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In the past decade, small secreted peptides have proven to be essential for various
aspects of plant growth and development, including the maintenance of certain stem cell
populations. Most small secreted peptides identified in plants to date are recognized by
membrane-localized receptor kinases, the largest family of receptor proteins in the plant
genome. This peptide-receptor interaction is essential for initiating intracellular signaling
cascades. Small secreted peptides often undergo post-translational modifications and
proteolytic processing to generate the mature peptides. Recent studies suggest that, in
contrast to the situation in mammals, the proteolytic processing of plant peptides involves
a number of complex steps. Furthermore, NMR-based structural analysis demonstrated
that post-translational modifications induce the conformational changes needed for full
activity. In this mini review, we summarize recent advances in our understanding of how
small secreted peptides are modified and processed into biologically active peptides and
describe the mature structures of small secreted peptides in plants.
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INTRODUCTION
Studies of small secreted peptides have flourished since the char-
acterisation of insulin from animals in the early 1920s. The
importance of small secreted peptides in cell-to-cell communi-
cation has been recognized in animals for many years. However,
in plants, interest in small secreted peptides has been over-
shadowed by that in lipophilic non-peptide hormones, such
as auxin and cytokinin (Matsubayashi and Sakagami, 2006;
Betsuyaku et al., 2011; Miyawaki et al., 2013). The first plant small
secreted peptide to be reported, tomato systemin (TomSys), was
discovered in wounded tomato leaves (Green and Ryan, 1972;
Pearce et al., 1991). This peptide activates the expression of pro-
teinase inhibitors (Ryan, 1974), which interfere with the ability of
attacking pests to digest protein (Ryan, 1990). The biochemical
purification of TomSys based on its proteinase inhibitor-inducing
activity led to the identification of an 18-amino acid polypeptide
(Pearce et al., 1991). Over the past decade or two, the identi-
fication of several small secreted peptides has revealed that a
variety of important developmental processes in plants are medi-
ated by small secreted peptides. For example, small secreted
peptides are critical players in the maintenance of stem cell
populations in shoots and roots (Fletcher et al., 1999; Ito et al.,
2006; Matsuzaki et al., 2010; Yamada and Sawa, 2013), in self-
incompatibility (Schopfer et al., 1999; Takayama et al., 2000), and
in stomatal patterning (Hara et al., 2007). In plants, small secreted
peptides are mainly recognized by a membrane-associated leucine-
rich repeat receptor-like kinase (LRR-RLK). Phytosulfokine (PSK),
which was identified as a growth-promoting signal involved in
the conditioning effect of plant cell cultures (Matsubayashi and
Sakagami, 1996), was initially demonstrated to directly interact
with an LRR-RLK (Matsubayashi et al., 2002). The PSK receptor,

PSKR1, was purified from microsomal fractions of Daucus carota
(carrot) cells by ligand-based affinity chromatography (Matsub-
ayashi et al., 2002). To date, several ligand (peptide)-receptor pairs
have been identified based on biochemical and genetic analyzes
(Hirakawa et al., 2008; Ogawa et al., 2008; Uchida et al., 2012).
This interaction between a peptide and receptor kinase is a pivotal
mechanism for mediating signal input into intracellular signaling
pathways.

Small secreted peptides often undergo post-translational mod-
ifications, including tyrosine sulfation, proline hydroxylation,
hydroxyproline arabinosylation, and proteolytic processing, to
yield the mature peptides. These processing steps are thought
to affect the affinity of the peptides for their cognate recep-
tors and their ability to activate these receptors (Ogawa et al.,
2008; Okamoto et al., 2013). In this mini review, we summa-
rize recent advances in our understanding of how small secreted
peptides are modified and processed into biologically active pep-
tides. We also describe recent NMR-based structural analyzes
of plant small secreted peptides and discuss the relationship
between the functional specificity and structure of small secreted
peptides.

