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As a special phytopathogen, Agrobacterium tumefaciens infects a wide range of plant hosts
and causes plant tumors also known as crown galls. The complexity of Agrobacterium–
plant interaction has been studied for several decades. Agrobacterium pathogenicity is
largely attributed to its evolved capabilities of precise recognition and response to plant-
derived chemical signals. Agrobacterium perceives plant-derived signals to activate its
virulence genes, which are responsible for transferring and integrating itsTransferred DNA
(T-DNA) from its Tumor-inducing (Ti) plasmid into the plant nucleus. The expression of T-
DNA in plant hosts leads to the production of a large amount of indole-3-acetic acid (IAA),
cytokinin (CK), and opines. IAA and CK stimulate plant growth, resulting in tumor formation.
Agrobacterium utilizes opines as nutrient sources as well as signals in order to activate its
quorum sensing (QS) to further promote virulence and opine metabolism. Intriguingly,
Agrobacterium also recognizes plant-derived signals including γ-amino butyric acid and
salicylic acid (SA) to activate quorum quenching that reduces the level of QS signals, thereby
avoiding the elicitation of plant defense and preserving energy. In addition, Agrobacterium
hijacks plant-derived signals including SA, IAA, and ethylene to down-regulate its virulence
genes located on the Ti plasmid. Moreover, certain metabolites from corn (Zea mays) also
inhibit the expression of Agrobacterium virulence genes. Here we outline the responses of
Agrobacterium to major plant-derived signals that impact Agrobacterium–plant interactions.
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INTRODUCTION
Agrobacterium is a genus of Gram-negative bacteria that uses hor-
izontal gene transfer to cause tumors in many plant species with
agricultural and economic importance including woody orna-
mental shrubs (rose), vines (grape), shade trees, fruit trees (cherry,
berry, walnut), and herbaceous perennials. Agrobacterium tume-
faciens is the most commonly studied species in this genus. A.
tumefaciens causes typical crown-gall diseases. The disease man-
ifests as a tumor-like growth or gall usually at the junction of
the root and shoot. Infection by the species Agrobacterium vitis
results in cane gall on grapevines while A. rhizogenes causes exces-
sive formation of hairy roots or root tumors. Agrobacterium–plant
interaction is an excellent paradigm for studying both plant and
bacterial responses, as well as the role of chemical signaling in
these processes. A. tumefaciens–plant interaction is now relatively
well-understood as a result of significant findings made over the
past four decades (for reviews refer to Gelvin, 2003; Brencic and
Winans, 2005; McCullen and Binns, 2006; Yuan and Williams,

Abbreviations: AS, acetosyringone; chv genes, chromosome encoded virulence
genes; CK, cytokinin; DIMBOA, 2,4-dihydroxy-7-methoxy-2H-1,4-benzixazin-
3(4H)-one; ET, ethylene; GABA, γ-amino butyric acid; IAA, indole acetic acid;
MDIBOA, 2-hydroxy-4,7-dimethoxybenzoxazin-3-one; QS, quorum sensing; SA,
salicylic acid; T3SS, type III secretion system; T4SS, type IV secretion system, T6SS,
type VI secretion system; T-DNA, transferred DNA; Ti-plasmid, tumor-inducing
plasmid; vir genes, virulence genes.

2012; Pitzschke, 2013). The virulence proficiency of A. tumefa-
ciens is dependent on the presence of the Tumor-inducing (Ti)
plasmid, which harbors a Transferred DNA (T-DNA) defined
by two direct repeat sequences of approximately 25 base pairs,
termed the left and right borders. Most studies have made use
of nopaline metabolizing strains C58 and T37 (carrying plasmids
pTiC58 and pTiT37, respectively) or the octopine utilizing strain
A6 (carrying pTiA6). As a ubiquitous soil bacterium, Agrobac-
terium is capable of two lifestyles: independent free-living or
acting as a pathogen in association with a plant host. When living
independently, Agrobacterium virulence is essentially silent. Upon
detection of plant-derived signals in the rhizosphere, Agrobac-
terium activates its chromosomal virulence genes (chv genes) and
Ti plasmid encoded virulence genes (vir genes). Vir genes are
directly involved in T-DNA cleavage from the Ti plasmid, T-
DNA processing, transferring and integration into plant nuclei,
conversely, Chv genes are not directly involved in the T-DNA
transfer process. Instead, chv genes play important roles in signal
transduction necessary for Agrobacterium pathogenicity. Since T-
DNA carries genes for the synthesis of indole-3-acetic acid (IAA)
and cytokinin (CK; also called oncogenic genes), their expres-
sion in plants leads to the production of a large amount of plant
hormones that promote uncontrolled cell division and undiffer-
entiated growth of plant tissues, resulting in the formation of a
plant tumor and permanent plant genetic transformation.
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In addition to genes responsible for IAA and CK production,
T-DNA also contains genes for the synthesis of opines (unusual
amino acid and sugar condensates). Opines produced by trans-
formed plant cells can be metabolized by Agrobacterium as a
source of nutrients. In addition, opines act as signals that acti-
vate Agrobacterium quorum sensing (QS). QS is a special form of
cell-to-cell communication by which microorganisms synthesize,
release, and perceive diffusible signals such as N-(3-oxooctanoyl)-
DL-homoserine lactone (3OC8-HSL). QS enables a single cell to
sense the number of surrounding cells (cell density) and coor-
dinates their collective behavior. In Agrobacterium, QS plays
important roles in interaction with plant hosts, which will be
discussed in later sections.

