on average 9 positively charged
(K, R, and H) amino acids, in the basic motif that spans 17 AA
(Figure 6). This is followed by the completely conserved helices
interrupted by a loop (HLH), responsible for homodimerization
and heterodimerization (Murre et al., 1989; Ferre-D’Amare et al.,
1994; Nair and Burley, 2000; Toledo-Ortiz et al., 2003). SPT/ALC
share with most other bHLH proteins studied to date, from both
animals and plants, the positions H9, E13, R16, L27, K39, L56
(Figure 6). The presence of E13 and R16 makes SPT/ALC pro-
teins E-box binders (CANNTG), as these residues are critical to
contact the CA in the E-box and confers the DNA binding activity
of SPT/ALC proteins (Fisher and Goding, 1992; Ellenberg et al.,
1994; Shimizu et al., 1997; Fuji et al., 2000). Furthermore, the E13
residue is essential for DNA binding. SPT/ALC proteins can be
further classified into G-box (CACGTG) binders within the E-
box binders category, as they possess the H9, E13, R17 positions
(Toledo-Ortiz et al., 2003). This binding, specifically to G-boxes,
has been demonstrated in vitro for SPT (Reymond et al., 2012).
After the end of the second helix there is a conserved motif
LQLQVQ completely conserved in all sequences, followed by a
fairly conserved motif MLS/TMRNGLSLH/N/PPL/MGLPG, both
are included at the C-flank of the bHLH motif. This last motif is
once again more variable in the ALC Brassicaceae paralogs and in
the gymnosperm SPT/ALC homologs (Figure 6). From the posi-
tion 438 until the end of the alignment there are no other regions
that seem to be conserved across all SPT/ALC homologs, nev-
ertheless there are some small regions that can be confidently
aligned, particularly among closely related plant groups. In this
region, there is a very noticeable increase in variation and short-
ening of the coding sequence in the Brassicaceae ALC homologs
suggesting a faster sequence mutation rate. This is likely linked
with divergent functions in this gene clade compared with other
angiosperm and gymnosperm SPT/ALC proteins.

Because the beginning of the proteins was extremely variable
and the homologous nucleotides in the alignment were not clear,
we only used the AA from the beginning of the bHLH domain
until the end of the proteins for the phylogenetic analysis. A total
of 703 characters were included in the matrix, of which 224 (32%)
were informative. Maximum likelihood analysis recovered two
duplication events. The most important is correlated with the
diversification of the core eudicots, resulting in the SPATULA
and the ALCATRAZ gene clades (Figure 7). Nevertheless, sup-
port for this duplication is extremely low (<50), likely because
the bHLH motif has little variation, and positional homology
cannot be assigned confidently outside this region (Toledo-Ortiz
et al., 2003; Pires and Dolan, 2010). This contrasts with the
single copy SPT/ALC homolog present in basal eudicots, most
monocots, basal angiosperms and gymnosperms. Another dupli-
cation is again correlated with the diversification of the Poaceae
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FIGURE 6 | Alignment of the bHLH domain of SPATULA/ALCATRAZ

proteins (labeled with the clade names they belong to). Colors to the
left of the sequences indicate the taxon they belong to as per color
conventions in Figure 7. The bHLH was drawn based on Toledo-Ortiz et al.
(2003) and in our alignment corresponds with positions K359-Q410. The
alignment shows an N-flank before the start of the bHLH domain rich in
Serine (S). Within the bHLH domain, black arrows indicate positions E13,

R16, L27, K39, L56, which are conserved in all bHLH plant and animal
genes. E13 provides the SPT/ALC proteins with E-box binding (CANNTG)
activity. The H9 and R17 positions (red arrows) show aminoacids that
provide the SPT/ALC proteins with G-box (CACGTG) binding activity. The
alignment also shows the conserved motif LQLQVQ in the C-flank of the
bHLH motif followed by a fairly conserved motif
MLS/TMRNGLSLH/N/PPL/MGLPG (boxed).

(Figure 7), that also has low BS (Figure 7). However, clades
resulting from this duplication have BS100. Most core eudicots
had at least two copies, one belonging to the SPT and the other to
the ALC clades, however, taxon-specific duplications of SPT genes
were observed in Gossypium, Theobroma (Malvaceae), Digitalis
(Plantaginaceae), Solanum tuberosum (Solanaceae), Apocynum
(Apocynaceae), and Brassica (Brasssicaceae). Our analysis also
detected taxon-specific duplications of ALC genes in S. tuberosum
(Solanaceae), Manihot (Euphorbiaceae), Populus (Salicaceae),
and Cleome (Cleomaceae).

Although gene losses are harder to confirm, SPT
homologs were not found in the genome assemblies of
Manihot (Euphorbiaceae), Carica (Caricaceae), and Mimulus
(Phrymaceae), or the transcriptomic sequences available for:
Urtica (Urticaceae), Celtis (Ulmaceae), Ficus (Moraceae), Cleome
(Cleomaceae), Strychnos (Loganiaceae), Azadirachta (Meliaceae).
On the other hand ALC homologs were not found in the
genomic sequences available for Medicago (Fabaceae), Eucalyptus
(Myrtaceae), and Gossypium (Malvaceae) and the transcrip-
tomes of Castanea (Fagaceae), Digitalis (Plantaginaceae),
Punica (Lythraceae), Oenothera (Oenotheraceae), Lobelia

(Campanulaceae), Cavendishia (Ericaceae), and Fouquieria
(Fouquieriaceae).