OVERVIEW OF THE BIOSYNTHETIC PATHWAY OF SECRETED
PEPTIDES
Plant small secreted peptides are classified into three groups based
on their biosynthetic pathway: small post-translationally modified
peptides, cysteine-rich peptides, and intermediate-type peptides
(Matsubayashi, 2011; Murphy et al., 2012; Figure 1). The genes
encoding the secreted peptides are initially transcribed and then
translated as pre-propeptides. This process is followed by the
removal of the N-terminal signal peptide by signal peptidase. The
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FIGURE 1 | Maturation processes of small secreted peptides. Based on their post-translational modification and processing from pre-propeptides, small
secreted peptides in plants are divided into three groups: small post-translationally modified peptides, cysteine-rich peptides, and intermediate-type peptides
(Matsubayashi, 2011; Murphy et al., 2012).

produced propeptides are further modified by several enzymes,
yielding functional mature peptides (Figure 1).

The first group of small secreted peptides, the small post-
translationally modified peptides, consists of <20 amino acids.
The propeptides corresponding to the mature peptides con-
sist of approximately 70–120 amino acids and contain few or
no cysteine residues. Several small post-translationally modi-
fied secreted peptides involved in plant growth and development
have been identified, including PSK (Matsubayashi and Sakagami,
1996), PLANT PEPTIDE CONTAINING SULFATED TYROSINE
1 (PSY1; Amano et al., 2007), CLV3/EMBRYO SURROUNDING
REGION-RELATED (CLE; Fletcher et al., 1999; Ito et al., 2006;
Ohyama et al., 2009; Kiyohara and Sawa, 2012), C-TERMINALLY
ENCODED PEPTIDE (CEP; Ohyama et al., 2008; Delay et al.,
2013; Roberts et al., 2013), and ROOT GROWTH FACTOR
(RGF)/GOLVEN (GLV)/CLE-LIKE (CLEL; Matsuzaki et al., 2010;
Meng et al., 2012; Whitford et al., 2012).

The second group of small secreted peptides, cysteine-rich pep-
tides, are characterized by the presence of an even number of
cysteine residues (typically six or eight), which are required for
the formation of disulfide bonds that maintain the mature pep-
tide in an active conformation (Figure 1; Pearce et al., 2001). The
cysteine-rich peptides include the S-locus cysteine-rich protein/S-
locus protein 11 (SCR/SP11; Schopfer et al., 1999; Takayama et al.,
2001) and LUREs (Okuda et al., 2009).

The third group, the intermediate-type peptides, is intermedi-
ate between the small post-translationally modified peptides and
the cysteine-rich peptides. Although intermediate-type peptides
have intramolecular disulfide bonds, these peptides are also pro-
duced via proteolytic processing (Figure 1). In these peptides,
the cysteine residues are located within the C-terminal region of
the propeptides. Stomagen, which belongs to the EPIDERMAL
PATTERNING FACTOR (EPF) peptide family and is a positive
regulator of stomatal density, is a representative example of this
group (Hara et al., 2007; Sugano et al., 2010). Rapid alkalinization
factor 1 (RALF), which is essential for cell expansion and is recog-
nized by the FERONIA (FER) receptor, is another example of an
intermediate-type peptide (Haruta et al., 2014).

POST-TRANSLATIONAL MODIFICATIONS
Three types of post-translational modification, i.e., tyrosine
sulfation, proline hydroxylation, and hydroxyproline arabinosy-
lation, are involved in the maturation of small post-translationally
modified peptides in plants.

