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Stress impacts negatively on plant growth and crop productivity, causing extensive losses
to agricultural production worldwide. Throughout their life, plants are often confronted
with multiple types of stress that affect overall cellular energy status and activate energy-
saving responses. The resulting low energy syndrome (LES) includes transcriptional,
translational, and metabolic reprogramming and is essential for stress adaptation. The
conserved kinases sucrose-non-fermenting-1-related protein kinase-1 (SnRK1) and target of
rapamycin (TOR) play central roles in the regulation of LES in response to stress conditions,
affecting cellular processes and leading to growth arrest and metabolic reprogramming.
We review the current understanding of how TOR and SnRK1 are involved in regulating
the response of plants to low energy conditions. The central role in the regulation of
cellular processes, the reprogramming of metabolism, and the phenotypic consequences
of these two kinases will be discussed in light of current knowledge and potential future
developments.
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INTRODUCTION
Suboptimal growth conditions related to temperature, light, water
supply, and soil characteristics are among the most limiting fac-
tors for crop yield worldwide. Fruit and seeds constitute about
75% of world crop production (Liu et al., 2013a). They rely on
the supply of carbohydrates from photosynthetic source tissues
to sustain growth and development (Rolland et al., 2006) and this
fine-tuned balance can be severely disturbed at different levels
under biotic and abiotic stress conditions (Lemoine et al., 2013). In
general, stress conditions cause the alteration of a set of processes
and biochemical reactions. These changes can be encompassed
by the term low energy syndrome (LES) and play a major role in
the adaptation to stress conditions (Figure 1). In this review we
summarize recent advances in the understanding of LES and the
different signaling pathway components from energy deficiency
toward adaptation, focusing on Arabidopsis thaliana as a plant
model.

THE LOW ENERGY SYNDROME IS PART OF STRESS
ADAPTATION
Controlling energy homeostasis is a challenge for all organisms,
as they must constantly sense and integrate internal and exter-
nal signals to optimize growth and development, often under
suboptimal conditions (Polge and Thomas, 2007). This is par-
ticularly critical for plants as they are sessile organisms, so it is

very interesting to understand how they have evolved to over-
come these constraints and how they respond differently to stresses
when compared to other organisms. Their adaptation and survival
depend on their capacity to efficiently manage energy resources in
all tissues, and to coordinate energy consumption and preservation
(Baena-González et al., 2007; Baena-González, 2010). Stress con-
ditions affect source and sink tissues differently. In plants exposed
to stress, sink organs like seeds or tubers often suffer from reduced
sugar import and are impaired in biomass production (Pinheiro
et al., 2001; Cuellar-Ortiz et al., 2008). Accordingly, stress factors
like nutrient limitation, hypoxia, excess of salt, and low or high
temperatures were discussed to impair fruit and seed develop-
ment by interfering with the source-sink balance (Gibon et al.,
2002; Geigenberger, 2003; Bailey-Serres et al., 2012; Lemoine et al.,
2013; Liu et al., 2013b). Furthermore, stress conditions often affect
photosynthesis and respiration in source leaves and this can accen-
tuate the source-sink imbalance. The resulting energy deprivation
was suggested to be common to most types of stress and to trigger
specific responses (Baena-González and Sheen, 2008), leading to
the massive alteration of cellular processes, referred to as LES. This
includes growth arrest and metabolic reprogramming, compris-
ing the repression of biosynthetic activities and sugar storage, as
well as the induction of catabolic processes, photosynthesis, and
sugar remobilization (Paul and Pellny, 2003; Gibon et al., 2006). In
addition, the expression of thousands of genes is altered (Usadel
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FIGURE 1 |The low energy syndrome (LES) is a collection of

phenotypical consequences of stress condition and drives plant

acclimation to environmental changes. The figure aims at depicting all

causes and consequences described so far, but LES can be induced by one or
multiple stress conditions and the acclimation process can include only a
subset of the depicted outcomes.