INDEHISCENT /HECATE3 GENE LINEAGE
INDEHISCENT (IND) and HECATE3 (HEC3) also belong to
the large bHLH transcription factor family (Heim et al., 2003;
Toledo-Ortiz et al., 2003). Sequences recovered by similarity in
the transcriptomes generally span the entire coding sequence. The
alignment of the ingroup consists of a total of 56 sequences (i.e.,
5 sequences from 5 species of gymnosperms, 2 sequences from
2 species of basal angiosperms, 14 sequences from 10 species
of monocots, 5 sequences from 5 species of basal eudicots, and
30 sequences from 23 species of core eudicots). The alignment
includes a first region extremely variable of 415 AA, where there
are very few regions of conserved amino acids and no evident
conserved motifs, even in closely related taxa. This is followed
by a short region rich in DE (negatively charged amino acids)
until AA 430. Immediately after there is the N flank of the bHLH
domain with a large region of hydrophobic amino acids from
AA 430 to 449, identified previously as the HEC domain, and
present only in IND/HEC3 genes when compared to other HEC
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FIGURE 7 | ML tree of SPATULA/ALCATRAZ genes in seed plants

showing two duplication events (yellow stars). One duplication in the
Poaceae, resulting in two SPATULA-like clades, and a second independent
duplication coincident with the diversification of the core eudicots resulting
in the SPT and the ALC clades. Most sequence changes are linked with the
ALC genes, particularly in Brassicaceae. Branch colors denote taxa as per
color key at the top left; BS above 50% are placed at nodes; asterisks
indicate BS of 100.

genes (like HEC1 and 2) (Heim et al., 2003; Gremski et al.,
2007; Pires and Dolan, 2010). This region also includes a small
motif identified as conserved for all members of bHLH group
VIIb called Domain 17 by Pires and Dolan (2010) (Figure 8).
The end of this domain overlaps with the beginning of the basic
region of the bHLH domain. Within the bHLH domain, that
goes from AA 462 to 515, the IND/HEC3 proteins, as most other
AtbHLH proteins, have on average 9 positively charged (K, R,
and H) amino acids, in the basic motif (Figure 8) that spans 17
AA. This is followed by the completely conserved helices inter-
rupted by a loop (HLH), responsible for homodimerization and

heterodimerization (Murre et al., 1989; Ferre-D’Amare et al.,
1994; Nair and Burley, 2000; Toledo-Ortiz et al., 2003; Girin
et al., 2010, 2011). Unlike most other bHLH proteins studied to
date, the IND/HEC3 proteins have changes in some of the key
amino acids, and they possess Q9 instead of H9, A13 instead of
E13, they have R16 and R17 and they also conserve L27, A39,
Q56 (Figure 8). The lack of H9 and E13 suggests that IND and
HEC3 are not E-box binders (CANNTG) (Fisher and Goding,
1992; Ellenberg et al., 1994; Shimizu et al., 1997; Fuji et al., 2000;
Toledo-Ortiz et al., 2003). After the end of the second helix there
is the C flank without any regions obviously conserved (Figure 8).
From the position 530 until the end of the alignment at AA 655
there are no other regions that seem to be conserved across all
IND/HEC3 homologs. In this region, there is a very noticeable
increase in the variation and shortening of the coding sequence
in the Brassicaceae IND homologs suggesting a faster sequence
change likely linked with divergent functions in this gene clade
compared with other angiosperm and gymnosperm IND/HEC3
proteins.

Similar to the SPT/ALC proteins the IND/HEC3 presented
very variable 5′and 3′ sequence proteins, nevertheless the
IND/HEC3 are smaller and the regions with uncertainty in the
alignment were short so we decided to use the entire alignment
for phylogenetic analysis. A total of 2127 characters were included
in the matrix, of which 997 (47%) were informative. Maximum
likelihood analysis recovered a single duplication event concor-
dant with the origin of the Brassicaceae (Figure 9). Although BS
is low, the clades resulting from this duplication have 100BS. This
contrasts with the single copy IND/HEC3 homologs present in
the rest of the core eudicots, basal eudicots, most monocots (with
the exception of Zea mays that has four HEC3 paralogs), basal
angiosperms and gymnosperms. Because of similarity sequences
with HEC3, more noticeable before the HEC domain (data not
shown) they have been called HEC3-like (Kay et al., 2013). Most
core eudicots that have genomic sequences available had a single
HEC3 copy with the exception of Populus (Salicaceae) with three
paralogs. From those species with available genomic sequences
we could not find homologs in Eucalyptus (Myrtaceae), Manihot
(Euphorbiaceae), or Glycine (Fabaceae).

REPLUMLESS/POUND-FOOLISH GENE LINEAGE
REPLUMLESS (RPL) and POUNDFOOLISH (PNF) belong to
the TALE group of homeodomain protein (Kumar et al., 2007;
Mukherjee et al., 2009) Sequences recovered by similarity in the
transcriptomes generally span the entire coding sequence. The
alignment of the ingroup consists of a total of 132 sequences (i.e.,
11 sequences from 11 species of gymnosperms, 7 sequences from
6 species of basal angiosperms, 14 sequences from 10 species of
monocots, 17 sequences from 15 species of basal eudicots, and
83 sequences from 46 species of core eudicots). The alignment
includes a first region extremely variable of 544 AA with almost
no similarity except sometimes in short regions between closely
related taxa. Between positions 545 and 579 AA a first region of
high similarity is found. This region includes a previously unde-
scribed G/VPLF/LGPFTGYAS/TI/VLKG/SAT motif. From 560 to
575 AA a SKY motif (SKYLKPAQQ/MV/LLEEFCD/S/N) follows
(Mukherjee et al., 2009), however, a true SKY motif is only present
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FIGURE 8 | Alignment of the bHLH domain of HECATE3/INDEHISCENT

proteins (labeled with the clade names they belong to). Colors to the
left of the sequences indicate the taxa they belong to as per color key in
Figure 9. The bHLH was drawn based on Toledo-Ortiz et al. (2003) and in
our alignment corresponds with positions N462-L515. Boxed to the left is
the N-flank of the bHLH domain rich in hydrophobic aminoacids (called the
HEC domain by Kay et al. (2013) and includes domain 17 by Pires and
Dolan (2010); note that to Kay et al. (2013) the bHLH domain starts at
S462 right after the end of the HEC domain). Black arrows in the bHLH

domain indicate key aminoacids for E-box binding activity. Although R16
and L27 are conserved, position E13 (see Figure 6) is replaced by a
hydrophobic A13 suggesting that HEC3/IND proteins lack this activity. Note
that R17 (red arrow) is still conserved but due to the lack of E13 is unclear
whether this amino acid conferring specificity plays any role in binding on
its own. Additionally, the classic G-box recognition motif is not present in
this proteins as the critical H/K positively changes aminoacids are replaced
by Q9 with polar and uncharged side chains. Boxed to the right is the
poorly conserved C flank of the bHLH motif.