Post-translational modification by tyrosine sulfation occurs
widely in multicellular eukaryotic organisms (Kehoe and Bertozzi,
2000; Matsubayashi, 2011). Tyrosine sulfation modulates the bio-
logical activity of proteins, the proteolytic processing of bioactive
peptides, and extracellular protein-protein interactions (Kehoe
and Bertozzi, 2000; Matsubayashi, 2011). This type of modifi-
cation is mediated by a Golgi-localised enzyme named tyrosyl
protein sulfotransferase (TPST; Moore, 2003). TPST catalyzes
the transfer of a sulfonate moiety from 3′-phosphoadenosine-5′-
phosphosulfate (PAPS) to the hydroxyl group of a protein-bound
tyrosine residue to form a tyrosine O-sulfate ester and 3′-
phosphoadenosine-5′-phosphate (PAP; Moore, 2003). In plants,
an Asp-Tyr sequence is known to be a minimum requirement for
tyrosine sulfation (Matsubayashi, 2012). Plant TPST was identi-
fied by affinity purification using a PSY1-immobilized column
(Komori et al., 2009). Although both animal and plant TPSTs
catalyze identical sulfate transfer reactions using the same co-
substrate, PAPS, they have no amino acid sequence similarity.
Furthermore, plant TPST is a type I transmembrane protein with
a C-terminal transmembrane domain, whereas animal TPSTs are
type II transmembrane proteins with N-terminal transmembrane
domains (Beisswanger et al., 1998; Ouyang et al., 1998; Komori
et al., 2009). Three tyrosine-sulfated peptides, PSK, PSY1, and
RGF1, have been identified in plants to date (Matsubayashi and
Sakagami, 1996; Amano et al., 2007; Matsuzaki et al., 2010).

Proline hydroxylation is catalyzed by prolyl-4-hydroxylase
(P4H), which is a type II membrane protein with an N-terminal
transmembrane domain and is localized in both the endoplasmic
reticulum (ER) and Golgi (Myllyharju, 2003). P4H is a member
of a family of 2-oxoglutarate-dependent dioxygenases (Mylly-
harju, 2003). Thirteen genes encoding P4H have been identified
in Arabidopsis thaliana, but no substrate consensus sequence has
been established for the proline hydroxylation of secreted peptides

Frontiers in Plant Science | Plant-Proteomics July 2014 | Volume 5 | Article 311 | 2

http://www.frontiersin.org/Plant_Proteomics/
http://www.frontiersin.org/Plant_Proteomics/archive


Tabata and Sawa Small secreted peptides in plants

(Matsubayashi, 2012). To date, hydroxyproline residues have been
found in PSY1 (Amano et al., 2007), TDIF (Ito et al., 2006), CLV3
(Kondo et al., 2006; Ohyama et al., 2008), and RGF1 (Matsuzaki
et al., 2010).

The hydroxyproline residues of several secreted peptide sig-
nals are further modified with an O-linked L-arabinose chain
(tri-arabinoside) via β-1,2-bonds (Amano et al., 2007; Ohyama
et al., 2009). Hydroxyproline O-arabinosyltransferase (HPAT) was
recently identified and purified in A. thaliana (Ogawa-Ohnishi
et al., 2013). HPAT is a Golgi-localised transmembrane protein
that is structurally similar to members of the glycosyltrans-
ferase GT8 family and catalyzes the transfer of L-arabinose to the
hydroxyl group of hydroxyproline residues (Ogawa-Ohnishi et al.,
2013). Of the three HPAT genes present in the A. thaliana genome,
HPAT3 plays the central role in the arabinosylation of CLE pep-
tides (Ogawa-Ohnishi et al., 2013). In addition to hydroxyproline
O-arabinosyltransferase, the enzymes that catalyze the elongation
of arabinose residues are thought to be encoded by several genes,
including RRA3 (Velasquez et al., 2011) and XEG113 (Gille et al.,
2009). RRA3, and XEG113, members of GT-family-77, the loss of
function of which results in reduced root hair growth (Gille et al.,
2009; Velasquez et al., 2011).

In cysteine-rich peptides, correct disulfide bond formation is
essential for maintaining the mature peptide in an active con-
formation (Pearce et al., 2001). In eukaryotes, protein disulfide
isomerases (PDIs) are localized to the ER and catalyze disulfide
bond formation (Gruber et al., 2006). Genomic database searches
have shown that there are more than 100 PDI and PDI-like (PDIL)
genes in Arabidopsis (Houston et al., 2005). However, whether PDI
and PDIL contribute to disulfide bond formation in small secreted
peptides remains unclear.