Interestingly, T-DNA encoded oncogenic genes are neither
physiologically nor biologically required for the T-DNA trans-
fer process. Therefore, T-DNA encoded genes can be deleted and
replaced with genes of interest, and such genetically modified “T-
DNA”can still be transferred, integrated and expressed in the plant
cell. This unique ability of inter-kingdom DNA transfer makes
Agrobacterium an important tool for genetically modifying plants,
allowing for incorporation of useful traits like resistance to insects
and herbicides, production of recombinant vaccines, proteins, etc.
In addition, T-DNA is distally located from vir genes required for
T-DNA transfer process. Thus, T-DNA and vir genes can be sep-
arated onto two plasmids without affecting T-DNA transfer into
plant hosts. This feature prompted the design and construction
of binary vectors that greatly facilitate DNA manipulation and
plant transformation, especially considering the large size of the
Ti plasmid (over 200 kb).

Agrobacterium is capable of infecting/transforming a wide
variety of plant species including long-lived woody plants and
cultivated plants. However, plants vary greatly in their ability
to be infected/transformed by Agrobacterium, even among eco-
types within species, and the underlying molecular mechanisms
are poorly understood (Nam et al., 1997). To mount a successful
infection in nature, it is important for Agrobacterium to pre-
cisely and specifically recognize and respond to a combination
of plant-derived signals in the rhizosphere including acidity, plant
released sugars and plant-derived phenolic compounds (Stachel
et al., 1985; Brencic and Winans, 2005; McCullen and Binns, 2006;
Gelvin, 2012; Yuan and Williams, 2012; Pitzschke, 2013). Agrobac-
terium virulence programing and associations with plant hosts
are stringently and synergistically regulated by a combination of
plant-derived chemicals.

Agrobacterium RESPONSES TO ACIDIC SIGNALS CAUSED
BY PLANT-DERIVED CHEMICALS IN THE RHIZOSPHERE
The rhizosphere is the narrow region (within millimeter range
of roots) of soil that is directly influenced by root exudates
and is densely populated by soil microorganisms. Rhizosphere
is rich in not only plant-derived but microbe-derived signals as
well (Winans, 1992; Phillips et al., 2004; Bais et al., 2005). Plants
routinely secrete organic acids such as lactic, citric, oxalic, and
malic acids as well as other secondary metabolites, resulting in
acidic rhizosphere conditions (Rivoal and Hanson, 1994; Xia
and Roberts, 1994; Walker et al., 2003; Phillips et al., 2004; Bais
et al., 2005; Wang et al., 2006; Huckelhoven, 2007; Badri and

Vivanco, 2009). Upon wounding, plants release phenolic com-
pounds as well as neutral and acidic sugars necessary to repair
damaged tissue acidifying the rhizosphere (Winans, 1992). There-
fore the rhizosphere, where Agrobacterium primarily infects plant
hosts, is typically an acidic niche driven by various plant-released
chemicals.

Upon close proximity to a suitable plant host in the rhizosphere,
acidic conditions and plant-derived chemicals play important
roles in initiating the Agrobacterium virulence program, which
involves various Agrobacterium regulatory factors and signaling
pathways (Winans, 1992). A chromosomally encoded che cluster
(chemotaxis) allows A. tumefaciens to be attracted to plant-derived
chemicals in the rhizosphere (Wright et al., 1998). In addition,
three Agrobacterium chromosomally encoded genes chvA, chvB,
and exoC are involved in synthesis of extracellular oligosaccha-
rides, such as cyclic 1,2-b-D-glucan, that allows Agrobacterium to
attach to plant hosts (Cangelosi et al., 1989). Upon perception
of acidity characteristic of the rhizosphere, Agrobacterium mounts
both a conserved response as well as a signaling specific response to
infect plant hosts. This conserved response allows Agrobacterium
to adapt to the rhizosphere niche by modulating metabolism and
cellular adaptation, such as the induction of genes coding for
cell envelope synthesis, stress response, transporters of sugars and
peptides (Yuan et al., 2008b).

The signaling specific response to acidity is mediated by
the chromosomally encoded ChvG/ChvI two-component sys-
tem, as well as other genes that allow Agrobacterium to initiate
its early virulence program (Yuan et al., 2008a). ChvG acts as
the sensor kinase while ChvI functions as the response regu-
lator (Winans, 1990, 1992; Chen and Winans, 1991; Charles
and Nester, 1993; Mantis and Winans, 1993; Li et al., 2002).
The ChvG/I system is believed to recognize acidity in the rhi-
zosphere and activates the expression of several virulence factors
including chvI, aopB encoding an outer membrane protein, katA
encoding a catalase, pckA encoding phosphoenol carboxyki-
nase, and the imp gene cluster encoding a type VI secretion
system (T6SS; Yuan et al., 2008a). A more recent study con-
firmed that Agrobacterium T6SS is indeed induced by acidity in
a ChvG/ChvI dependent manner (Wu et al., 2012). Perhaps most
interestingly, it was found that upon perception of acidic sig-
nals, several vir genes were also induced including virG, virE0,
and virH (Yuan et al., 2008a), consistent with the observation
that the ChvG/ChvI system activates the proximal promoter
(P2) of virG (Li et al., 2002). However, to be functional, VirG
requires phosphorylation signaling from another plant-derived
signal, e.g., plant-derived phenolic compounds, which will be dis-
cussed in the following section. It is noteworthy that in addition
to ChvG/I, another chromosomally encoded virulence gene, chvE,
is also involved in Agrobacterium response to acidity and plant-
derived sugars in the rhizosphere, which will also be discussed
later.