in the gymnosperm RPL/PNF proteins as in the angiosperm
RPL and PNF proteins this motif is replaced by SK/RF, with the
only exception being Ascarina (Chloranthaceae) lacking the entire
motif (not shown). There is another region of high variability
from AA 576 to 659 before the beginning of the 60AA BELL-
domain (from AA 660 to 729) that is highly conserved across
gymnosperm and angiosperm RPL/PNF proteins (Figure 10).
Between the BELL-domain and the homeodomain, there is a
region spanning AA 730–792 with high variability where no
clear motifs can be identified. This is immediately followed by
the 63AA homeodomain spanning the AA 793–856 (Figure 10).
From AA 857 to 1143 there are some regions that show enough
similarity to be confidently aligned, nevertheless, it is clear that
there has been increased divergence in the PNF angiosperm pro-
teins when compared to the RPL and RPL/PNF homologs in
angiosperms and gymnosperms, respectively. Within this final
portion of the protein the only other motif that is invariant
across all RPL/PNF proteins is the “ZIBEL” motif (G/A VSLTLGL;
Mukherjee et al., 2009), in our alignment located between posi-
tions 1055 and 1063 AA, at the C-terminal portion after the
homeodomain. There was however no evidence in our alignment
of the presence of another “ZIBEL” motif between the SKY motif
and the BELL-domain, unlike what is reported in AtBEL1 and
other BEL-like homeodomain proteins (Mukherjee et al., 2009).

A total of 2149 characters were included in the matrix, of which
757 (35%) were informative. Maximum likelihood analysis recov-
ered a major duplication event concordant with the diversifica-
tion of angiosperms resulting in the RPL clade and the PNF clade

(BS 93 for the duplications and 100BS for each clade) (Figure 11).
In addition a second duplication event within the RPL clade is
evident in grasses (Poaceae). Thus, most angiosperms, except
grasses, have two homologs one in each clade contrasting with
the single copy RPL/PNF present in gymnosperms (Figure 11).
Taxon-specific duplications in the RPL clade have occurred
in Populus (Salicaceae), Gossypium, Theobroma (Malvaceae),
Solanum (Solanaceae), Malus (Rosaceae), and Glycine (Fabaceae).
On the other hand, taxon-specific duplications in the PNF clade
include those seen in Populus (Salicaceae), Glycine (Fabaceae),
Manihot (Euphorbiaceae), Malus (Rosaceae), and Gossypium
(Malvaceae).

Although gene losses are harder to confirm, PNF homologs
were not found in the genome assemblies of Mimulus
(Phrymaceae), Eucalyptus (Myrtaceae), Medicago (Fabaceae),
Solanum tuberosum and S. lycopersicum (Solanaceae), or
the transcriptomic sequences available for the core eudi-
cots: Ipomoea (Convolvulaceae), Asclepia (Asclepiadaceae),
Thymus, Melissa, Pogostemon, Scutellaria (Lamiaceae), Moringa
(Moringaceae). RPL homologs were not found in the transcrip-
tomes of several basal eudicots including: Argemone, Hypecoum,
Ceratocapnos (Papaveraceae), Nandina (Berberidaceae), and
Akebia (Lardizabalaceae). One thing to note is that no PNF/RPL
homologs were found in Papaver, Eschscholzia (Papaveraceae), or
Aquilegia (Ranunculaceae). In these taxa the similarity searches
resulted in gene homologs more closely related to the outgroup
sequences SAW-like1 and SAW-like2 than to RPL/PNF, although
specific losses are hard to assess it is clear that at least in the
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FIGURE 9 | ML tree of INDEHISCENT/HECATE3 genes in seed

plants showing a duplication in Brassicaceae (yellow star). This
duplication resulted in the INDEHISCENT Brassicaceae specific genes
from a HECATE3-like ancestral single copy in most core and basal

eudicots, monocots and basal angiosperms. Most sequence changes
are linked with the IND genes. Branch colors denote taxa as per
color key at the top left; BS above 50% are placed at nodes;
asterisks indicate BS of 100.

Aquilegia genome there are no other sequences that show more
similarity to RPL/PNF suggesting that there has been a specific
loss of these genes. In the other taxa it is possible that as more
transcriptomic sequences become available, RPL/PNF copies can
be found.

DISCUSSION
Our data, which includes sampling from all genomes available
through Phytozome and transcriptomes available in the oneKP,
and the phytometasyn public blast portals allowed us to identify
major duplications and losses in AP1/FUL, STK/AG, SPT/ALC,
HEC3/IND, and RPL/PNF genes. Based on our analyses we have
also extrapolated how the fruit developmental network as we
know it from Arabidopsis thaliana may have evolved and been
co-opted across angiosperms. Our data shows that major dupli-
cations in all gene lineages studied here coincide with paleo-
polyploidization events that have been previously identified at
different times in land plant evolution, namely, ε mapped to have
occurred before the diversification of the angiosperms, two con-
secutive events known as the σ and the ρ, that occurred before
the diversification of the Poaceae (Jiao et al., 2011), an indepen-
dent genome-wide polyploidization event in the Ranunculales