PROTEOLYTIC PROCESSING
Proteolytic processing is critical for the formation of mature func-
tional peptides from pro-peptides of small post-translationally
modified peptides and some cysteine-rich peptides. In animals,
cleavage of the precursor polypeptide has been shown to occur on
the C-terminal side of paired basic amino acids by subtilisin/kexin-
like pro-protein and pro-hormone convertases (Rehemtulla and
Kaufman, 1992). However, the peptide processing mechanisms
differ between animals and plants. Specifically, mature peptides in
animals are usually generated after an initial proteolytic processing
step, whereas plant peptides are processed through multiple steps
(Rehemtulla and Kaufman, 1992; Matsubayashi, 2012).

A recent study showed that SUPPRESSOR OF LLP1 1 (SOL1),
a putative Zn2+ carboxypeptidase previously isolated as a sup-
pressor of the CLE19 over-expression phenotype (Casamitjana-
Martinez et al., 2003), promotes the C-terminal processing of the
CLE19 proprotein to produce functional CLE19 peptide (Tamaki
et al., 2013). SOL1 possesses enzymatic activity that removes the
C-terminal arginine residue of CLE19 and of some other CLE
proproteins in vitro, and the SOL1-dependent cleavage of the C-
terminal arginine residue is necessary for CLE19 activity in vivo
(Tamaki et al., 2013). Another biochemical study, using extracts
from cauliflower, detected serine protease activity that cleaves the
CLV3 proprotein at the 70th arginine residue, which is located
in the N-terminus of the CLE domain (Ni and Clark, 2006; Ni

et al., 2011). A few amino acid residues, particularly the arginine
residue located at the N-terminus of the CLE domain, are thought
to be crucial for CLV3 proprotein cleavage (Ni et al., 2011). More-
over, xylem fluid from Glycine max (soybean) and suspension
culture fluid from Medicago truncatula (barrel medic) exhibited
endoproteolytic activity that was able to produce a functional pep-
tide from the 31-amino-acid CLE36 proprotein (Djordjevic et al.,
2011). A subtilisin-like Ser protease, AtSBT1.1, is required for the
processing of the PSK4 precursor (Srivastava et al., 2008). How-
ever, PSK4 could not be directly processed to the mature peptide
from its precursor via AtSBT1.1 protease. These reports suggest
that the proteolytic processing of plant peptides involves a num-
ber of complex steps that occur in intercellular and/or intracellular
compartments (Tamaki et al., 2013).

STOMATAL DENSITY AND DISTRIBUTION (SDD1) is a
subtilisin-like extracellular protease that is involved in the pro-
teolytic processing of cysteine-rich peptides and is thought to play
a role in the processing of EPF1 (Berger and Altmann, 2000).
Genetic experiments showed that epf1 sdd1 double mutant exhib-
ited more severe abnormalities in stomatal density than either epf1
or sdd1 single mutants (Hunt and Gray, 2009). Thus, an additional
enzyme is thought to contribute to the processing of EPF peptides
(Hunt and Gray, 2009).

STRUCTURES OF SECRETED PEPTIDES
Recent structural studies revealed the molecular basis of the
biological activities of plant small secreted peptides. The active
form of the CLV3 peptide, which belongs to the small post-
translationally modified group of small secreted peptides, has
been characterized by NMR-based structural analysis (Shinohara
and Matsubayashi, 2013). Arabinosylation of the hydroxypro-
line residues is an essential modification for the activity of the
CLV3 peptide (Ohyama et al., 2009; Shinohara and Matsubayashi,
2013; Figure 2A). A comparison of the structures of the non-
arabinosylated CLV3 peptide and a β-1,2-linked tri-arabinosylated
CLV3 peptide [(Ara3)CLV3] revealed that the linear arabinose
chain adopts a helical conformation that turns toward the C-
terminal side of the peptide (Shinohara and Matsubayashi, 2013).
Thus, this hydroxyproline-bound tri-arabinoside induces a con-
formational alteration in the peptide backbone, turning it toward
the C-terminus via steric repulsion, and contributes to the full
biological activity of this peptide. The biological activity of the
CLV3 peptide is progressively increased with increasing arabinose
chain length (Shinohara and Matsubayashi, 2013). The struc-
ture of another small post-translationally modified peptide, M.
truncatula CEP1 (MtCEP1), was also analyzed by NMR (Bobay
et al., 2013). The solution structure shows that MtCEP1 contains a
β-turn-like conformation (Bobay et al., 2013), although the corre-
lation between the structure and biological function of this peptide
is unclear. Further research should analyze the contribution of
each amino acid residue to the biological activity of the peptide.