Agrobacterium RESPONSES TO PLANT-DERIVED PHENOLIC
COMPOUNDS
Originally it was believed that plant wounding was necessary
for Agrobacterium infection and pathogenicity. However, recent
advances have found that plant wounding is in fact not essential
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for Agrobacterium pathogenicity since unwounded plants can also
infected by Agrobacterium pathogens (Brencic and Winans, 2005).
Besides acidic signals, plant-derived phenolic compounds are
essential for the induction of Agrobacterium virulence (Stachel
et al., 1986). Moreover, phenolics serve as chemoattractants for
Agrobacterium (Parke et al., 1987; Melchers et al., 1989). Struc-
tural specificities of virulence inducing phenolics include the
presence of a benzene ring with a hydroxyl group at position
4 and a methoxy group at position 3 (Dixon and Paiva, 1995).
3,5-dimethoxyacetophenone (acetosyringone) and hydroxyace-
tosyringone were the first identified inducers of Agrobacterium
virulence (Stachel et al., 1985; Hess et al., 1991). The Agrobacterium
VirA/VirG two-component system located on the Ti plasmid
has been suggested to recognize acetosyringone as a host spe-
cific signal and activate vir gene expression (Winans et al., 1986;
Leroux et al., 1987; Shaw et al., 1988; Winans, 1990). The mem-
brane receptor VirA functions as a dimer with four domains; the
periplasmic, cytoplasmic linker, kinase, and receiver domains.
Upon phenolic signal perception, the linker domain of one VirA
subunit activates the kinase domain of the opposite dimerized
subunit by intermolecular phosphorylation (Chang and Winans,
1992; Turk et al., 1994; Toyoda-Yamamoto et al., 2000). How-
ever, a previous study has shown the binding of radiolabelled
phenolic compounds to two small proteins other than VirA and
controversy remains regarding the exact mechanism involved
in phenolic detection by VirA (Lee et al., 1992). Nevertheless,
the auto-phosphorylated sensor kinase VirA phosphorylates the
cytosolic response regulator VirG at the conserved Asp52 (Morel
et al., 1990; Lee et al., 1995). Phosphorylated VirG binds to a 12-
bp vir box located upstream of transcription start sites of vir
genes, thereby activating their transcription (Stachel et al., 1985;
Stachel and Nester, 1986; Jin et al., 1990a,b,c; Pazour and Das,
1990; Roitsch et al., 1990). In fact, phosphorylated VirG also acti-
vates its own expression by activating virG transcription at the
distal promoter (p1; Chang and Winans, 1992; Liu et al., 1992,
2005; Jia et al., 2002; Li et al., 2002; Yuan et al., 2008a; Wise et al.,
2010).

Vir genes of Agrobacterium are organized in several vir operons.
There are eight vir operons on the octopine-type Ti plasmid and
relatively fewer vir genes on the nopaline-type Ti plasmid (Stachel
and Nester, 1986; Rogowsky et al., 1987; Kalogeraki and Winans,
1998; Kalogeraki et al., 2000; Brencic and Winans, 2005). The vir
operons are typically organized as virH, virA, virB, virG, virC, virD,
virE, and virF transcriptional units (Brencic and Winans, 2005).
Vir genes code for a set of proteins with different functions such
as T-DNA excision and processing (virC and virD), coating and
protecting T-DNA during transfer (virE), formation of the type IV
secretion system (T4SS) responsible for the delivery of T-DNA to
plant cells (virB operon), and T-DNA integration into plant nucleus
(virE2 and virD4). A study by Cho and Winans (2005) revealed
that each gene on the Ti plasmid was modestly induced by plant-
derived phenolic signals, while the repABC operon, responsible for
Ti plasmid replication/partitioning, was significantly induced by
phenolic signals. This suggests that the copy number of the Ti plas-
mid is induced by plant-derived phenolics, which is confirmed by
direct binding of phosphorylated VirG to a 12-bp vir box upstream
of the repABC operon (Zhu et al., 2000; Pappas and Winans, 2003;

Cho and Winans, 2005). Apparently an increase in Ti plasmid copy
number enhances the dosage of vir genes responsible for T-DNA
transfer. A proteomic study corroborated VirA/VirG dependent
induction of vir genes by identifying 11 proteins that were signif-
icantly induced in response to acetosyringone, including proteins
constituting the T4SS, the single strand binding protein VirE2 that
is exported to the plant nucleus, and the trans-zeatin synthesiz-
ing protein Tzs (Lai et al., 2006). Moreover, responses to phenolic
inducers may be modulated by detoxification of these compounds
by VirH2. VirH2 was shown to play a role in the metabolism of sev-
eral phenolic compounds including ferulic acid, another inducer
of vir genes (Brencic et al., 2004).