(Cui et al., 2006), the γ event at the base of the core eudicots
(Jiao et al., 2011; Zheng et al., 2013), and the taxa-specific α

and β duplications in lineages like the Brassicaceae, Fabaceae,
and Salicaceae (Blanc et al., 2003; Bowers et al., 2003; Barker
et al., 2009; Abrouk et al., 2010; Donoghue et al., 2011). Taxa-
specific duplications were found frequently (in at least two of the
five gene families) in Eucalyptus (Myrtaceae), Glycine (Fabaceae),
Gossypium (Malvaceae), Malus (Rosaceae), Populus (Salicaceae),
Solanum (Solanaceae), and Theobroma (Malvaceae). This is likely
the result of taxon specific recent WGD as these are well-known
polyploids with diploid sister groups that have retained single
copy genes (Sterck et al., 2005; Sanzol, 2010; Schmutz et al., 2010;
Argout et al., 2011; Grattapaglia et al., 2012; Tomato Genome
Consortium, 2012). Some groups show additional gene dupli-
cations in a single gene family but not in others, for example
Manihot (with 4 ALC copies), Portulaca and Silene (with 2 euFUL
copies). These cases suggest that at least some copies may have
originated by tandem repeats or retrotransposition instead of
WGD or alternatively that heterogeneous diploidization events
can be occurring after polyploidization (Fregene et al., 1997;
Olsen and Schaal, 1999: Abrouk et al., 2010), however, assess-
ing taxa specific duplications and losses at the family level (and
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FIGURE 10 | Alignment of the BELL-domain and the Homeodomain of

REPLUMLESS/POUNDFOOLISH proteins (labeled with the clade names

they belong to). Colors to the left of the sequences indicate the taxa they
belong to as per color key in Figure 11. Two domains are shown: the BELL
domain (also called the MEINOX domain by Smith et al., 2002) has some

invariant amino acids (arrows) in all gymnosperm and angiosperm RPL/PNF,
important for dimerization that include L5, E11, V12, Y19, Q22, V26, S29, F30,
G35, A40, P42, F55, L58, I62. The Homeodomain (HD) is very conserved
(85%) with 53 AA conserved in seed plants out of 62 aminoacids total in the
domain. Domains were drawn based on Mukherjee et al. (2009).

infra-familial levels) will require a more comprehensive search
utilizing all available EST databases as well as targeted cloning
efforts.

THE MADS–BOX GENES HAVE UNDERGONE INDEPENDENT AND
OVERLAPPING DUPLICATION EVENTS AT DISTINCT TIMES DURING
PLANT EVOLUTION
The MADS-box genes, greatly diversified in plant evolution
have been well-studied in terms of their duplications during

land plant evolution (Becker and Theissen, 2003). The AP1/FUL
lineage for instance, appeared together with the radiation of
angiosperms and has duplicated independently twice in mono-
cots (specifically Poaceae; Preston and Kellogg, 2006), once in
basal eudicots (Pabón-Mora et al., 2013b) and twice in core eudi-
cots and one additional time in Brassicaceae (Figure 3; Litt and
Irish, 2003; Shan et al., 2007). All of these duplications coin-
cide with polyploidization events previously mentioned (Blanc
et al., 2003; Bowers et al., 2003; Cui et al., 2006; Barker et al.,
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FIGURE 11 | ML tree of REPLUMLESS/POUNDFOOLISH genes in seed

plants showing two duplications (star). One coinciding with the origin of
the flowering plants, resulting in the RPL and the PNF clades. A second one

occurring before the diversification of Poaceae. Branch colors denote taxa as
per color key at the top left; BS above 50% are placed at nodes; asterisks
indicate BS of 100.

2009; Donoghue et al., 2011; Jiao et al., 2011; Zheng et al., 2013).
As a consequence of the numerous duplications, Arabidopsis
has four gene copies: APETALA1, CAULIFLOWER, FRUITFULL
functioning redundantly in flower meristem identity (Ferrándiz
et al., 2000b), and independently in floral organ identity, specifi-
cally sepal and petal identity (AP1, CAL) (Coen and Meyerowitz,
1991; Bowman et al., 1993; Kempin et al., 1995; Mandel and
Yanofsky, 1995) and fruit wall development (FUL) (Gu et al.,
1998). The fourth copy, AGAMOUS-like79 (AGL79) likely func-
tioning in root development (Parenicová et al., 2003). Other
core eudicots have euAP1 genes often controlling floral meris-
tem identity and sepal identity (Huijser et al., 1992; Berbel et al.,

2001; Benlloch et al., 2006), euFULI genes controlling fruit wall
patterning, in dry and fleshy fruits (Müller et al., 2001; Jaakola
et al., 2010; Bemer et al., 2012), and euFULII genes (AGL79
orthologs) playing roles in inflorescence architecture (Berbel
et al., 2012). In addition some euFULI genes also control branch-
ing, flowering time and leaf morphology (Immink et al., 1999;
Melzer et al., 2008; Berbel et al., 2012; Burko et al., 2013). Basal
eudicots and monocots have a single type of gene, also referred
to as the pre-duplication genes more similar to euFUL pro-
teins, hence called FUL-like (Litt and Irish, 2003; Pabón-Mora
et al., 2013b). Those perform a wide array of functions from leaf
morphogenesis, to flowering time and transition to reproductive
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meristems, to sepal and sometimes petal development, to fruit
wall development (Murai et al., 2003; Pabón-Mora et al., 2012,
2013a,b).

