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We characterize a tree’s spatial foliage distribution by the local leaf area density.
Considering this spatially continuous variable allows to describe the spatiotemporal
evolution of the tree crown by means of 3D partial differential equations. These offer a
framework to rigorously take locally and adaptively acting effects into account, notably
the growth toward light. Biomass production through photosynthesis and the allocation
to foliage and wood are readily included in this model framework. The system of
equations stands out due to its inherent dynamic property of self-organization and
spontaneous adaptation, generating complex behavior from even only a few parameters.
The density-based approach yields spatially structured tree crowns without relying on
detailed geometry. We present the methodological fundamentals of such a modeling
approach and discuss further prospects and applications.
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1. INTRODUCTION
In terms of model scale, light sensitive functional-structural
tree growth modeling has experienced the emergence of various
trends. Organ-level approaches bring about a high precision of
physiological processes, averting inaccuracies and effects of scale
non-invariance, which may arise from simplifications in larger-
scale approaches. Moreover, arbitrary small-scale biophysical or
biochemical processes can in principle be readily induced. The
LIGNUM model (Perttunen et al., 1996; Sievänen et al., 2008),
the model by Sterck et al. (2005) or the L-Peach model (Allen
et al., 2005) are examples of this model category. Local light inter-
ception (cf. also Chelle and Andrieu, 2007 for a methods review)
determines the production and allocation of biomass. Their detail
of physiological and morphological processes is at the same time
the drawback of these models. On the one hand, the large num-
ber of organs implies high computational costs—all the more in
competition scenarios of multiple trees. On the other hand, their
detail can make these models susceptible to the propagation of
errors, which could have been compensated for in an averaging
rough scale approach.

Other organ-level models like Greenlab (Yan et al., 2004;
Cournède et al., 2006) a priori focus on the topology in terms
of the plant’s structure. This implies the inability of easily tak-
ing physiological and structural responses to varying local light
conditions into account. As one consequence, the approach can-
not be straightforwardly applied to scenarios of competition for
light: An additional yet non local competition index provides for
this (Cournède et al., 2008). In another context of formal gram-
mars used for tree growth simulation, Kurth and Sloboda (1999)
present the 2D concept of the shadow-relevant cone of a shoot in
order to take local light conditions into account, which in turn
affect the rewriting system. Comparable methods have been used
by Purves et al. (2007) and Takenaka (1994).

Sonntag (1996) presents a model in which the spatial motion
and allocation of leaf area is based on heuristic rules on a 2D
cellular space. Though quite different in terms of formalism, his
approach bears conceptual resemblances to ours.

Models with a rougher scale use to impose certain charac-
teristics on the crown shape. For instance, the Balance model
Grote and Pretzsch (2002) and the model by Sorrensen-Cothern
et al. (1993) describe the crown shape in terms of disk-like hor-
izontal layers. This technique implies advantages with regard to
the computational speed as well as a general robustness, com-
pared to small-scale models. Yet it does so at the expense of a
thorough plastic spatial crown structure. When applied to compe-
tition scenarios, these models often make use of empirically fitted
competition indices (e.g., Pretzsch, 1992).

While being affiliated more with the latter forestry mod-
els in the attempt to describe crown structure and dynamics
macroscopically for applications at the stand level, the present
approach attempts a middle course between the fine organ-
centered way and the rougher pre-imposition of the crown
form. We characterize a tree’s spatial foliage distribution via
its local leaf area density. The focusing on this variable cir-
cumvents difficulties in terms of robustness in the geometri-
cally detailed models accounting for individual leaf positions.
At the same time, the locality allows for arbitrary spatial
structures.

Applying Beer Lambert’s law allows to express the local light
conditions within a crown as a function of the local leaf area
density. Aiming at an increased future light interception, local
leaf area density is assumed to tend to move toward the light.
This approach, which induces the spatial expansion of the crown,
translates directly into a partial differential equation. Details are
specified based on mass conservation and optimization consid-
erations. The technique notably allows to account for a local and
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spontaneous adaptiveness with regard to changing environmental
light conditions.

The mathematical approach of density-based partial differen-
tial equations has long established itself in spatial biology and
ecology (cf. e.g., Okubo and Levin, 2002). In the context of
macroscopic individual plant modeling, so far notably in the form
of diffusion equations, it has proven applicable for root growth
and proliferation (see Page and Gerwitz, 1974 for the original
approach, Reddy and Pachepsky, 2001 for a review of later devel-
opments and Dupuy et al., 2010 for a current advance). A 2D
diffusion approach for the foliage of crops with the objective to
model competition in different field densities, without consider-
ing the vertical dimension, was presented by Beyer et al. (2014).
Partial differential equations can generate, even from only a few
terms, complex self-adapting dynamics, which is indeed present
in biological systems. Attempts to reproduce this by simpler terms
often requires a larger model framework and set of parameters.
The latter, in turn, requires large data sets, which are often not
available.