et al., 2008). These genes were described to form a network that
regulates plant metabolism under stress conditions for the purpose
of energy preservation (Avin-Wittenberg et al., 2012). At the same
time, metabolic reprogramming favors catabolic processes of
molecules other than carbohydrates, resulting in protein, lipid
and chlorophyll breakdown (Contento et al., 2004; Thimm et al.,
2004). Accordingly, metabolomics data show an increase in amino
acids coming from protein degradation (Caldana et al., 2011),
which may contribute to sustain levels of TCA cycle intermediates
(Araújo et al., 2012). Furthermore, translation rates decrease dra-
matically (Kawaguchi et al., 2003, 2004; Branco-Price et al., 2005,
2008; Nicolaï et al., 2006; Mustroph et al., 2009), although often
without alteration of specific mRNA levels, which allows a rapid
recovery after removal of the stress (Piques et al., 2009; Juntawong
and Bailey-Serres, 2012).

These massive alterations on all cellular levels that comprise
LES occur during many different stress situations and are there-
fore discussed as central processes necessary for adaptation. Even
though LES involves a collection of phenotypic outcomes, their
interconnection and regulation remain to be fully described. Gen-
erally, stress adaptation involves both universal and stress specific
reactions, indicating that plants perceive multiple stresses and
transduces the signal through pathways which may cross-talk at
various levels (Chinnusamy et al., 2004). A number of signal-
ing pathways are involved in the regulation of energy utilization
and can be linked to the adaptation to stress conditions. Key
players of energy signaling are the evolutionary conserved pro-
tein kinases sucrose-non-fermenting-1-related protein kinase-1
(SnRK1) and target of rapamycin (TOR). They are proposed
to be antagonists in the coordination of energy consumption
and preservation (Robaglia et al., 2012) and the balance of their

activities might be essential to the regulation of LES in stress
adaptation.

SnRK1 IS A METABOLIC SENSOR KINASE
Sucrose-non-fermenting-1-related protein kinase-1 is a metabolic
sensor that can decode energy deficiency signals and induce an
extensive metabolic reprogramming. This is mediated by a num-
ber of transcription factors and downstream targets that start an
energy-saving program at several levels, including transcription,
translation or direct phosphorylation of targets (Baena-González
et al., 2007). SnRK1 is the plant homolog of the yeast sucrose
non-fermenting-1 (SNF1) and the animal AMP-activated protein
kinase (AMPK; Halford et al., 2004). SNF1-related protein kinases
show close to 50% identity, rising to 65% for the kinase domains
(Polge and Thomas, 2007). Their primary role is the integration
of nutrient availability, stress signals, and energy expenditure, to
be able to activate the required adaptations for homeostasis and
survival (Halford and Hardie, 1998; Hardie et al., 1998; Ghille-
bert et al., 2011). Plants contain two other subfamilies, SnRK2 and
SnRK3. They are less similar to SNF1 and AMPK and unique
to plants (Halford et al., 2004), and are also involved in plant
responses to several stresses (Coello et al., 2011). SnRK2 is involved
in ABA signaling, responses to cold, and was shown to improve
drought tolerance when overexpressed (Fujita et al., 2009; Hal-
ford and Hey, 2009; Yoshida et al., 2014). The SnRK3 family
includes SOS2 (salt overly sensitive 2), involved in conferring salt
tolerance (Liu et al., 2000). There is no evidence of redundancy
between the different SnRK families and SnRK2 and SnRK3 do
not complement the yeast snf1� deletion mutant growth pheno-
type (Hrabak et al., 2003). It is clear that they cannot fulfill the
role of SnRK1 (Halford and Hey, 2009), even though there is some
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similarity in target recognition (Zhang et al., 2008). It was sug-
gested that SnRK2 and SnRK3 arose in plants by duplication of
SnRK1 and then diverged rapidly during plant evolution to meet
new needs related to networks linking stress and ABA signaling
with metabolic signaling (Halford and Hey, 2009).