Overall, the role of AP1/FUL homologs in fruit development,
has been recorded for many euFUL genes in the core eudicots and
some FUL-like genes in basal eudicots. These analyses suggest that
euFUL genes control proper identity and development of the fruit
wall in dry fruits like that of Antirrhinum (Müller et al., 2001),
Nicotiana (Smykal et al., 2007), Arabidopsis (Gu et al., 1998), and
Brassica (Østergaard et al., 2006), as well as proper firmness, col-
oration, and ripening in fleshy fruits like that of tomato (Bemer
et al., 2012; Fujisawa et al., 2014), Bilberry (Jaakola et al., 2010),
peach (Tani et al., 2007; Dardick et al., 2010), and even fruits
resulting from fusion of accessory organs like apple (Cevik et al.,
2010). The roles in fruit development are conserved in the pre-
duplication FUL-like genes in Papaveraceae, in the basal eudicots,
where FUL-like genes control proper fruit wall growth, vascular-
ization, and endocarp development (Pabón-Mora et al., 2012).
Altogether the available data suggest that euFUL and FUL-like
proteins act as major regulators in late fruit development that
control both dehiscence and ripening and seem to have acquired
these roles early on in the evolution of the angiosperms, at least
before the diversification of the eudicots (see also Ferrándiz and
Fourquin, 2014). Our gene tree analyses show that FUL-like pro-
teins are present in basal angiosperms, nevertheless, because of
the lack of means to down-regulate genes in basal angiosperms,
there are no known roles of FUL-like genes in this plant group.
Expression patterns are similar to those reported in basal eudi-
cots (unpublished data), suggesting that fruit development roles
are likely to be conserved in early diverging angiosperms, together
with pleiotropic roles in leaf and flower development, similar to
those observed in basal eudicots (Pabón-Mora et al., 2012, 2013a).

The AG/STK lineage is present in seed plants and duplicated at
the base of flowering plants resulting in the STK and the AG/SHP
clades (Figure 5; Kramer et al., 2004; Zahn et al., 2006). This
duplication coincides with the ε ancestral whole genome dupli-
cation before the diversification of the angiosperms (Jiao et al.,
2011). Independently, each gene clade has duplicated in mono-
cots (Dreni and Kater, 2014). Additionally the AG/SHP genes
(also called C-lineage or AG lineage) underwent duplications in
basal eudicots (at least in Ranunculaceae), core eudicots, and the
Brassicaceae, the last two coincident with the same polyploidiza-
tion events γ and α/β described before (Figure 5; Blanc et al.,
2003; Bowers et al., 2003; Barker et al., 2009; Donoghue et al.,
2011; Jiao et al., 2011). The STK gene clade (also called D lineage
or AGL11 lineage) has remained as single copy in all angiosperms,
with the exception of grasses.

Consequently, Arabidopsis has four gene copies: SEEDSTICK,
AGAMOUS, SHATTERPROOF1 (SHP1) and SHP2. All four par-
alogs function redundantly in ovule development in Arabidopsis
(Favaro et al., 2003; Pinyopich et al., 2003) with SEEDSTICK con-
trolling also proper fertilization and seed development (Mizzotti
et al., 2012). AGAMOUS, represents the canonical C-function of
the ABC model of flower development, and thus has specific roles
in stamen and carpel identity. Finally SHATTERPROOF genes
antagonize FUL and give identity to the dehiscence zone dur-
ing fruit development. Functional studies in homologous genes

in core eudicots and monocots have identified conserved roles in
ovule development for STK orthologs (Colombo et al., 2008). In
fact, the D-class genes involved in ovule identity were postulated
based on the role of FLORAL BINDING PROTEIN 7 (FBP7) in
Petunia, and seem to be conserved in monocots as the osmads13
shows defects in ovule identity (Dreni et al., 2007; Colombo et al.,
2008). Additionally, SHELL, the STK homolog in oil palm (Elaeis
guineensis) has been recently linked with oil yield, produced in
the outer fibrous ring surrounding the seed, likely seed derived
(Singh et al., 2013). Likewise, STK homologs across other non-
grass monocots like Hyacinthus shows a restricted expression to
developing ovules (Xu et al., 2004). Our gene tree analyses con-
firms that the STK or D lineage has remained predominantly
unduplicated during angiosperm evolution, suggesting conserved
roles in ovule identity and seed development in all angiosperms.
Because these genes are also present in gymnosperms, this role
is likely to be the ancestral role for the gene lineage, neverthe-
less more expression and functional data is needed to support this
hypothesis.

On the other hand, AG/SHP homologs have undergone dif-
ferent patterns of functional evolution. Many core eudicot euAG
and PLE/SHP genes have overlapping early roles in reproductive
organ identity (Davies et al., 1999; Causier et al., 2005; Fourquin
and Ferrandiz, 2012; Heijmans et al., 2012) and only SHP genes
retain late functions in fruit development, specifically in dehis-
cence (Fourquin and Ferrandiz, 2012) and ripening (Vrebalov
et al., 2009; Giménez et al., 2010). This is likely due to overlap-
ping spatial and temporal expression patterns of paralogous genes
(see for instance Fourquin and Ferrandiz, 2012), shared protein
interactions (Leseberg et al., 2008), and lower protein sequence
divergence (0.7–0.87 similarity) when compared to STK proteins
(0.45–0.6) (Figure 4).

Basal eudicots and monocots have only one type of AG
genes, known as the paleoAG genes, that in general only play
early roles in stamen and carpel identity (Dreni et al., 2007,
2013; Yellina et al., 2010; Hands et al., 2011). Interestingly the
basal eudicot paralogous genes that have been characterized
in Eschscholzia and Papaver, are the result of a taxon-specific
duplication in Eschscholzia and alternative splicing in Papaver.
Both strategies seem to be common across basal eudicots, for
instance, our sampling suggests that early diverging Papaveraceae
and Lardizabalaceae have taxon-specific duplications producing
two AGAMOUS-like copies, whereas subfamily Papaveroideae
(Papaver and relatives including the polyploid Argemone) express
alternative transcripts. There are also duplications that seem to
have occurred before the diversification of other families, such
as the Ranunculaceae (Figure 5). Functional characterization of
these copies show that the two paralogs have overlapping and
unique roles. For instance, in Papaver somniferum (Papaveraceae)
one of the transcripts is largely involved in stamen and carpel
identity whereas the second one becomes restricted to the carpel
(Hands et al., 2011). Similar subfunctionalization scenarios have
reported in Poaceae where paralogous copies in Zea mays and
Oryza sativa have become functionally divergent, one largely
involved in reproductive organ identity (ZMM2 and OsMADS3)
and the other mostly restricted to controlling carpel identity
and floral meristem determinacy (ZAG1 and OsMADS58) (Mena
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et al., 1996; Dreni et al., 2007, 2011). Nonetheless, the functional
impact of taxon specific duplications will have to be discussed
case by case, and will likely provide insights on the redundancy
vs. sub- and neo-functionalization patterns in AGAMOUS-like
paralogous copies. The lack of fruit defects in basal eudicot pale-
oAG mutants suggest that fruit development roles are unique
to core eudicot copies and have become completely fixed in
SHP duplicates in the Brassicaceae (Fourquin and Ferrandiz,
2012).