Agrobacterium RESPONSES TO PLANT RELEASED SUGARS
IN THE RHIZOSPHERE
Agrobacterium detects and responds to plant-derived sugars
through a distinct signaling pathway involving VirA and a chro-
mosomally encoded periplasmic protein, ChvE (Cangelosi et al.,
1990). Expression of chvE is regulated by the LysR transcriptional
regulator (TraR) galactose-binding protein regulator (GbpR) in
the presence of sugars (Doty et al., 1993; Peng et al., 1998).
ChvE mediates Agrobacterium chemotaxis in response to aldose
monosaccharides such as galactose, glucose, arabinose, fucose,
xylose, and sugar acids. Importantly, ChvE binds plant-derived
sugars and subsequently interacts with the periplasmic domain of
VirA to stimulate vir gene expression (Cangelosi et al., 1990; He
et al., 2009; Hu et al., 2013). Mutations in the periplasmic domain
of VirA present the same phenotype as a ChvE mutant with both
mutants unable to infect specific plant hosts (Cangelosi et al., 1990;
Chang and Winans, 1992; Banta et al., 1994; Peng et al., 1998; Gao
and Lynn, 2005). Recent studies also suggest that the ability of
ChvE to recognize and bind different plant-derived sugars is vital
in determining the host range of Agrobacterium (Hu et al., 2013).
Interestingly, the sugar response in Agrobacterium has been found
to be linked with the acidity responses since the absence of sugars
or mutations in chvE disrupted acidic signaling. In addition, the
affinity of ChvE for sugar acids increases with a decrease in pH (Hu
et al., 2013), which reinforces an important role for acidity in mod-
ulating Agrobacterium virulence. It has been proposed that acidic
conditions, together with the presence of sugars and a functional
ChvE, promotes VirA–ChvE interactions required for efficient vir
gene induction (Shimoda et al., 1993; Toyoda-Yamamoto et al.,
2000; Gao and Lynn, 2005; Nair et al., 2011). However, mutations
in chvE that abolish sugar sensing do not abolish vir gene induc-
tion by acetosyringone, although ChvE is known to interact with
the periplasmic domain of VirA. This suggests ChvE and associ-
ated sugar perception play additive roles that further promote vir
gene expression in response to sugars and phenolic compounds,
while phenolics are essential vir gene inducing signals (Cangelosi
et al., 1990; He et al., 2009; Hu et al., 2013). Apart from its signaling
role, ChvE also has a role in sugar utilization as it delivers sugars
to the ABC transporter MmsAB (Hu et al., 2013).

BACTERIAL AND PLANT MOLECULES INVOLVED IN T-DNA
TRANSFER AND INTEGRATION
T-DNA transfer and integration into the plant nucleus is mediated
by a complex set of Agrobacterium and host proteins. As discussed
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in previous sections, Agrobacterium recognizes three main plant-
derived signals (acidity, phenolics, and sugars) and activates vir
genes. VirD1, a helicase, and VirD2, a site specific endonucle-
ase, are essential for nicking the Ti plasmid and the release of
T-DNA as a single stranded DNA (referred to as T-strand; Yanof-
sky et al., 1986; Wang et al., 1990). VirD4, the coupling protein, and
VirB1–VirB11, the mating-pore-formation components, together
constitute the trans-envelope channel and pilus of Agrobacterium
T4SS apparatus. In depth studies have assigned functional roles
to each protein of the T4SS complex; VirD4, VirB3, VirB4, and
VirB11 constitute the ATP-dependent translocation machinery,
VirB6–VirB10 form the channel and VirB1, VirB2, VirB5, and
VirB7 form the pilus (Cascales and Christie, 2003). The T-strand
is covalently attached by VirD2, which is subsequently bound
by VirD4 and VirB11 forming the T-complex. Current findings
suggest that such DNA binding by associated virulence proteins
(VirD4 and VirB11) stimulates ATP hydrolysis to produce a struc-
tural transition in the membrane channel protein VirB10. This
allows passage of the T-complex to the cell surface where it can
be directed to the T4SS pili, followed by delivery into the plant
cell by the T4SS apparatus (Cascales and Christie, 2003; Cas-
cales et al., 2013). Notably, many Gram-negative plant and animal
pathogenic bacteria employ a type III secretion system (T3SS)
to inject effector proteins directly into the cytosol of eukaryotic
cells and thus allow the manipulation of host cellular activities
to the benefit of the pathogen (Buttner and He, 2009). How-
ever, no T4SS organelles in Agrobacterium reminiscent of the basal
body of flagella or needle complexes of the T3SS were evident
(Christie, 2004). The exact process is still unknown regarding
how the T-DNA complex is delivered by T4SS into plant cells,
especially how the T-DNA complex passes through cell wall and
plasma membrane, subsequently moving through the cytoplasm
to the plant cell nucleus (Cascales and Christie, 2003; Gelvin,
2003).

T-DNA integration into plant nuclei is thought to occur
by hijacking various host systems including defense signaling,
cytoskeletal networking, molecular motors, nuclear import, pro-
teolytic degradation, chromatin targeting, and DNA repair to
ensure successful plant transformation (for review see Citovsky
et al., 2007). In the plant cytoplasm, the T-strand/VirD2 com-
plex is coated along its entire length by the VirE2 ssDNA-binding
protein that is transported into the plant cell independently
of the T-strand complex (Vergunst et al., 2000; Citovsky et al.,
2007). Both VirD2 and VirE2 carry plant nuclear localization
signals and together with host protein VIP1 (VirE2 interact-
ing protein 1), facilitate T-complex import into the plant cell
for host chromatin targeting (Citovsky et al., 1992; Tzfira et al.,
2001; Li et al., 2005; Djamei et al., 2007; Lacroix et al., 2008).
T-DNA is thought to attach to chromatin by interacting with
nucleosomal proteins and is released from the T-complex by pro-
teolytic removal of associated proteins (Magori and Citovsky,
2011). VirF, a bacterial F-box protein, also targets both VIP1 and
VirE2 for proteasome dependent degradation. The mechanism of
T-DNA integration into the plant genome is thought to occur
by illegitimate recombination; however, the details of many of
the molecular events within the plant cell and nucleus are still
unclear.