The SnRK1/SNF1/AMPK kinases typically function as het-
erotrimeric complexes and require a catalytic α-subunit, KIN10
and KIN11 in plants, and regulatory β and γ subunits (Figure 2).
The non-catalytic subunits are also conserved among the
SnRK1/SNF1/AMPK complex. They are likely involved in sub-
strate recognition, subcellular localization, and regulation of the
complex activity (Polge and Thomas, 2007; Ghillebert et al., 2011).
Interestingly, the Arabidopsis AKINβ1, AKINβ2, and AKINβ3 have
markedly different expression patterns, which suggests a level
of regulation based on interactions targeting the β subunits in
response to different signals (Bouly et al., 1999; Gissot et al., 2004).

The activity of SnRK1 depends on phosphorylation in the
highly conserved T-loop by upstream kinases (Sugden et al.,
1999). In Arabidopsis, the protein kinases SnRK1-activating
kinase 1 and 2 (AtSnAK1 and AtSnAK2) were shown to com-
plement a yeast triple kinase mutant by restoring SNF1 upstream
kinase activity (Shen and Hanley-Bowdoin, 2006). In addition,
they phosphorylate non-truncated AtSnRK1 catalytic subunits
in vitro, making them putative candidates as SnRK1 physi-
ological upstream kinases (Crozet et al., 2010). Even though
it is known that SnRK1 activation requires phosphorylation,
it has not been clarified how it is affected by the cellular
energy level. In contrast to the mammalian AMPK, SnRK1 is
not allosterically activated by AMP, but it was shown that T-
loop dephosphorylation and the resulting inactivation of the
kinase are inhibited by low concentrations of AMP (Sugden
et al., 1999). Furthermore, SnRK1 activity is modulated by

FIGURE 2 | Domain structure and nomenclature of Arabidopsis SnRK1

andTOR subunits. SnRK1 structures include the conserved phosphorylation
sites on T-loop of the α-subunit. The α-subunit contains the kinase domain,
together with an auto-inhibitory (UBA) domain and a kinase associated (KA1)
domain where the interaction with the ß-subunit takes place. The β-subunit
(except in SnRK1ß3) contains a starch-binding domain (Ávila-Castañeda et al.,
2014) and binds to the γ-subunit at the association with the SNF1 complex
(ASC) domain. The plant-specific βγ-subunit might take the place described for
the γ-subunit in mammals and yeast, containing multiple cystathionine

β-synthase (CBS) domains. TOR contain two FAT domains (FRAP, ATM, and
TRAP) probably constituting the active center, a PI3K kinase domain, a FRB
domain (FKB12-rapamycin binding) for interaction with the inhibitor FKB12,
and a number of HEAT repeats [huntingtin, elongation factor 3 (EF3), protein
phosphatase 2A (PP2A), TOR1] for the interaction with RAPTOR. Next to
HEAT repeats, RAPTOR contains a RNC domain (raptor N-terminal
conserved/putative caspase domain) and a number of WD40 repeat domains
(Hay and Sonenberg, 2004). Nomenclature as described before (Robaglia
et al., 2012).
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specific phosphatases. Two clade A type 2C protein phos-
phatases (PP2C) were recently shown to dephosphorylate and
inactivate SnRK1 through interaction with the catalytic subunit
(Rodrigues et al., 2013).

The activity of SnRK1 is also inhibited by trehalose-6-
phosphate (T6P). The association between trehalose metabolism
and sugar-sensing in plants has recently become more evident
(Tsai and Gazzarrini, 2014). Despite its role as a carbon source
and in stress protection in resurrection plants, fungi, bacteria, and
non-vertebrate animals (Elbein et al., 2003; Paul et al., 2008), the
amount of trehalose in the majority of plants is too low to per-
form this function. It was suggested that trehalose has a major
role on metabolism, growth, and development, acting as a sig-
nal of sugar availability (Schluepmann et al., 2003; Ramon and
Rolland, 2007; Gómez et al., 2010). Trehalose is synthesized from
UDP-glucose and glucose-6P via the intermediate T6P in a two-
step pathway involving trehalose phosphate synthase (TPS) and
trehalose phosphate phosphatase (TPP), and degraded by treha-
lase (Paul et al., 2008). T6P has a distinctive role in metabolic
signaling, and class II TPSs, that include AtTPS5-11, are targets
of phosphorylation by SnRK1 (Glinski and Weckwerth, 2005).
AtTPS5 is induced by sugars and repressed by starvation (Schluep-
mann et al., 2004), while the opposite is true for AtTPS8-10
(Osuna et al., 2007).