In this article we will exemplify the use of the leaf area
density-based partial differential equation approach by means of
a simplified model setup presented in section 2. The continuity
of the approach suggests embedding into in the context of con-
tinuously growing trees sensu (Hallé et al., 1978), i.e., “with no
marked endogenous cessation of extension [and] a more or less
constant production of leaves and/or shoots throughout the year”
(Barthélémy and Caraglio, 2007).

Since merely selected dynamics are presented, without con-
structing a realistic model, we settle for illustrations of key qual-
itative properties of the approach instead of quantitative data
comparison. Throughout the article, we will point out possibili-
ties of extending and customizing process assumptions while pre-
serving the advantages of the overall methodological framework.
Extending future steps are discussed in section 3.

2. MODEL FRAMEWORK
For clarity’s sake all recurrently appearing variables and param-
eters and their definitions are listed in Table 1. We describe the
spatial foliage distribution of a tree canopy by means of the

Table 1 | Key model variables and parameters.

α(x, t) Leaf area density in x at time t (in m2 m−3)

α(·, t) The map R
3 → R, x �→ α(x, t)

� Mean leaf transmittance

λ(x, v ) Cosine of the angle between leaf plane normal and sun ray

S2+ Upper half unit sphere {x ∈ R
3:‖x‖ = 1, x3 ≥ 0}

μ Energetic efficiency (in g MJ−1)

PAR (v, t) Radiation from direction v at time t (in MJ m−2 s−1)

b(x, t) Local biomass production in x at time t (in g s−1)

SLA Specific leaf area (in m2 g−1)

WD Wood density (in g m−3)

P Pipe model theory constant (in m2 m−2): 1 unit α =̂ P Units
pipe cross-sectional area

‖x‖ϒ Length of the sapwood pipe leading to x (in m)

L(x, t) Local radiation in x induced by the leaf density α(t) (in
MJ m−2)

(local) leaf area density α(x, t) ≥ 0 (in m2 m−3) in a point x =
(x1, x2, x3) ∈ R

3 (each entry in m) at a time t ≥ 0 (in years), i.e.,
the spatial density of the total one-sided green leaf area (previ-
ously considered e.g., by Sinoquet et al., 2005). The map α(·, t) :
R

3 → R, x �→ α(x, t) is continuous for any t. For brevity, we will
use the notion leaf density in place of leaf area density.

We aim to describe the evolution t �→ α(·, t). To this end we
will first determine the biomass production B of a tree, which,
along with the senescence S of old biomass, allows to describe the
net biomass increment of a tree corresponding to a leaf density
α(·, t) at a given time t:

∂

∂t
m(t) = B(t) − S(t)

This, in turn, will be distributed among foliage and sapwood
according to the pipe model theory (Shinozaki et al., 1964),
specified in the subsequent paragraph. The coaction of foliage
allocation and senescence in the case of a continuously growing
tree induces what we abstractly interpret as a continuous motion
of α(·, t), in particular directed toward the light, aiming at an
increased future biomass production. This perspective leads to the
description of the course of t �→ α(·, t) essentially by means of a
continuity equation.
Sapwood Associated to a Leaf Density: The pipe model theory by
Shinozaki et al. (1964) allows to determine the sapwood mass cor-
responding to an arbitrary leaf density α(·, t). In the present con-
text, the theory states that for any point x ∈ R

3 with α(x, t) > 0,
a sapwood pipe, in charge of the transport of water and nutrients,
leads from x down to the roots with a length denoted by ‖x‖ϒ , its
cross-sectional area being proportional to the leaf density α(x, t)
at its tip via a constant P. The mass of the pipe leading to x then
equals

α(x, t) · P︸ ︷︷ ︸
cross-sectional area

· ‖x‖ϒ︸ ︷︷ ︸
length

· WD,

WD denoting the wood density (in g m−3).
It is worth mentioning that, motivated by the limitations

to the pipe model theory, pointed out e.g., by Tyree (1988),
Pouderoux et al. (2001), and Deleuze and Houllier (2002), gen-
eralizations have been suggested: A noteworthy approach is the
one by Bouchon et al. (1997), who, based on an allocation per-
spective, reason that the pipe does not necessarily have a constant
cross-sectional area along its path, but more generally a one
exponentially decreasing toward the stem base. This principle
integrates in our context with only minor technical changes.
Likewise, the approach by Letort et al. (2008), parametrically
combining the pipe model approach and a uniform, common
pool sapwood allocation, would be feasible.

As for the pipe’s length ‖x‖ϒ from x to the root tip, for the sake
of simplicity, here we follow the multi-species approach used by
Sonntag (1996), based on the branch architecture of coniferous
species and the assumption that root length equals branch length,
resulting in

‖x‖ϒ := |x3| + 2 · ‖(x1, x2)‖ . (1)
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A more accurate choice for a particular species can be made by
taking specific characteristics of its branching geometry (such as
branching angles) and topology into account.