Agrobacterium METABOLIZES PLANT-DERIVED OPINES AS A
SOURCE OF NUTRIENTS
Besides IAA and CK, infected plant cells produce over 20 dif-
ferent kinds of opines that can be classified into four fami-
lies: octopine, nopaline, mannopine, and agrocinopine families
(Beck von Bodman et al., 1992; Fuqua and Winans, 1996b; Piper
et al., 1999). In fact, the most intensively studied Ti plasmids
are the octopine and nopaline types, named after the predomi-
nant opines synthesized by transformed plant cells. Octopine is
synthesized by the T-DNA-encoded enzyme octopine synthase
(Ocs), which condenses pyruvate with different amino acids to
produce octopine, lysopine, histopine, or octopinic acid (Dessaux
et al., 1998). Nopaline is generated by nopaline synthase (Nos)
in a similar condensation reaction involving αα-ketoglutaric acid
and either arginine or ornithine. Opines of the mannopine and
agrocinopine families are structurally more heterogeneous, which
contain sugar and phosphate groups in the case of agrocinopine.
Since plants cannot metabolize opines, transformed plant cells
accumulate and release opines into the rhizosphere. The pre-
cise mechanism by which opines are exuded from plant cells
is unknown, although the exudation of octopine and nopaline
appears to depend upon the product of T-DNA gene 6a. Never-
theless, opines are present on the plant (or tumor) surface and
are part of the soluble plant exudates released into the phylloplane
and rhizoplane (Savka and Farrand, 1992).

Agrobacterium Ti plasmids also contain genes for opine uptake
and catabolism that are located in the non-transferrable region,
e.g., occ and noc regions for octopine- and nopaline-type Ti
plasmids. In addition, Ti plasmids contain chemotaxic genes for
their corresponding opines (Beck von Bodman et al., 1992; Kim
and Farrand, 1997). Agrobacterium LysR-type transcriptional acti-
vator OccR (octopine catabolic regulator) and NocR (nopaline
catabolic regulator) recognize and bind to opines, subsequently
activating the expression of opine catabolic genes (Beck von Bod-
man et al., 1992; Wang et al., 1992). Agrobacterium metabolism
of agrocinopine is much more complicated. When agrocinopines
are present, the repressor agrocinopine catabolic regulator (AccR)
dissociates from the promoter, allowing for expression of the acc
operon responsible for agrocinopine metabolism. In addition, the
acc operon is activated in response to phosphate limitation (Kim
et al., 2008). Some of opine catabolic genes are also under regula-
tion of other factors, for example the presence of certain substrates
such as succinate (Hong et al., 1993). Although the rhizosphere
contains species other than Agrobacterium that are capable of
utilizing opines, they comprise of a very small minority of the
bacterial population (Nautiyal and Dion, 1990). Therefore, the
ability to use opines as a carbon, nitrogen, and energy source
provides distinct advantages to Agrobacterium in the rhizosphere
niche.

Agrobacterium QUORUM SENSING IS ACTIVATED BY
PLANT-DERIVED OPINES
In addition to serving as a nutrition source for Agrobacterium,
opines produced by transformed plant cells also activate Agrobac-
terium QS. In fact, the original study of Agrobacterium QS
was relevant to Ti plasmid conjugation. In soil or cultivation
at temperatures greater than 30◦C, the Ti plasmid is rapidly
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lost from Agrobacterium populations. Once infected by Agrobac-
terium, plant cells produce opines. In addition to activating genes
for opine metabolism, the NocR- or OccR-opine complex also
activates a LuxR-type TraR located on the Ti plasmid (Li and Far-
rand, 2000). When the diffusible QS signal N-(3-oxooctanoyl)-
DL-homoserine lactone (3OC8-HSL) reaches a threshold level
with high population density, TraR binds to 3OC8-HSL. The
TraR–3OC8-HSL complex activates traI, a LuxI-type 3OC8-HSL
synthase, and tra/trb genes coding for a second T4SS responsi-
ble for conjugal transfer of Ti plasmids (Piper et al., 1993; Zhang
et al., 1993; Fuqua and Winans, 1994; Hwang et al., 1994). Since
the Ti plasmid carries genes responsible for plant infection and
opine metabolism, avirulent Agrobacterium lacking the Ti plas-
mid becomes infectious and capable of opine metabolism by
acquiring the Ti plasmid through conjugation. Additionally, the
TraR–3OC8-HSL complex activates the repABC operon thereby
enhancing the replication and copy number of the Ti plasmid
(Fuqua and Winans, 1996a; White and Winans, 2007). TraR–
3OC8-HSL complex also activates the transcription of TraM, a
TraR antiactivator in both octopine- and nopaline-type strains
of Agrobacterium. TraM further modulates QS and Ti plasmid
conjugation in the rhizosphere (Hwang et al., 1999). Therefore,
the initial infection and T-DNA transfer leads to the synthesis of
opines in plant cells. Opines activate the Agrobacterium TraR/TraI
QS system, which activates Ti plasmid conjugation and enhances
Ti plasmid copy number (up to eightfold). This typical posi-
tive feedback regulation is advantageous for maximal infection of
plant hosts and opine metabolism (Zhu and Winans, 1999, 2001;
Pappas and Winans, 2003; Cho and Winans, 2005; Pinto et al.,
2012).

Agrobacterium QS IS FURTHER MODULATED BY OTHER
PLANT-DERIVED SIGNALS
Agrobacterium QS is well regulated not only for QS signal pro-
duction, but also for QS signal degradation, also known as
quorum quenching. γ-amino butyric acid (GABA) significantly
increases in wounded plant tissues and acidic conditions. GABA
also accumulates in plants infected by Agrobacterium (Chevrot
et al., 2006). In addition, proline significantly accumulates in plant
tumors but neither in wounded nor healthy tissues (Deeken et al.,
2006). The Agrobacterium proline/GABA receptor atu2422 and
ABC-transporter braE (atu2427) are required for GABA and pro-
line uptake. GABA activates transcription of the attKLM operon
located on the second plasmid of Agrobacterium. AttK is a NAD
dependent dehydrogenase. AttL is a alcohol dehydrogenase and
AttM, a γ-butyrolactonase, breaks down the Agrobacterium QS sig-
nal 3OC8-HSL. Proline is a competitive antagonist of GABA and
is also taken up through the Atu2422-Bra ABC transporter system
(Wachter et al., 2003; Haudecoeur et al., 2009). It was found that
plants with relatively higher proline levels present bigger tumors
and severe disease symptoms, whereas those with relatively high
GABA attenuated Agrobacterium pathogenesis. This is likely a
result of the pathogen’s enhanced virulence through QS that is
negatively regulated by GABA (Brugiere et al., 1999). Furthermore,
it was found that a short interfering RNA, AbcR1, targets the ribo-
some binding site of atu2422 and negatively affects its translation
(Wilms et al., 2011, 2012).