Trehalose-6-phosphate inhibits the catalytic activity of SnRK1
in vitro at physiological concentrations, causing expression
changes of KIN10 marker genes consistent with an inactivation
of SnRK1 (Zhang et al., 2009), while Arabidopsis seedlings overex-
pressing SnRK1 show a glucose-hypersensitive phenotype (Cho
et al., 2012), similar to seedlings with low T6P (Schluepmann
et al., 2003). However, even though T6P inhibits the growth of
Arabidopsis seedlings, it does not inhibit SnRK1 catalytic activity
in extracts of mature leaves (Zhang et al., 2009), suggesting that
an intermediary factor is needed for SnRK1 inhibition by T6P.
Recently, it was suggested that T6P and SnRK1 might act through
different, but interacting signaling pathways (Lunn et al., 2014)
and can play antagonistic roles during stress responses (O’Hara
et al., 2013). This is particularly important in stress conditions
that negatively affect carbon levels, leading to an activation of
starvation responses through SnRK1. For example, T6P levels
are much lower in rosettes harvested in the dark and in carbon-
starved seedlings (Lunn et al., 2006; Carillo et al., 2013; Yadav et al.,
2014). However, stress conditions do not necessarily lead to car-
bon depletion. For example, under moderate drought or cold
stress, a wide range of carbohydrates accumulate in Arabidopsis
(Muller et al., 2011), including abundant sugars such as hexoses
and sucrose, other sugars such as trehalose or mannitol, amino
acids, organic acids, structural C-rich compounds like cellulose,
among others. In grapevine, sucrose and T6P contents increase in
response to chilling (Fernandez et al., 2012). T6P may therefore
play a role in the inhibition of SnRK1 under conditions where
carbon sources are not limited (Lunn et al., 2014). The cross-talk
between SnRK1 and T6P when growth is limited by sink capacity
was recently studied by varying temperature and nutrient supply to
induce sink limitation, and feed sucrose and glucose at physiolog-
ical levels (Nunes et al., 2013). In these conditions, T6P responds
specifically to sucrose, even at different growth rates. Moreover,

there was a strong correlation between T6P- and SnRK1-regulated
gene expression, but not between T6P and relative growth rate. It
appears that SnRK1 marker gene expression is related to T6P con-
tent regardless of the growth outcome, but further investigations
will hopefully elucidate the relationship between SnRK1 and T6P.

SnRK1 REGULATES STRESS RESPONSES UPON LOW ENERGY
The activation of SnRK1 initiates massive transcriptional changes,
possibly by affecting a number of transcription factors (Baena-
González et al., 2007). The gene expression profile mediated
by the SnRK1 subunit KIN10 is positively correlated with the
one induced by deprivation of sugar and carbon, and neg-
atively correlated with that controlled by sugars. This places
KIN10 as a regulator of gene expression upon starvation
and stress conditions. The most prominent KIN10-activated
genes represent a variety of major catabolic pathways, includ-
ing degradation of cell wall, starch, sucrose, amino acid,
lipid, and proteins which provide alternative sources of energy
and metabolites. Additionally, a large set of genes involved
in energy-consuming ribosome biogenesis and anabolism are
repressed.

From the possible mechanisms by which SnRK1 affects tran-
scription, the members of the S1 class of the basic leucine
zipper (bZIP) transcription factors are probably the best described
(Figure 3). They belong to a large family of several classes in
eukaryotes (Reinke et al., 2013) and function as homo-or het-
erodimers, which increases their potential for regulation (Jakoby
et al., 2002; Corrêa et al., 2008; Schütze et al., 2008). From the bZIP
family, bZIP1, bZIP11, and bZIP53 were proposed to mediate
some of the transcriptional changes induced by the SnRK1 signal-
ing pathway (Baena-González et al., 2007) and could be linked
to the regulation of LES. In the presence of sucrose and glu-
cose, the transcript levels of bZIP1 and bZIP53 decrease, and
energy availability also seems to affect the phenotypes of their
mutants. bZIP53 overexpression results in reduced plant size,