Finally, the sum of foliage and sapwood mass is given by

∫
R3

α(x, t)

SLA
dx︸ ︷︷ ︸

foliage mass

+
∫

R3
α(x, t) · P · ‖x‖ϒ · WD dx︸ ︷︷ ︸

sapwood mass

(2)

where SLA denotes the specific leaf area (in m2 g−1).

2.1. BIOMASS PRODUCTION
We determine the amount of biomass produced through
photosynthetic activity by a given leaf density. To this, we
take direct and diffuse radiation into account, cf. Fu and
Rich (1999), using the horizontal celestial coordinate system,
with R

2 × {0} being the local horizon of a tree rooting in
(0, 0, 0), and the vector (1, 0, 0) pointing north. The unit
directional vector σ (t) ∈ S2+ := {x ∈ R

3 : ‖x‖ = 1, x3 ≥ 0},
under which the sun is seen from the tree at daytime t reads
σ (t) = (cos ( − Az (t)) · cos ( Alt (t)), sin ( − Az (t)(t)) · cos ( Alt
(t)), sin ( Alt (t))), where Alt (t) and Az (t) denote the time
dependent altitude and azimuth, respectively.

For diffusive radiation, a uniform diffuse model (uniform
overcast sky) is applied, in which incoming diffuse radiation is
assumed to be the same from all sky directions. Let PARdir (t)
and PARdiff (t) (in MJ m-2) denote the photosynthetically active
direct and diffuse radiation at time t, respectively. Then the total
radiation from direction v ∈ S2+ at time t is

PAR (v, t) := PARdiff (t) + PARdir (t) · 1{v=σ (t)}(t),

with the indicator function 1A(x) := 1 if x ∈ A and 0 else.

2.1.1. Isolated Tree
Incoming radiation is partly intercepted by the tree’s foliage and
partly passes through it. The fraction between 0 and 100% of radi-
ation from direction v ∈ S2+ which actually reaches the point x ∈
R

3 can be determined using Beer-Lambert’s law, where foliage
characterized by leaf density acts as a light absorbing medium
with locally varying α-concentration. This fraction reads

exp

(
− � ·

∫
x+R+·v

λ(ξ, v) · α(ξ, t) dξ

)
(3)

where the extinction coefficient � ≤ 1 represents the mean light
transmittance of foliage (Monteith, 1969; Nouvellon et al., 2000)
and

λ(x, v) := N(x) · v

takes into account the angle between the sun ray and foliage in x,
N(x) ∈ S2+ denoting the unit normal to the plane in which foliage
in x lies. N(x) can be chosen according to leaf angle distribution
models without further ado (Wang et al., 2007) provide a review.

Assuming that local biomass production is proportional to the
total locally intercepted ratiation via an energy efficiency μ (in

g MJ−1) (Monteith, 1977), the instantaneous local biomass pro-
duction b(x, t) (in g m−3 s−1) in x ∈ R

3 at time t for the leaf
density α(·, t) reads

b(x, t) = μ ·∫
S2+

λ(x, v) · α(x, t) · exp

(
− � ·

∫
x+R+ ·v

λ(ξ, v) · α(ξ, t) dξ

)
· PAR (v, t)︸ ︷︷ ︸

radiation reaching x from direction v︸ ︷︷ ︸
radiation from direction v intercepted in x

dv. (4)

2.1.2. Population of Trees
At a time t, let α1(·, t), . . . , αn(·, t) denote the leaf densities of
n trees, shading each other and competing for light. Then the
instantaneous local biomass production of tree i ∈ {1, . . . , n} in
x generalizes to

bi(x, t) = μ ·
∫

S2+

(
λi(x, v) · αi(x, t)

)2

n∑
j = 1

λj(x, v) · αj(x, t)

·

exp

⎛
⎜⎝−� ·

∫
x+R+·v

n∑
j = 1

λj(ξ, v) · αj(ξ, t) dξ

⎞
⎟⎠·PAR(v, t)dv

The fraction λi(x,v)·αi(x,t)∑n
j = 1 λj(x,v)·αj(x,t)

is the part of the incoming radia-

tion in x that is attributed to tree i’s foliage in x. In particular it
reduces to 1 if two trees’ crowns do not occupy common space.

2.2. DYNAMICS
2.2.1. Mass balance
We determine the instantaneous change in living mass (conduc-
tive sapwood and foliage mass) due to the production of new,
and the senescence of old biomass. For convenience we assume
that the senescence of leaves as well as the loss of conductivity of
sapwood depend on time only. If sapwood and foliage that have
existed for τW and τF years become nonconductive and senescent,
respectively, then the living mass at time t reduces by

S(t) : =
∫

R3

∂
∂t α(x, t − τF)

SLA
dx +

∫
R3

∂

∂t
α(x, t − τW ) ·

P · ‖x‖ϒ · WD dx.