Recent studies revealed that the plant defense signal salicylic
acid (SA) also activates the attKLM operon thereby down-
regulating Agrobacterium QS (Yuan et al., 2007, 2008a). It was
suggested that down-regulation of QS during the initial stages of
infection benefits Agrobacterium pathogenicity, since high levels of
QS signals are known to trigger a defense response in eukaryotic
hosts (Ritchie et al., 2005; Wagner et al., 2007). Therefore, Agrobac-
terium QS is under tight and complex modulation by plant-derived
opine, SA, and GABA to ensure optimum infection of plant hosts
and to avoid the elicitation of plant defense responses by high
levels of QS signals, reflecting an evolutionary advantage. In addi-
tion, quorum quenching induced by SA and GABA might function
to prevent unnecessary energy expenditure after T-DNA transfer.
Moreover, since the AttM lactonase has a broad substrate range, the
activation of Agrobacterium quorum quenching by GABA and SA
likely confers Agrobacterium a competitive advantage by degrading
QS signals from unrelated competitive bacteria occupying the rhi-
zosphere niche (Mathesius et al., 2003; Carlier et al., 2004; Chevrot
et al., 2006; Yuan et al., 2007). Furthermore, induction of attKLM
genes allows Agrobacterium to metabolize other plant-released
compounds such as gamma-butyrolactone to produce succinic
acid for the central metabolism (tricarboxylic acid cycle; Carlier
et al., 2004; Chevrot et al., 2006; Chai et al., 2007).

Agrobacterium VIRULENCE MODULATED BY PLANT
HORMONES AND PLANT-DERIVED CHEMICALS
Plant hormones play important roles in plant defense and stress
resistance. IAA and ethylene (ET) levels in plant tissues are ele-
vated at the initial stages of infection by Agrobacterium. Following
T-DNA integration, SA, IAA, and ET levels are elevated (Lee et al.,
2009), while jasmonic acid (JA) levels were unchanged. How-
ever, in tumors, IAA and ET signaling pathways were activated,
while JA and SA signaling pathways remained inactivated. Syn-
thesis of IAA in crown gall occurs as a two-step process from
tryptophan via indoleacetamide, mediated by-products of the T-
DNA encoded iaaM and iaaH genes (Thomashow et al., 1986).
T-DNA also carries an ipt gene responsible for CK synthesis. The
ipt product condenses isopentenyl pyrophosphate and AMP to
produce isopentenyl-AMP, which is later converted to CK by host
enzymes. The elevated level of IAA and CK promote plant cell
growth and tumor formation. It is now becoming evident that key
phytohormones significantly influence Agrobacterium pathogenic-
ity and tumor formation through both plant signaling pathways
as well as direct modulation of bacterial processes (Veselov et al.,
2003; Yuan et al., 2007; Zottini et al., 2007; Anand et al., 2008). The
following sections are focussed on the effects of plant hormones
on Agrobacterium pathogenicity, in particular, how Agrobacterium
responds to these plant hormones.

Agrobacterium RESPONSES TO INDOLE-3-ACETIC ACID (IAA)
IAA is important for plant growth and development, where its
functions are mediated by the asymmetric distribution of IAA
both systemically and locally (Korbei and Luschnig, 2011). IAA
produced by Agrobacterium infected cells not only contributes to
tumor growth, but also affects Agrobacterium pathogenicity. It was
found that IAA, at 25 μM concentrations, inhibits Agrobacterium
vir gene expression while not significantly affecting Agrobacterium
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growth. This is thought to occur by competition between IAA
and phenolic inducers of vir genes for their interaction with the
VirA/VirG two-component system (Liu and Nester, 2006). Fur-
ther studies have indicated that IAA likely competes with vir gene
inducing signals, such as acetosyringone, for association with the
VirA linker domain, which is strengthened by the related molecu-
lar structures of acetosyringone and IAA. Activation of vir genes
by acetosyringone and IAA-mediated inhibition of vir genes have
never been genetically separated. Moreover, the inhibition of vir
genes by IAA can be rescued by higher level of acetosyringone or
incorporation of a constitutive virA expressing plasmid. Further-
more, IAA inhibits Agrobacterium growth at higher concentrations
(over 50 μM) yet does not kill Agrobacterium (Liu and Nester,
2006). It was proposed that after successful transformation of a
plant host, the synthesis of large amounts of IAA in infected plant
tissues represses vir gene expression for energy conservation. Yet it
remains unclear if the local concentration of IAA in fresh tumors
reaches the inhibitory range (Liu and Nester, 2006).