FIGURE 3 | Simplified summary of SnRK1 effects on cellular processes

by direct phosphorylation of target proteins and by alteration of

mRNA levels of many genes via transcription factors or the miRNA

machinery. Arrows indicate a positive or negative regulatory effect; P
denotes phosphorylation. Abbreviations: HMGCoAR, 3-hydroxy-3-
methylglutaryl-coenzyme A reductase; SPS, sucrose phosphate synthase;
NR, nitrate reductase; TPS, trehalose phosphate synthase; bZIP TF, basic
leucine zipper transcription factor; ProDH, proline dehydrogenase;
DIN6/ASN1, dark inducible 6/asparagine synthetase 1; TCP2, teosinte
branched 1, cycloidea and PCF transcription factor 2; Hsp70–15, heat shock
protein 70–15.
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delayed bolting and expression of seed-specific genes in leaves
(Alonso et al., 2009). bZIP1 knockout plants were shown to grow
faster than wild type on medium lacking glucose (Kang et al.,
2010), while a plant overexpressing bZIP1 showed a stronger
starvation response indicated by faster leaf-yellowing in extended
night conditions (Dietrich et al., 2011). Under ambient growth
conditions, bZIP1 gene expression is limited to sink tissue like
pollen or young leaves (Weltmeier et al., 2009), but transcript
levels were shown to be increased in source leaves after sugar star-
vation induced by extended night (Dietrich et al., 2011), while
bZIP11 transcript levels increase in the presence of glucose and
sucrose (Rook et al., 1998). On the other hand, bZIP11 trans-
lation is repressed by sucrose mediated by an upstream open
reading frame (Wiese et al., 2004; Rahmani et al., 2009). This
decrease is observed at physiological sucrose levels in most tis-
sues, restricting bZIP11 activity to conditions of low energy
availability (Wiese et al., 2004). Transgenic plants overexpress-
ing bZIP11 show reduced plant size, seed production, viability
and a wide effect on gene regulation and metabolism as demon-
strated by microarray analysis of these plants (Hanson et al.,
2008).

Several gene expression studies identified putative target genes
of these transcription factors and there is considerable overlap
between their targets and genes regulated by SnRK1. bZIP11 tar-
gets include several genes associated with LES, involved in the
regulation of trehalose and other minor regulatory carbohydrates,
such as myo-inositol and raffinose (Ma et al., 2011). bZIP11 also
induces GDH1 and GDH2, genes encoding glutamate dehydro-
genase (Hanson et al., 2008). The double mutant gdh1gdh2 was
shown to be more susceptible to extended night, likely due to the
role of these enzymes in amino acid degradation (Miyashita and
Good, 2008a,b). Other genes involved in amino acid metabolism
were shown to be regulated by bZIP transcription factors. Mem-
bers of the S1 class specifically activate the G-box containing pro-
moter of the SnRK1 regulated gene DIN6/ASN1 (Baena-González
et al., 2007). They were also shown to activate gene expression
of proline dehydrogenase (ProDH; Satoh et al., 2004) by bind-
ing to G-boxes contained in the promoter region (Weltmeier et al.,
2006; Dietrich et al., 2011). While ProDH is thought to be involved
in stress recovery (Weltmeier et al., 2006), the accumulation of
asparagine and other amino acids during dark-induced starvation
was proposed to result from protein degradation in order to pro-
vide an alternative to carbon as energy source (Caldana et al., 2011;
Dietrich et al., 2011).

Basic leucine zipper transcription factors mediate many, but
not all SnRK1 effects on transcription. It remains to be studied
which factors mediate the first, direct effect on gene expression
and which genes are regulated by secondary mechanisms. Further
studies will hopefully reveal a number of additional transcription
factors involved in SnRK1 regulation of gene expression.