Expression patterns of paleoAG genes in basal angiosperms
include stamens and carpels, and occasionally inner tepals (Kim
et al., 2005) and suggest conserved roles in reproductive organ
identity but do not exclude roles in late fruit development.
Although comparative studies, are needed to understand the
role of AGAMOUS homologs in early diverging flowering plants,
the conserved expression of AG/STK homologs in gymnosperms
(Jager et al., 2003; Carlsbecker et al., 2013) suggest that the ances-
tral role of the gene lineage includes ovule identity. Such a role
was then kept as part of the functional repertoire in STK genes,
and AG genes were likely recruited first for carpel identity in early
diverging angiosperms and later on for fruit development in core
eudicots (Kramer et al., 2004).

DUPLICATION OF ALCATRAZ AND SPATULA OCCURRED AT THE BASE
OF THE CORE EUDICOTS
ALCATRAZ (ALC) belongs to the large bHLH transcription fac-
tor family (Pires and Dolan, 2010). In Arabidopsis, the most
closely related bHLH protein to ALC is SPATULA (SPT). SPT
orthologs have been identified across the seed plants (Groszmann
et al., 2008). However, previous studies have been unable to
identify additional ALC orthologs outside of the Brassicaceae
(Groszmann et al., 2011). Therefore, the SPT and ALC dupli-
cation was thought to have occurred during a whole genome
duplication event in the lineage leading to the Brassicaceae
(Groszmann et al., 2011). Here we identified a duplication at the
base of the core eudicots that led to the evolution of specific ALC
and SPT lineages in the core eudicots. This duplication coincides
with the γ duplication event (Jiao et al., 2011; Zheng et al., 2013).
The presence of ALC orthologs across the core eudicots is sur-
prising since it is necessary for differentiation of the separation
layer in the dehiscence zone, which has been thought to be spe-
cific to the Brassicaceae (Eames and Wilson, 1928; Rajani and
Sundaresan, 2001).

However, recent studies in Arabidopsis have shown that ALC
and SPT are partially redundant in carpel and valve margin devel-
opment (Groszmann et al., 2011). These proteins are thought
to have undergone subfunctionalization as ALC has a more
prominent role in the differentiation of the dehiscence zone
and SPT has a more prominent role in carpel margin develop-
ment. We identified paleo SPT/ALC orthologs in basal eudicots,
basal angiosperms and monocots, that all have more than 6
basic residues in the basic region, which indicates that, these
all have DNA binding activities (Figures 6, 7) (Toledo-Ortiz
et al., 2003). In addition, the paleo SPT/ALC orthologs have
conserved residues in the basic region that indicates that these
recognize E-boxes in other proteins and specifically G-boxes
(Figure 6) (Toledo-Ortiz et al., 2003). This indicates that paleo

SPT/ALC may have similar downstream targets as Arabidopsis
SPT and ALC.

Differences in SPT and ALC function may be due to different
protein–protein interactions in the fruit developmental network.
In Arabidopsis, SPT can interact with SPT, ALC, IND, and HEC,
which are all bHLH proteins and are all generally involved in
carpel margin development (Gremski et al., 2007; Girin et al.,
2011; Groszmann et al., 2011). All of the SPT, ALC, and paleo
SPT/ALC and gymnosperm SPT/ALC orthologs that we identified
have a conserved Leu residue at position 27 that has been shown
to be fundamental for dimer formation in mammals (Figure 6)
(Toledo-Ortiz et al., 2003). In addition, there is a high level
of conservation in the HLH domain of all the SPT, ALC and
paleo SPT/ALC orthologs we identified and bHLH proteins are
thought to form dimers with other members that have highly
similar HLH domains. In species where only a single SPT/ALC
ortholog was identified, it may form homodimers similar to SPT
in Arabidopsis (Groszmann et al., 2011). SPT proteins have a con-
served acidic domain and amphipathic helix N terminal to the
bHLH domain, which is thought to be integral to its function
in early gynoecium development (Groszmann et al., 2008, 2011).
The amphipathic helix but not the acidic domain has been iden-
tified in ALC (Groszmann et al., 2008, 2011; Tani et al., 2011).
We found the acidic domain to be conserved across angiosperms
and gymnosperms except for the SPT-like2 grass genes and the
Brassicaceae ALC genes. Functional analyses of ALC orthologs
outside of the Brassicaceae will be necessary to understand how
this gene acquired a role in dehiscence zone formation and to
understand the evolution of the fruit network.

Both SPT and ALC share conserved atypical E-box elements
in their cis-regulatory sequences (Groszmann et al., 2011). This
sequence is required for SPT expression in the valve margin and
dehiscence zone, however, similar expression studies are lacking
in ALC. The expression of ALC in the valve margin is regu-
lated by SHP1/2 and FUL in Arabidopsis (Liljegren et al., 2004).
Although there are few functional analyses of SPT or ALC out-
side of Arabidopsis, recent studies in peach (Prunus persica)
have indicated a role for the peach SPT ortholog (PPERSPT) in
fruit development (Tani et al., 2011). PPERSPT was found to
be expressed in the perianth, ovary and later in the margins of
the endocarp where the carpels meet. PPERSPT is expressed in
the region where the pit will later split. Further analyses of pre-
duplication paleo SPT/ALC genes in angiosperms and SPT/ALC
homologs in gymnosperms will be necessary to determine the
ancestral function of these genes but it is likely these have roles
in ovule development.