The structure of SCR/SP11, which belongs to the cysteine-rich
peptide group of small peptides, has been determined. SCR/SP11
folds into an α/β sandwich motif that resembles that of plant
defensins (Mishima et al., 2003; Figure 2B). The L1 loop con-
nects the helix and strand β2, and this loop contains a high degree
of variation depending on the insertion and deletion mutations in

www.frontiersin.org July 2014 | Volume 5 | Article 311 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Proteomics/archive


Tabata and Sawa Small secreted peptides in plants

FIGURE 2 | Structures of small secreted peptides. (A) The mature form
of the CLAVATA3 peptide. Hydroxylated proline residues are indicated by
asterisks. (B) Ribbon models of SCR/SP11 and stomagen presented from
two perspectives. The disulfide bonds are depicted as ball-and-stick models
with residue name. These models were generated using MOLMOL (Koradi
et al., 1996).

the encoding SCR/SP11 allele (Mishima et al., 2003; Figure 2B).
Structure-based sequence alignment and homology modeling of
SCR/SP11 variants encoded by different alleles suggest that the
loop region could serve as a specific binding site for receptors
(Mishima et al., 2003).

The structure of stomagen, an intermediate-type small secreted
peptide, has also been determined. Stomagen, which is a member
of the EPF family of peptides and is composed of a loop and
a scaffold containing three disulfide bonds, contains two anti-
parallel β-strands connected by a 14-residue loop (Ohki et al.,
2011; Figure 2B). The loop spans a largely divergent region in
the amino acid sequence alignment of EPF family members, and
is thus referred to as the hypervariable region (Ohki et al., 2011).
A loop region swapping analysis of stomagen and EPF2 demon-
strated that the loop confers functional specificity on EPF peptides

(Ohki et al., 2011). Similar to cysteine-rich peptides, the loop
region contains charged residues that commonly occur at protein–
protein interfaces (Figure 2B; Jones and Thornton, 1996). These
findings support the hypothesis that these loop regions are crucial
for the efficient and specific binding of the peptides to their recep-
tors and thus for the biological activities of these peptides. These
structural approaches to elucidating the peptide structures that
contribute to activity could be adapted for the analysis of other
secreted peptides.

CONCLUSION
Small secreted peptides have critical roles in cell-to-cell commu-
nication during plant growth and development. Recent studies
of secreted peptides revealed that post-translational modifica-
tions and proteolytic processing are essential for the biological
activity and functional specificity of these peptides. However,
our understanding of these maturation steps is incomplete. The
identification of enzymes, including peptidases, involved in post-
translational modification and proteolytic processing will unravel
the maturation steps of plant secreted peptides. Biochemical
approaches and rapid genetic screens for suppressors/enhancers,
using next-generation sequencing technology may be effective
strategies for identifying such proteins (Casamitjana-Martinez
et al., 2003; Komori et al., 2009; Tabata et al., 2013), as was success-
fully demonstrated for hydroxyproline O-arabinosyltransferase
(Ogawa-Ohnishi et al., 2013) and carbosypeptidase (Tamaki et al.,
2013). Furthermore, precise spatiotemporal expression analysis
of secreted peptides and the identification of the cognate recep-
tor(s) for each peptide will provide novel insight into the molecular
functions of plant small secreted peptides.
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