At the same time it increases by the total instantaneous biomass
production at t, i.e., B(t) := ∫

R3 b(x, t) dx. Thus we have

∂

∂t
m(t) = B(t) − S(t) (5)

for the change in living mass at time t. A priori, the possibility
∂
∂t m(t) < 0 is not excluded for arbitrary parameters. However,
since m(t) > S(t), it follows that m(t) > 0 and thus B(t) > 0 for
all t ≥ 0.
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2.2.2. Leaf density dynamics
With this information on the global mass of the tree at hand, we
consider the variable

α̂(x, t) = α(x, t)∫
R3 α(x, t)dx

,

i.e., the leaf density modulo mass, or (mass-)relative leaf density,
with the property that

∫
R3 α̂(x, t) dx = 1 for all t, which is under-

stood as an indicator of the spatial structure of the real leaf density
α(·, t). Instead of describing the course of α(·, t) directly, we do so
for α̂(·, t) and deduce α(·, t) as α(·, t) = λ(t) · α̂(·, t), where λ(t)
is chosen such that the living mass corresponding to λ(t) · α̂(·, t)
(cf. (2)) equals indeed m(t) yielded by (5). Thus

λ(t) = m(t)∫
R3

α̂(x,t)
SLA

dx + ∫
R3 α̂(x, t) · P · ‖x‖ϒ · WD dx

. (6)

The continuity of the growth process of the trees we consider
suggests a description of the course of α̂(·, t) in terms of a
(mass-conserving) continuity equation,

∂

∂t
α̂(x, t) = ∇x · φ(x, t), (7)

in which the relative leaf density is subject to a transport motion
induced by a continuous flux φ : R

3 × R+ → R
3, itself deter-

mined by α(·, t). The idea of this transporting flux φ is that it
incorporates both the effect of the allocation of new leaves and of
the abscission of old ones on the spatial structure of foliage, which
in combination, induces what we describe as an abstract motion
of leaf density.

A predominant driver in the spatial dispersal of leaf density
is the local expansion toward the light, aiming at an increase in
future light interception. We formally embed this factor in the
above framework, where it will take on the role of the flux φ. For
some given leaf density α(·, t) let L : R

3 × R+ → R be defined
by

L(x, t) =
∫

S2+
λ(x, v) · exp

(
− � ·

∫
x+R+·v

λ(ξ, v) · α(ξ, t) dξ

)
·

PAR (v, t) dv (8)

The function L measures the intercepted light in x per m2 leaf
area. The gradient ∇xL points locally in the direction of the great-
est rate of increase of intercepted light. In addition, similar to
Beyer et al. (2014) we define the flux to correspond to the existing
leaf density in x, so that finally we have

φ(x, t) = k · α(x, t) · ∇xL(x, t) (9)

for a mobility constant k. This local gradient approach is moti-
vated by “the observation that a tree is capable of acquiring
also gradient information about its environment and that growth
might be directed along these gradients (Schmidt and Wulff,
1993; Aphalo and Ballare, 1995)” (Sonntag, 1996).

The term ∇x · φ describing a movement of leaf density toward
the light contains spatial derivates of a function of integrals over
α, which makes (7) a partial integro-differential equation.

2.3. SIMULATIONS
In this section we illustrate some structural properties of the
model. For convenience we simplified radiation to be vertical
only. Some details of the numerical implementation of the model
are presented in the appendix.

Figures 1, 2 illustrate the evolution of leaf density in the course
of time, as well as the vector field φ. The term is sensitive to any
change in the local light conditions induced by shading; φ instan-
taneously adapts and points in the direction of the greatest light
increase. Aside the general spatial expansion toward the light, we
notably observe the predominant presence of foliage at the crown
hull rather than its interior.

2.3.1. Population of Trees
Together with the adjustments in terms of biomass production
addressed at the end of section 2.1, the approach generalizes to
competition scenarios when α(·, t) is replaced by

∑
i≥1 αi(·, t) in

(8), alongside the different initial states α1(·, 0), α2(·, 0), . . .. We
illustrate the dynamic effects to which competition gives rise by
means of a simplified scenario: Consider a sufficiently large stand,
in which the trees’ stem bases, as a point set in R

2 × {0}, generate
a Voronoi-tesselation which is regular. If radiation is assumed to
be radially symmetric (as done e.g., by Perttunen et al., 1998),
the analysis of all competing trees reduces to that of a single
one for which periodic boundary conditions for (7) are added
on the boundary of the tree’s 3D cell, i.e., the extension of the
appropriate 2D Voronoi cell in the x3-dimension.