Agrobacterium RESPONSES TO SALICYLIC ACID (SA)
SA is a well-known phytohormone activating plant defense
responses to incompatible interactions (Zottini et al., 2007). Dur-
ing Agrobacterium–plant interactions, SA produced in infected
plants modulates the Agrobacterium virulence program by sev-
eral mechanisms (Yuan et al., 2007; Lee et al., 2009). Apart from
mounting plant defense responses, SA at biologically relevant con-
centrations (8–10 μM) limits Agrobacterium growth, represses vir
gene expression, and dampens Agrobacterium QS as discussed
in the previous section (Yuan et al., 2007, 2008b). In fact, SA
inhibits all the vir genes including the repABC operon, suggest-
ing SA likely prevents the increase of Ti plasmid copy number.
This is consistent with the observation that SA-overproducing
plants display recalcitrance to Agrobacterium infection, whereas
mutant plants impaired in SA biosynthesis and accumulation are
more susceptible to tumor growth (Yuan et al., 2007; Lee et al.,
2009). Similar to IAA, the inhibition of vir gene expression by
SA can be rescued by either increasing levels of acetosyringone
or incorporation of a constitutive virA expressing plasmid. SA
likely functions as an allosteric competitive inhibitor and inter-
feres with the interaction between the kinase domain of VirA and
acetosyringone since the constitutively expressed VirA activates
vir gene expression independent of acetosyringone (Yuan et al.,
2007).

Agrobacterium RESPONSES TO ETHYLENE (ET)
ET, unlike other plant hormones, is a volatile hormone that
affects many aspects of plant growth and development (Wang
et al., 2013). ET also acts as a plant stress signal. ET signal-
ing pathways are induced by various biotic and abiotic stresses
including osmotic stress, salt stress, wounding, pathogen attack
and flooding. These stress-induced ET signaling pathways have
substantial roles in defense responses and disease resistance by
accelerating senescence, abscission of infected organs and induc-
tion of specific defense proteins (Chang and Shockey, 1999).
Plant tissues rich in ET, such as melons, are recalcitrant to
Agrobacterium transformation, yet the cause for the transfor-
mation recalcitrance remains unclear. Thus, various strategies

have been employed to reduce ET level to improve Agrobacterium
transformation efficiency, including the application of an anti-
sense ACC oxidase gene (pAP4), the final enzyme in the ET
biosynthetic pathway. Recent studies have found that ET is another
important factor modulating Agrobacterium virulence programing
and determining crown gall morphogenesis (Nonaka et al., 2008).
In particular, Agrobacterium-mediated genetic transformation was
inhibited in ET-sensing melon but enhanced in ET-insensitive
mutants. Further studies also revealed that Agrobacterium growth
was not affected by ET, but the presence of ET at the begin-
ning of Agrobacterium infection displays significant inhibitory
activity on vir gene expression. Such inhibitory effects can be res-
cued by supplementation with acetosyringone, a vir gene inducer
(Nonaka et al., 2008). Although the ET levels are up-regulated
during Agrobacterium infection, plant genes for ET receptors and
downstream signaling are not induced (Lee et al., 2009). These
observations suggest that ET impacts Agrobacterium–plant inter-
actions largely through its inhibitory effects on bacterial virulence
programming.

ADDITIONAL PLANT-DERIVED vir GENE INHIBITORS IN NATURE
In addition to the universal phytohormones SA, ET, and IAA,
monocots contain special chemicals acting as natural inhibitors
of Agrobacterium virulence. Maize, along with other mono-
cots, are notoriously resistant to Agrobacterium transformation
and the cause for this has been delimited to the inhibition
of Agrobacterium vir genes (Heath et al., 1997). In particular,
metabolites derived from corn seedlings (Zea mays) such as
2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIM-
BOA) and 2-hydroxy-4,7-dimethoxybenzoxazin-3-one (MDI-
BOA) inhibit the expression of Agrobacterium vir genes in the
presence of vir inducing signals (Sahi et al., 1990; Zhang et al.,
2000). In addition, Agrobacterium mutants resistant to either
DIMBOA or MDIBOA were much more effective in infecting plant
hosts. Moreover, Agrobacterium carrying constitutively active virA
are insensitive to MDIBOA in terms of the inhibition of vir genes.
These observations suggest that DIMBOA and MDIBOA, similar
to SA, ET, and IAA, probably affect signal perception by the VirA
sensor kinase prior to the VirA/G phosphorylation signal relay
events.

CONCLUSION AND FUTURE PERSPECTIVES
SIGNALING INTEGRATION AND CASCADE ACTIVATION OF
Agrobacterium VIRULENCE BY PLANT-DERIVED SIGNALS
Several lines of evidence suggests a hierarchical activation of
Agrobacterium virulence by a combination of plant-derived sig-
nals, as illustrated in Figure 1. Rhizospheric acidity activates
the ChvG/I system, which subsequently activates virG tran-
scription at the proximal promoter (P2) to allow basal level
expression of virG. Therefore, the ChvG/I system functions
upstream of VirA/VirG system (Li et al., 2002; Yuan et al.,
2008b). Upon recognizing phenolic signals such as acetosy-
ringone, VirA becomes auto-phosphorylated and subsequently
phosphorylates VirG. Phosphorylated VirG activates the expres-
sion of vir genes responsible for T-DNA transfer and integration.
Phosphorylated VirG also activates virG expression at the dis-
tal promoter (p1) to further promote virulence. ChvE binds to
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FIGURE 1 | Schematic drawing of Agrobacterium responses to

plant-derived signals. (1) Upon perception of acidic conditions in the
rhizosphere, the ChvG/I two-component system activates the expression
of several virulence genes including chvI and virG; (2) Upon perception of
plant-derived phenolics, the VirA/G two-component system activates all vir
genes including virG to further promote vir gene expression; (3) ChvE
binds plant-released sugars and interacts with the VirA to allow maximal
vir gene expression; (4) Agrobacterium Ti plasmid copy number is
up-regulated in response to phenolic compounds; (5) Vir gene products