Sucrose-non-fermenting-1-related protein kinase-1 also affects
enzymes by direct phosphorylation. For example, it inhibits the
activity of HMG-CoA reductase, the rate-limiting step in sterol
synthesis (Clarke and Hardie, 1990; Mackintosh et al., 1992). Two
other enzymes were shown to be substrates of SnRK1, sucrose
phosphate synthase (SPS), and nitrate reductase (NR; McMichael
et al., 1995; Douglas et al., 1997) which are key biosynthetic

enzymes involved in the control of nitrogen assimilation and
sucrose synthesis (Figure 3).

In addition to transcriptional changes and direct phosphory-
lation, SnRK1 was recently shown to activate a miRNA pathway
(Confraria et al., 2013). Some of the candidate miRNA targets
can be connected to the SnRK1 pathway and miRNAs can there-
fore be placed as components of the SnRK1 signaling pathway,
as they regulate mRNA targets and possibly tune down spe-
cific cellular processes during the stress response (Figure 3).
Most of the affected genes correspond to genes related to
ribosomal proteins (RPs) and translation, which is in accor-
dance with the role of SnRK1 as a repressor of biosynthetic
processes and as a modulator of energy metabolism (Baena-
González et al., 2007; Baena-González and Sheen, 2008). In
animals there seems to be a link between miRNAs and metabolism:
AMPK activation was recently reported to induce the differ-
ential accumulation of multiple miRNAs (Liu et al., 2013a),
suggesting that miRNAs could be possible common elements
in diverse organisms for restoring homeostasis following stress
(Confraria et al., 2013). A recent paper supports this view by
showing a strong connection between the regulation of miRNA
expression and glucose-mediated regulatory responses (Duarte
et al., 2013). These recent findings make it clear that SnRK1
mode of action goes beyond direct phosphorylation or mod-
ulation of transcription and promise new discoveries to come
on the interplay between multiple pathways in the regulation of
the LES.

THE TOR KINASE IS INVOLVED IN LES
Another key component in this network is the serine/threonine
kinase TOR. TOR kinase genes are present in every eukaryote
genome analyzed so far and they share 40–60% sequence iden-
tity (De Virgilio and Loewith, 2006; Wullschleger et al., 2006).
These large proteins are well described for their central roles
in the energy signaling pathways of yeast, mammals and plants
(Wullschleger et al., 2006; Robaglia et al., 2012). TOR is activated,
in both yeast and mammals, by high amino acid levels, but inacti-
vated under amino acid starvation (Jewell et al., 2013). In plants,
TOR activity has been linked to cell and organ size, seed yield,
and stress resistance (Ren et al., 2012) and it was suggested to
play a role in the regulation of carbon partitioning and growth
(Zhang et al., 2013). Furthermore, it has been shown that TOR
and SnRK1 interact closely and act in opposite ways in the regu-
lation of nutrient-driven processes like autophagy (Robaglia et al.,
2012).

In yeast and mammals, TOR functions in two complexes
with distinct functions, TOR complex 1 (TORC1) and TORC2,
characterized by different interaction partners. Of these, only
subunits of TORC1 (TOR, LST8/GbetaL and KOG1/RAPTOR)
are present in the Arabidopsis genome (Figure 2; van Dam
et al., 2011). Mutations that disrupt TOR or RAPTOR genes
were shown to be embryo lethal (Menand et al., 2002; Deprost
et al., 2005). In addition, the low sensitivity of the Arabidop-
sis TOR toward rapamycin (Xiong and Sheen, 2012; Caldana
et al., 2013) makes the study of TOR signaling in plants more
difficult than in other organisms, where the inhibitor was exten-
sively used to study TOR functions (Wullschleger et al., 2006).
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Alternative approaches were developed including the expression
of a yeast FKBP12 protein which confers rapamycin sensi-
tivity (Sormani et al., 2007; Ren et al., 2012), modulation of
TOR expression by overexpressor or RNA interference constructs
(Deprost et al., 2007; Ren et al., 2011) and the expression of
an inducible artificial microRNA targeting TOR (Caldana et al.,
2013).