FIGURE 1 | (x1, x3)-cross section of a leaf density-characterized crown

in the course of time, subject to the present model dynamics,

corresponding to t = 10 (A), 20 (B), 30 (C) and 40 (D) years with

simulation parameters adopted from Letort et al. (2008). A darker color
indicates a higher leaf density α. The arrows in (D) indicate the vector field φ.

FIGURE 2 | 3D view of Figure 1D.
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Periodic boundary conditions induce that the light conditions
on the other side of the boundary are considered identical to those
within, accounting for another tree growing in equal measure and
shading its environment.

This implies that, when, for simplicity, further assuming
the essential light incidence to be vertical, periodic boundary
conditions reduce to no flux conditions on the boundary: There,
due to the identical light conditions on the other side of the
boundary, the light gradient ∇xL, governing the flux φ, changes
from pointing further outwards to a zero flux.

Figure 3 shows the different stages of this scenario for an
underlying square tesselation.

The overly sharp boundary between two crowns is a conse-
quence of the unrestrained mobility of foliage in this simplified
approach, and would fade when additional features correspond-
ing to a branch structure are included, cf. section 3.

The conspicuous concentration of leaf density at the upper
edges of the canopy in the competition case (cf. Figure 3C) results
from the two factors of (i) the regular expansion of leaf density
uninfluenced by the boundary condition and (ii) the immigration
of leaf density from lower regions whose horizontal expansion
had abruptly turned into a vertical one after reaching the Voronoi
cell boundary. We are unable to provide evidence or counterev-
idence to determine whether this phenomenon corresponds to
reality. In any case, as observable in Figure 3D, this is only an
intermediate state, before in the long-term a homogeneously dis-
tributed high concentration of leaf density in the top canopy
establishes itself.

Wheras an isolated tree grows radially symmetric, this sym-
metry is eventually broken for a non-circular Voronoi cell, such
as the square used just now. Figure 4 illustrates this.

3. DISCUSSION AND FUTURE PROSPECTS
The aim of this article was to show how local leaf area den-
sity, a concept opposing geometrically detailed individual leaf
configurations, can be used to approach macroscopic tree crown

dynamics. Its integration into the formal framework of partial
differential equations allowed to rigorously formulate the growth
toward light. In the simulations we observed the generation of
self-organization and adaptiveness that come along with this
modeling approach. The simplistic model framework was meant
to draw attention to the key mechanisms and their dynamic
effects.

Foliage dynamics are by nature coupled to the tree’s branch
structure, which has not been taken into account on a topo-
logical or geometric level in this article. Future work, with the
aim of introducing more spatial heterogeneity to the approach,
begins here. Taking merely the stem and the most vigorous pri-
mary branches into account while leaving the finer structures to
the leaf area density concept may already suffice to tackle crown
plasticity satisfactorily. While in the present simplified model the
motion of local leaf area density is governed by light only and oth-
erwise unrestrained, a simple branch architecture can add sort
of directional inertia to that motion, channeling local leaf area
density in several major directions, resulting in heterogeneous
foliage clustering, representing individual branches. In particu-
lar, this includes the incorporation of genetically predetermined
branching angle spectra. Introducing a branch structure, even
if only a rough one, is moreover accompanied by a refinement
of the pipe length term (1), governing the distribution of mass

FIGURE 4 | Cross-section of (A) a diagonal plane (B) the (x1, x3)-plane

at t = 15 years. (C) 3D view.

FIGURE 3 | (x1, x3)-cross section and 3D view of the stages in a competition scenario at t = 10 (A), 20 (B), 30 (C) and 40 (D) years with periodic

bounday conditions at 3.5 m. Due to properties of self-symmetry, visible in Figure 1, these stages are in fact qualitatively similar no matter the cell size.
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between foliage and wood according to the pipe model theory,
thus determining secondary growth.

Taking into account the organization of growth units, i.e., as
weakening our assumptions on neoformation and polycyclism in
section 2.1.1, or considering immediate vs. delayed bud outbreak,
would bring the model closer to actual tree architecture dynamics.

Alongside the phototropism considered in this article, more
biomechanical constraints that have feedback influences on the
growth, such as hydraulic aspects sensu (Ryan and Yoder, 1997;
Tyree and Zimmermann, 2002), in particular in the context of
growth limitation, the avoidance of interlocked growth due to
mechanical stress of touching branches (Oliver and Larson, 1990)
or gravitropism represent perspectives for model extensions.