INDEHISCENT ORTHOLOGS ARE CONFINED TO THE BRASSICACEAE
INDEHISCENT (IND) is important for the development of the
lignified layer and the separation layer in the valve margin of
Arabidopsis fruits (Liljegren et al., 2004). IND belongs to the
large family of bHLH transcription factors and is most closely
related to HECATE3 (HEC3) in Arabidopsis (Bailey et al., 2003;
Heim et al., 2003; Toledo-Ortiz et al., 2003). Our analyses across
land plants show that the duplication of HEC3 and IND occurred
in the lineage leading to the Brassicaceae as previous results
indicated (Figure 9) (Kay et al., 2013). This duplication likely
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coincides with α and β genome duplications identified at the base
of the Brassicaceae (Blanc et al., 2003; Bowers et al., 2003; Jiao
et al., 2011). We found HEC3-like genes not only in angiosperms
(Kay et al., 2013) but also in gymnosperms and ferns (Figure 9).
These HEC3-like genes also share the N terminal domain, HEC,
atypical bHLH and C terminal domains previously identified in
angiosperms (Figure 8) (Kay et al., 2013). It is likely that the
duplication resulting in HEC3 and IND in the Brassicaceae was
integral for the evolution of the tissues specific to Brassicaceae
fruits.

Evolution of the fruit developmental network involving IND
may be due to changes in IND protein–protein interactions or
to cis-regulatory changes affecting IND expression. IND interacts
with both SPT and ALC to promote valve margin development
(Liljegren et al., 2004; Girin et al., 2011). IND has not acquired
new interactions with SPT as HEC1/2/3 can also interact with SPT
(Gremski et al., 2007). However, it is not known if HEC1/2/3 can
interact with ALC.

Expression of IND is found early in carpel marginal tissues
and throughout the replum (Girin et al., 2011). HEC1/2/3 are
also expressed in carpel marginal tissues (Gremski et al., 2007).
Expression of IND later becomes restricted to the valve margin
where it has a prominent role in lignification and separation layer
development necessary for dehiscence (Liljegren et al., 2004; Girin
et al., 2011). Sequence analyses of Brassica rapa IND (BraA.IND.a)
and Arabidopsis IND identified a shared 400 bp sequence in the
cis-regulatory regions with high similarity (Girin et al., 2010).
This region was able to direct expression in the valve margin
and its expression was regulated by FUL and SHP1/2 (Liljegren
et al., 2000, 2004; Ferrándiz et al., 2000a; Girin et al., 2010). It
is likely that this 400 bp region in the cis-regulatory region of
Brassicaceae INDs was integral for the neofunctionalization of
IND in dehiscence zone development.

REPLUMLESS ORTHOLOGS DIVERSIFIED IN THE ANGIOSPERMS
REPLUMLESS (RPL) belongs to the TALE class of homeodomain
proteins closely related to BELL (Roeder et al., 2003; Hake et al.,
2004). This group of proteins has been termed BELL-Like home-
odomain (BLH) proteins and have a homeodomain near the
C terminus and a MEINOX INTERACTING DOMAIN (MID)
near the N terminus (Hake et al., 2004; Hay and Tsiantis, 2009).
The MID domain is composed of the SKY and BEL domains,
which has also been largely defined as a bipartite BEL domain
(Figure 10; Mukherjee et al., 2009). The MID domain, as its
name indicates, is important for interacting with the MEINOX
domain of the other class of TALE homeodomain proteins,
KNOX. Heterodimers between KNOX and BLH are thought to
give them specificity in their developmental roles. There are 13
BLH proteins in Arabidopsis and the most closely related paralog
to RPL in Arabidopsis is PNF (Hake et al., 2004).

We identified PNF and RPL orthologs throughout the
angiosperms indicating that a duplication occurred at the base
of the angiosperms before they diversified (Figure 11). RPL
is integral for replum formation in the Arabidopsis fruit and
represses SHP1/2 (Roeder et al., 2003). However, RPL [also called
PENNYWISE (PNY), BELLRINGER (BLR), and VAAMANA] has
multiple roles in Arabidopsis development including meristem

development, inflorescence, and fruit development (Byrne et al.,
2003; Roeder et al., 2003; Smith and Hake, 2003; Bhatt et al., 2004;
Hake et al., 2004). Therefore, it is difficult to extrapolate possi-
ble roles for the RPL orthologs that we identified. In Arabidopsis,
RPL represses SHP1/2 to keep valve margin identity to a few
cell layers (Roeder et al., 2003). These cell layers later become
lignified and are important for fruit dehiscence. Interestingly, a
RPL ortholog in rice (qSH1) is responsible for seed shattering.
Grains have a lignified layer at the base where the grains will
abscise at maturity. In rice, qSH1 is mutated and this is correlated
with a loss of seed shattering in domesticated rice (Konishi et al.,
2006; Arnaud et al., 2011). In Arabidopsis, RPL represses SHP1/2,
which are the paralogous lineage of AGAMOUS (AG) (Roeder
et al., 2003; Kramer et al., 2004; Zahn et al., 2006). In addition,
BLR (RPL) represses AG in inflorescences and floral meristems
(Bao et al., 2004). This may be an ancient regulatory module that
was co-opted for carpel development in angiosperms. Analyses
of RPL orthologs and their interacting KNOX proteins outside of
the Brassicaceae are necessary to understand the role of RPL in
fruit development and how the Arabidopsis network evolved to
include RPL.