The Arabidopsis TOR promoter is active in root and apical
primary meristems, embryo and endosperm, but not in source
leaves or differentiated cells (Menand et al., 2002). TOR acts
on cell cycle control in Arabidopsis root meristems by directly
phosphorylating the transcription factor E2Fa that regulates S-
phase gene expression (Xiong et al., 2013). It was proposed as
a potential integrator of cell cycle, cell expansion and cytoplas-
mic growth (Sablowski and Carnier Dornelas, 2014) and could
thus be responsible for the activation of growth in the meristems
in response to sugars provided by the photosynthetic source tis-
sues (Xiong et al., 2013). Furthermore, TOR inhibition leads to a
reduction of the length of the root meristematic zone and the divi-
sion zone therein (Montané and Menand, 2013). Recently, TOR
was shown to be activated by the growth hormone auxin and
is involved in the regulation of translation of auxin responsive
genes (Bögre et al., 2013; Schepetilnikov et al., 2013). Accord-
ingly, reduction of TOR expression in Arabidopsis results in severe
growth arrest with plants displaying decreased cell size, whereas
TOR overexpression leads to an increase in shoot and root growth
(Deprost et al., 2007).

TOR complex 1 was described to be involved in the con-
trol of transcription, protein synthesis, and autophagy in yeast
and mammals (Martin and Hall, 2005; De Virgilio and Loewith,
2006; Wang and Proud, 2011). In Arabidopsis, massive transcrip-
tional changes induced by glucose in seedlings are dependent on
TOR signaling. The genes activated by this signaling pathway are
involved in amino acid synthesis, translation, glycolysis and the
TCA cycle, cell wall synthesis and modification, whereas genes
involved in protein and amino acid degradation and autophagy
regulation were downregulated (Xiong et al., 2013). The role of
TOR signaling in the induction of biosynthesis and the repres-
sion of catabolic pathways was underlined by RNA sequencing
and microarray analysis studying gene expression changes in
response to TOR inactivation (Ren et al., 2012; Caldana et al.,
2013). These transcriptional changes were shown to be accom-
panied by an increase in starch content (Moreau et al., 2012) and
an accumulation of organic and amino acids (Ren et al., 2012;
Caldana et al., 2013), as well as a decrease in galactinol and raffi-
nose levels (Moreau et al., 2012). This led to the conclusion that
TOR downregulation mimics starvation (Caldana et al., 2013) and
strengthens the importance of the TOR pathway in starvation
responses.

Furthermore, the TOR kinase was implicated in sugar signaling
pathways to control translation. Protein synthesis is a very energy
demanding process and therefore needs to be tightly regulated in
function of the cellular energy availability. In mammals and yeast,
TORC1 affects the level of rRNA (Claypool et al., 2004; Mayer et al.,
2004; Li et al., 2006a; Tsang et al., 2010) and RP gene expression
(Jorgensen et al., 2004; Martin et al., 2004; Rudra and Warner,
2004), as well as cap-dependent translation (Ma and Blenis, 2009)

and scanning along structured 5′-UTRs (Meyuhas and Dreazen,
2009).

The tight regulation of translation according to energy avail-
ability also occurs in plants (Pal et al., 2013; Lastdrager et al., 2014).
For some of the well described pathway components, like the
phosphorylation of 4E-BP, evidence in plants is lacking (Van Der
Kelen et al., 2009; Ren et al., 2011). Nevertheless, plants express-
ing RNAi constructs for TOR or its positive downstream effector
TAP46 displayed a significant decrease in polysomal loading and
in protein synthesis (Ahn et al., 2011). The transcription of RP
genes is induced after sugar treatment and seems to be depen-
dent on the diurnal cycle (Bläsing et al., 2005; Usadel et al., 2008;
Baerenfaller et al., 2012) and glucose induction of RP gene expres-
sion was shown to depend on TOR activity (Xiong et al., 2013).
Furthermore, TOR overexpression was shown to induce rRNA
production and ChIP experiments showed that TOR binds directly
to the 45S promoter region (Ren et al., 2011). TOR mediated
ribosomal protein S6 kinase (S6K) activity was proposed to be
important to maintain eukaryotic translation initiation factor 3
subunit H (eIF3h) phosphorylation, which is needed for trans-
lation reinitiation and thus for translation of uORF containing
mRNAs (Schepetilnikov et al., 2013). Starvation inhibits the TOR
kinase and therefore allows energy costly ribosome biogenesis and
translation processes to be reduced in growth limiting conditions
(Ma and Blenis, 2009; Robaglia et al., 2012).