The application and validation of a refined model based on the
theoretical framework presented in this paper will benefit from
empirical data on local leaf area density. Conceivable ways to
obtain this include the following three, which are currently being
practically explored: Firstly, from the direct recordings of local
light intensities at various positions {x(1), . . . , x(n)} ⊂ R

3 within
a canopy, the map

{x(1), . . . , x(n)} → R≥0

x �→ α(x)

for a discrete, but arbitrary fine domain can be obtained by
applying Beer-Lambert’s law in the reverse way. Secondly, high-
definition multi-directional 3D terrestrial laser scan data and
appropriate skeletonization algorithms allow to relate to a leafless
tree a set of cylinders representing branch segments (Raumonen
et al., 2013). Automatically removing all scan points correspond-
ing to cylinder diameters (i.e., branch thicknesses) above a certain
threshold allows to spatially isolate recent shoots, for which then a
relation to foliage can be assumed. Thirdly, scanning a tree at the
beginning of spring during the process of bud opening, when—
in contrast to the case of a fully developed canopy—laser rays still
reasonably penetrate the crown, and deducting from this image
the point cloud yielded by a scan of the completely leafless tree,
may allow to obtain a local bud density, from which the the leaf
density can be deduced. Thus, assessing the spatial foliage distri-
bution in terms of local leaf area density in a functional-structural
crown dynamics model can make good use of this data type for
model calibration and validation.

The property of locally and spontaneously adapting to chang-
ing light conditions suggests that the present partial differ-
ential equation approach can be applied to competition sce-
narios both in pure as in mixed tree groups. Empirical find-
ings, based on laser scans, about the plasticity Bayer et al.
(2013) may thus be approached from a functional-structural
modeling point of view. These perspectives are currently being
explored.

ACKNOWLEDGMENTS
The authors would like to thank Pascal Laurent-Gengoux and
two anonymous reviewers for their helpful remarks. This work
was supported by a doctoral scholarship of the the Heinrich Böll
Foundation.

REFERENCES
Allen, M., Prusinkiewicz, P., and Dejong, T. (2005). Using L-Systems for Modeling

the Architecture and Physiology of Growing Trees: The L-PEACH Model. New
Phytol. 166, 869–880. doi: 10.1111/j.1469-8137.2005.01348.x

Aphalo, P., and Ballare, C. (1995). On the importance of information-acquiring
systems in plant-plant interactions. Funct. Ecol. 9, 5–14. doi: 10.2307/2390084

Barthélémy, D., and Caraglio, Y. (2007). Plant architecture: a dynamic, multilevel
and comprehensive approach to plant form, structure and ontogeny. Ann. Bot.
99, 375–407. doi: 10.1093/aob/mcl260

Bayer, D., Seifert, S., and Pretzsch, H. (2013). Structural crown properties of
Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica
[L.]) in mixed versus pure stands revealed by terrestrial laser scanning. Trees 27,
1035–1047. doi: 10.1007/s00468-013-0854-4

Beyer, R., Etard, O., Cournède, P.-H., and Laurent-Gengoux, P. (2014). Modeling
spatial competition for light in plant populations with the porous medium
equation. J. Math. Biol. doi: 10.1007/s00285-014-0763-1. [Epub ahead of print].

Bouchon, J., de Reffye, P., and Barthélémy, P. (1997). Modélisation et Simulation de
L’architecture des Végétaux. Montpellier: INRA.

Chelle, M., and Andrieu, B. (2007). Modelling the light environment of virtual crop
canopies. Funct. Struct. Plant Model. Crop Product. 22, 75–89. doi: 10.1007/1-
4020-6034-3_7

Cournède, P.-H., Kang, M., Mathieu, A., Barczi, J.-F., Yan, H., Hu, B., et al. (2006).
Structural factorization of plants to compute their functional and architectural
growth. Simulation 82, 427–438. doi: 10.1177/0037549706069341

Cournède, P.-H., Mathieu, A., Houllier, F., Barthélémy, D., and de Reffye, P.
(2008). Computing competition for light in the GREENLAB model of plant
growth: a contribution to the study of the effects of density on resource
acquisition and architectural development. Ann. Bot. 101, 1207–1219. doi:
10.1093/aob/mcm272

Deleuze, C., and Houllier, F. (2002). A flexible radial increment taper equation
derived from a process-based carbon partitioning model. Ann. Forest Sci. 59,
141–154. doi: 10.1051/forest:2002001

Dupuy, L., Gregory, P., and Bengough, A. (2010). Root growth models: towards
a new generation of continuous approaches. J. Exp. Bot. 61, 2131–2143. doi:
10.1093/jxb/erp389

Fu, P., and Rich, P. (1999). “Design and implementation of the Solar Analyst:
an ArcView extension for modeling solar radiation at landscape scales,” in
Proceedings of the 19th Annual ESRI User Conference, (San Diego).

Grote, R., and Pretzsch, H. (2002). A model for individual tree development based
on physiological processes. Plant Biol. 4, 167–180. doi: 10.1055/s-2002-25743

Hallé, F., Oldeman, R., and Tomlinson, P. (1978). Tropical Trees and Forests. Berlin:
Springer-Verlag. doi: 10.1007/978-3-642-81190-6

Kurth, W., and Sloboda, B. (1999). Tree and stand architecture and growth
described by formal grammars. II. Sensitive trees and competition. J. Forest Sci.
45, 53–63.