EVOLUTION OF THE FRUIT DEVELOPMENTAL NETWORK
We have shown that the proteins involved in the Arabidopsis fruit
regulatory network, namely FRUITFULL, SHATTERPROOF,
REPLUMLESS, ALCATRAZ, and INDEHISCENT have under-
gone independent duplication events at distinct times during
plant evolution. As a result the main regulators have changed in
number, coding sequence and likely in protein interactions across
angiosperms (Figure 12). Based on the reconstruction of all these
gene lineages we were able to identify the presence of homologs
of these genes across angiosperms. From our results it is clear
that most core eudicots have a gene complement nearly similar
to that present in the Brassicaceae, except for the lack of IND,
and the presence of only one copy of SHP genes and not two as
in Brassicaceae (Figure 12). Basal eudicots, monocots and basal
angiosperms seem to have a narrower set of gene copies, as many
duplications, coincide with the diversification of the core eudi-
cots. Nevertheless, taxon specific duplications have occurred, and
the effect of local duplicates may provide these lineages with some
functional flexibility and opportunities for neofunctionalization
and or subfunctionalization to occur.

We propose that a core developmental module consists of
FUL-like, AG, RPL, HEC3, and SPTlike-1 and these were co-opted
to play roles in basic fruit patterning and lignification. This is sup-
ported by the fact that many of the derived MADS box proteins
retain early roles in carpel development, for example SHP1/2 are
also involved in carpel fusion and transmitting tract development
(Colombo et al., 2010). Similarly, the bHLH proteins, are impor-
tant for carpel meristem development, for the development of
common carpel structures such as the transmitting tract, septum
and style (Groszmann et al., 2008, 2011; Girin et al., 2011). In
addition, RPL is also known to have pleiotropic effects in plant
development particularly in various plant meristems (Byrne et al.,
2003; Roeder et al., 2003; Smith and Hake, 2003; Bhatt et al., 2004;
Hake et al., 2004; Smith et al., 2004). Many of the MADS-box
protein homologs present in basal angiosperms, monocots, and
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FIGURE 12 | Overview of the fruit developmental gene network. (A)

Seed plant phylogeny with the time points for the AP1/FUL, STK/AG,
SPT/ALC, HEC3/IND, and RPL/PNF gene lineages duplications. (B)

Reconstruction of the fruit developmental network across selected
angiosperms. The only network functionally characterized is that of
Brassicaceae where FUL and RPL repress SHP1/2 to shape the fruit
wall, and SHP1/2 activate IND, SPT, and ALC to form the dehiscence
zone. All other networks are extrapolated from Arabidopsis. Functional

and protein–protein interaction data are necessary to validate these
hypothetical interactions. Proteins in black are those previously identified
or recovered in our analyses. Proteins in gray were not recovered from
databases and may have been lost in the respective taxa. Solid black
lines, validated protein–protein interactions; solid black arrows, validated
activation; solid T-bars, validated repression; dashed lines, putative
protein–protein interactions; dashed arrows, putative activation
interactions; dashed T-bars, putative repression.
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basal eudicots play pleiotropic functions that include floral meris-
tem and perianth identity (e.g., AP1/FUL proteins; Bowman et al.,
1993; Gu et al., 1998; Ferrándiz et al., 2000b; Berbel et al., 2001,
2012; Murai et al., 2003; Pabón-Mora et al., 2012, 2013b), ovule,
stamen, and carpel identity (STK/AG proteins; Jager et al., 2003;
Yellina et al., 2010; Hands et al., 2011; Carlsbecker et al., 2013).

Unraveling the evolution of the fruit developmental net-
work may provide some insight into the evolution of the
carpel, which is of great interest. Our sampling shows that basal
angiosperms have the simplest network with only one gene in
each gene lineage, resembling fruitless seed plants in this respect.
Gymnosperms have at least one member of each gene lineage with
the exception of AP1/FUL proteins. It is possible that the evolu-
tion of the AP1/FUL proteins in angiosperms was integral to the
evolution of the carpel. In addition, given the pleiotropy of the
core fruit module genes, comparative molecular genetic analyses
of these core genes will be necessary in basal angiosperms and
gymnosperms to better understand their potential roles in carpel
and fruit evolution in angiosperms.

One key element to better understand the evolution of the net-
work will be the assessment of the interactions, a poorly studied
aspect, yet critical, as changes in partners between pre-duplication
and post-duplication proteins may have provided core eudicots
with a more robust fruit developmental network. For example,
it is clear that FUL and FUL-like share a number of floral and
inflorescence protein partners but it is unclear how they interact
with fruit proteins (Moon et al., 1999; Ciannamea et al., 2006;
Leseberg et al., 2008; Liu et al., 2010); the same has been reported
for AG and SHP proteins (Leseberg et al., 2008). In addition, the
bHLH proteins are known to interact with each other to regulate
downstream targets (Groszmann et al., 2008, 2011; Girin et al.,
2011). However, SPT is known to also form homodimers and it
may be that species that we have identified with a single SPT/ALC
ortholog are able to form homodimers as well but may be lim-
ited in the regulation of diverse downstream targets (Groszmann
et al., 2011). The expression of ALC in the valve margin is regu-
lated by SHP1/2 and FUL. There are shared E box elements in ALC
and SPT, which are known to be important for SPT expression in
valve margin (Groszmann et al., 2011). Therefore, it is likely that
differences in protein interactions and their downstream targets
are important for evolution of fruit network.

We have analyzed the evolution of protein families known to
be the core network controlling fruit development in Arabidopsis
and by doing so we have been able to identify three main lines of
urgent research in fruit development: (1) The functional charac-
terization of fruit development genes other than the MADS box
members, as there are nearly no mutant phenotypes for bHLH
or RPL genes outside of Arabidopsis. (2) Assessing the regulatory
network by testing interactions among putative protein partners
in all major groups of flowering plants to understand how the
core of the ancestral fruit developmental network evolved to build
fruits with diverse morphologies and (3) The morpho-anatomical
detailed characterization of closely related taxa with divergent
fruit types across angiosperms, to better understand what mech-
anisms are responsible for changes in fruit development and
result in homoplasious seed dispersal syndromes, and to postulate
proteins from the network likely controlling such changes.
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