process and deliver T-DNA into plant nuclei; (6) Expression of T-DNA
encoded genes in plants leads to the production of IAA, CK, and opines;
(7) Opine activates Agrobacterium genes for opine metabolism, as well as
TraR/TraI QS system that subsequently induces Ti plasmid conjugation;
(8) QS also up-regulates Ti plasmid copy number for maximal
pathogenicity; (9) Agrobacterium quorum quenching (attKLM operon) is
activated by plant-derived GABA and SA thereby down-regulates QS;
(10) Agrobacterium hijacks plant-derived SA, IAA, and ET to down-regulate
vir gene expression.
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plant-derived sugars and subsequently interacts with the periplas-
mic domain of VirA to allow for the maximal expression of
vir genes. Thus, the VirA/G system couples and integrates
three rhizosphere signals: acidity, sugars (monosaccharides) and
phenolic compounds. Such signaling integration and cascade
activation of Agrobacterium virulence ensures precise perception
of suitable plant hosts in the rhizosphere and maximal infec-
tion, reflecting an evolutionary advantage (Li et al., 2002; Yuan
et al., 2008b). Although ChvG/I regulates VirA/G, chvG/chvI
are expressed independent of the VirA/G system and plant-
derived phenolic signals (Charles and Nester, 1993; Peng et al.,
1998).

PLANT-DERIVED SIGNALS FUNCTION ADDITIVELY AND PLAY
REDUNDANT ROLES IN MODULATING Agrobacterium VIRULENCE, Ti
PLASMID COPY NUMBER AND QS
Since Ti plasmid harbors vir genes as well as genes for
opine metabolism, Ti plasmid copy number directly influences
pathogenicity and the efficiency of opine metabolism. It was
established that the repABC operon responsible for Ti plasmid
replication and partition is induced by plant-derived phenolics
through the VirA/G system. In addition, opine activated-QS
further promotes the expression of the repABC operon. On
the other hand, plant-derived SA and GABA activate Agrobac-
terium quorum quenching, which has negative impacts on Ti
plasmid copy number. Furthermore, SA, IAA, and ET inhibit
vir genes including the repABC operon, thereby preventing the
increase of Ti plasmid copy number. The signaling complex-
ity also applies to the modulation of Agrobacterium vir genes,
which are activated by tripartite signals in the rhizosphere, acid-
ity, phenolics, and plant-derived sugars, but down-regulated by
SA, IAA, and ET and other natural vir gene inhibitors such as
DIMBOA and MDIBOA (not shown in the Figure 1). In fact,
the modulation of Ti plasmid copy number and conjugation also
influences the overall Agrobacterium pathogenicity. It is notewor-
thy that Agrobacterium mounts distinct but overlapping cellular
responses to SA, IAA, and GABA, despite the absence of any
structural relation (Yuan et al., 2008a). Therefore, it is plausible
that in nature, different plant-derived signals act in concert and
function additively, playing redundant roles in tailoring Agrobac-
terium virulence, Ti plasmid copy number and QS (Yuan et al.,
2008a).

THROUGH INFECTION OF PLANTS, Agrobacterium CONVERTS PLANT
CELL INTO A FACTORY TO SECURE NUTRIENTS AND MAINTAIN THE
GENETIC INTEGRITY IN NATURE
The evolution and survival of Agrobacterium as a bacterial species
depends on an intricate balance of two populations of cells,
those which actively maintain and those which passively lose
the Ti-plasmid. Both forms are necessary for the species to
sustain competitive lifestyles in either the absence or presence
of a plant host. In the absence of a plant host, Agrobac-
terium harboring the Ti plasmid are at a growth disadvantage
to those Agrobacterium lacking the plasmid, which is ascribed
to the metabolic burden needed to maintain such a large Ti
plasmid. In the presence of a host plant and opines, the advan-
tage is shifted to Ti plasmid-retaining Agrobacterium since the

Ti plasmid contains genes responsible for opine uptake and
metabolism. Opines not only activates genes responsible for
opine metabolism, but also activate QS-dependent functions
such as induction of Ti plasmid conjugation and enhancement
of Ti plasmid copy number, promoting maximal infection. In
fact, the increase of Ti plasmid copy number may be advan-
tageous for Ti plasmid conjugation. Moreover, Agrobacterium
hijacks SA and GABA signaling to activate the AttKLM operon
which also degrades plant-derived GABA, gamma-butyrolactone,
and gammahydroxy butyrate to provide even more nutrients
for the tricarboxylic acid cycle. Therefore, it is reasonable to
believe that through plant transformation, Agrobacterium con-
verts infected plant cells into a factory to secure nutrients, in
particular opines, nutrients almost exclusive for Agrobacterium. In
addition, QS activates Ti plasmid conjugation enabling Agrobac-
terium to maintain the Ti plasmid and genetic integrity in
nature.

In summary, Agrobacterium pathogenicity is largely attributed
to its evolved capabilities of precise recognition, response to and
hijacking of plant-derived chemical signals for its own benefit.
The complex inter-kingdom signaling interplay and regulatory
circuits highlight elegant mechanisms of Agrobacterium–host co-
evolution. Plant roots secrete and release a wide range of chemical
cues into the rhizosphere (Bais et al., 2005), admittedly, only a
limited number of plant-derived chemicals have been intensively
studied for their roles in Agrobacterium–plant interactions. For
future studies, it will be worthwhile to identify additional plant-
derived chemicals that impact Agrobacterium pathogenicity and
rhizospheric fitness. In addition, it will be very interesting to
elucidate Agrobacterium signaling pathways and underlying reg-
ulatory mechanisms responsible for the precise perception and
response to these plant-derived signals, especially at the early stage
of Agrobacterium–plant interaction.
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