Letort, V., Cournède, P.-H., Mathieu, A., de Reffye, P., and Constant, T. (2008).
Parametric identification of a functional-structural tree growth model and
application to beech trees (Fagus sylvatica). Funct. Plant Biol. 35, 951–963. doi:
10.1071/FP08065

Monteith, J. (1969). “Light interception and radiative exchange in crop stands,”
in Physiological Aspects of Crop Yield, eds J. Eastin, F. Haskins, C. Sullivan, and
C. van Bavel( Madison, WI: American Society of Agronomy and Crop Science
Society of America), 89–111.

Monteith, J. (1977). Climate and the efficiency of crop production in britain. Proc.
R. Soc. Lond B 281, 277–294. doi: 10.1098/rstb.1977.0140

Nouvellon, Y., Begue, A., Moran, M., Seen, D., Rambal, S., Luquet, D., et al.
(2000). PAR extinction in shortgrass ecosystems: effects of clumping, sky con-
ditions and soil albedo. Agric. Forest Meteorol. 105, 21–41. doi: 10.1016/S0168-
1923(00)00194-5

Okubo, A., and Levin, S. (2002). Diffusion and Ecological Problems, Modern
Perspectives, 2nd Edn. Berlin; Heidelberg; New York, NY: Springer.

Oliver, C., and Larson, B. (1990). Forest stand dynamies. New York, NY: F. McGraw-
Hill.

Page, E., and Gerwitz, A. (1974). Mathematical models, based on diffusion equa-
tions, to describe root systems of isolated plants, row crops, and swards. Plant
Soil 41, 243–254. doi: 10.1007/BF00017252

Perttunen, J., Sievänen, R., and Nikinmaa, E. (1998). LIGNUM: a model combin-
ing the structure and the functioning of trees. Ecol. Modell. 108, 189–198. doi:
10.1016/S0304-3800(98)00028-3

Frontiers in Plant Science | Plant Biophysics and Modeling July 2014 | Volume 5 | Article 329 | 6

http://www.frontiersin.org/Plant_Biophysics_and_Modeling
http://www.frontiersin.org/Plant_Biophysics_and_Modeling
http://www.frontiersin.org/Plant_Biophysics_and_Modeling/archive


Beyer et al. Modeling crown dynamics with PDEs

Perttunen, J., Sievänen, R., Nikinmaa, E., Salminen, H., Saarenmaa, H., and Vakeva,
J. (1996). LIGNUM: a tree model based on simple structural units. Ann. Bot. 77,
87–98. doi: 10.1006/anbo.1996.0011

Pouderoux, S., Deleuze, C., and Dhôte, J. (2001). Analyse du rendement des
houppiers dans un essai d’éclaircie de hètre grace à un modèle à base écophysi-
ologique. Ann. Forest. Sci. 58, 261–275. doi: 10.1051/forest:2001125

Pretzsch, H. (1992). Modellierung der kronenkonkurrenz von fichte und buche in
rein- und mischbeständen. Allgemeine Forst- und Jagdzeitung 163, 203–213.

Purves, D., Lichstein, J., and Pacala, S. (2007). Crown plasticity and competition
for canopy space: a new spatially implicit model parameterized for 250 north
american tree species. PLoS ONE 2:e870. doi: 10.1371/journal.pone.0000870

Raumonen, P., Kaasalainen, M., Akerblom, M., Kaasalainen, S., Kaartinen, H.,
Vastaranta, M., et al. (2013). Fast automatic precision tree models from terres-
trial laser scanner data. Remote Sens. 5, 491–520. doi: 10.3390/rs5020491

Reddy, V., and Pachepsky, Y. (2001). Testing a convective-dispersive model of two-
dimensional root growth and proliferation in a greenhouse experiment with
maize plants. Ann. Bot. 87, 759–768. doi: 10.1006/anbo.2001.1409

Ryan, M., and Yoder, B. (1997). Hydraulic limits to tree height and tree growth.
Bioscience 47, 235–242. doi: 10.2307/1313077

Schmidt, J., and Wulff, R. (1993). Light Spectral Quality, Phytochrome and Plant
Competition. Trends Ecol. Evol. 8, 46–51.

Shinozaki, K., Yoda, K., Hozumi, K., and Kira, T. (1964). A quantitative analy-
sis of plant form - the pipe model theory I. Basic Analysis. Japan. J. Ecol. 14,
97–105.

Sievänen, R., Perttunen, J., Nikinmaa, E., and Kaitaniemi, P. (2008). Toward
extension of a single tree functional-structural model of scots pine to stand
level: effect of the canopy of randomly distributed, identical trees on devel-
opment of tree structure. Funct. Plant Biol. 35, 964–975. doi: 10.1071/
FP08077

Sinoquet, H., Sonohat, G., Phattaralerphong, J., and Godin, C. (2005). Foliage
randomness and light interception in 3-D digitized trees: an analysis from mul-
tiscale discretization of the canopy. Plant Cell Environ. 28, 1158–1170. doi:
10.1111/j.1365-3040.2005.01353.x

Sonntag, M. (1996). Effect of morphological plasticity on leaf area distribution,
single tree, and forest stand dynamics. Bayreuther Forum Ökologie 52, 205–222.

Sorrensen-Cothern, K., Ford, E., and Sprugel, D. (1993). A model of competition
incorporating plasticity through modular foliage and crown development. Ecol.
Monogr. 63, 277–304. doi: 10.2307/2937102

Sterck, F., Schieving, F., Lemmens, A., and Pons, T. (2005). Performance
of trees in forest canopies: explorations with a bottom-up functional-
structural plant growth model. New Phytol. 166, 827–843. doi: 10.1111/j.1469-
8137.2005.01342.x

Takenaka, A. (1994). A simulation model of tree architecture development based
on growth response to local light environment. J. Plant Res. 107, 321–330. doi:
10.1007/BF02344260

Toro, E. (2009). Riemann Solvers and Numerical Methods for Fluid Dynamics. Berlin;
Heidelberg; New York, NY: Springer. doi: 10.1007/b79761

Tyree, M. (1988). A dynamic model for water flow in a single tree: evidence that
models must account for hydraulic architecture. Tree Physiol. 4, 195–217. doi:
10.1093/treephys/4.3.195

Tyree, M., and Zimmermann, M. (2002). Xylem Structure and the Ascent of Sap,
2nd Edn. Berlin; Heidelberg; New York, NY: Springer. doi: 10.1007/978-3-662-
04931-0

Wang, W., Li, Z., and Su, H. (2007). Comparison of leaf angle distribution func-
tions: effects on extinction coefficient and fraction of sunlit foliage. Agric. Forest
Meteorol. 143, 106–122. doi: 10.1016/j.agrformet.2006.12.003

Yan, H., Kang, M., de Reffye, P., and Dingkuhn, M. (2004). A dynamic, archi-
tectural plant model simulating resource-dependent growth. Ann. Bot. 93,
591–602. doi: 10.1093/aob/mch078

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 31 August 2013; accepted: 23 June 2014; published online: 21 July 2014.
Citation: Beyer R, Letort V and Cournède P-H (2014) Modeling tree crown dynam-
ics with 3D partial differential equations. Front. Plant Sci. 5:329. doi: 10.3389/fpls.
2014.00329
This article was submitted to Plant Biophysics and Modeling, a section of the journal
Frontiers in Plant Science.
Copyright © 2014 Beyer, Letort and Cournède. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this jour-
nal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

www.frontiersin.org July 2014 | Volume 5 | Article 329 | 7

http://dx.doi.org/10.3389/fpls.2014.00329
http://dx.doi.org/10.3389/fpls.2014.00329
http://dx.doi.org/10.3389/fpls.2014.00329
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Biophysics_and_Modeling/archive


Beyer et al. Modeling crown dynamics with PDEs

4. APPENDIX
NUMERICAL IMPLEMENTATION
A finite volume scheme Toro (2009) is used, in which we con-
sider αijk := 1

�2

∫
�ijk

α(x, t)dx (with a similar notation for the

other variables) on a regular mesh with cells �ijk = [i�x, (i +
1)�x[×[j�x, (j + 1)�x[×[k�x, (k + 1)�x] for i, j, k ∈ Z and
�x 
 1.

The local light incidence (8) (and similarly the local biomass
production (4)) for vertical radiation, v = e3, is computed as

Lijk(t) = λijk(e3) · exp

(
− � · �x ·

∑
κ≥k

λijk(e3) · αijk(t) ·

PAR (e3, t) dv

)

The general case for v ∈ S2+ is conceptually similar, yet technically
more extensive: For a given v, the above sum reaches over all cells
�i′j′k′ whose intersection with the line through the center of the
cell �i′j′k′ and pointing in the direction v is non-empty, taking

into accout the individual length �i′j′k′(v) ≤ �x of this intersec-

tion by means of the additional coefficient
�i′ j′k′ (v)

�x in the sum
term.

As for the PDE, let

φ1, ijk(t) = k · αi+1jk(t) + αijk(t)

2
· Li+1jk(t) − Lijk(t)

�x

and φ2,ijk, φ3,ijk be defined accordingly for the other spatial
entries. The standard discretization of the divergence is given by

divijk(t) = φ1,ijk(t) − φ1,i−1jk(t)

�x
+ φ2,ijk(t)) − φ2,ij−1k(t)

�x

+φ3,ijk(t)) − φ3,ijk−1(t))

�x

and finally, using the Euler method for �t 
 1, we obtain

αijk(t + �t) = αijk(t) + �t · divijk(t).
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