INTERACTION BETWEEN SnRK1 AND TOR SIGNALING
The TOR and SnRK1 signaling pathways have emerged as crucial
in regulating the perception and responses to nutrient and energy
levels. The TOR kinase is activated in favorable nutritional and
energy conditions, while SnRK1 is stimulated upon nutrient and
energy starvation. It is becoming increasingly clear that they act in
opposite ways in the regulation of nutrient-driven processes, such
as autophagy. For example, SnRK1 induces autophagy to promote
recycling of cytosolic components in response to situations where
C or N metabolites are in short supply. Conversely, TOR restrains
autophagy in energy-replete conditions and is involved in the reg-
ulation of N assimilation and in the synthesis of C metabolites like
starch or raffinose (Robaglia et al., 2012). They both regulate many
similar processes in the context of LES (Figure 4) and massively
affect the transcription of a number of genes. By comparing the
expression of genes targeted by SnRK1/KIN10 (Baena-González
et al., 2007) and TOR (Xiong et al., 2013) in two available transcrip-
tional datasets (data was acquired from protoplast and seedlings,
respectively), we found that there was a significant overlap in the
genes affected by both TOR and SnRK1. More than half of the
genes (294 out of 507) described as KIN10 upregulated target genes
were found to be downregulated by glucose in a TOR-dependent
manner. Interestingly, 47 genes which were oppositely affected by
TOR and SnRK1 are annotated to encode RPs or proteins related
to translation. Furthermore, a similar proportion of genes found
to be downregulated by KIN10 (260 of 515 genes) were among the
putative upregulated targets of the TOR kinase, including genes
annotated to be involved in amino acid metabolism and involved
in carbohydrate metabolism. This underlines the hypothesis that
TOR and SnRK1 act antagonistically in the regulation of cen-
tral processes such as translation and carbohydrate and amino
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FIGURE 4 | The low energy syndrome involves processes regulated

by TOR and SnRK1 central to the adaptation to energy limitation.

The kinases SnRK1 and TOR are affected by energy availability and
mediate transcription, translation, enzyme activity, and the accumulation
of metabolites in order to drive adaptation to different conditions. Gray
arrows indicate processes shut down in response to energy limitation

and the dashed arrow denotes a probable interaction between these
two signaling pathways. Abbreviations: SnAK, SnRK1-activating kinase;
PP2C, type 2C protein phosphatase; TPS, trehalose phosphate synthase;
T6P, trehalose 6-phosphate; TPP, trehalose phosphate phosphatase; eIF3h,
eukaryotic translation initiation factor 3 subunit H; S6K, ribosomal
protein S6 kinase.

acid metabolism, a role that is likely to be crucial during the
establishment of stress responses.

Target of rapamycin and SnRK1 are both evolutionary con-
served and have been shown to interact in mammalian systems.
AMPK is described to regulate the mTOR complex 1 in differ-
ent ways, by phosphorylating components of the mTOR signaling
pathway (Xu et al., 2012). The phosphorylation of the TSC2/TSC1
complex by AMPK leads to the inactivation of Rheb, a GTPase
that activates mTORC1. Furthermore, AMPK has been described
to directly regulate the Raptor subunit of the mTORC1 complex
(Inoki et al., 2012). mTOR and AMPK have opposite roles in the
regulation of autophagy by targeting different phosphorylation
sites of ULK1 (Kim et al., 2011). Under nutrient limitation, AMPK
activates ULK1 and autophagy, whereas mTORC1 inactivates
ULK1 in nutrient-rich conditions (Inoki et al., 2012). In plants,
some of the described factors are present, including the Arabidopsis
TCTP that was proposed as a regulator of Rheb in TOR signaling
(Berkowitz et al., 2008) and the AMPK phosphorylation site in
Raptor (Robaglia et al., 2012). However, their role in the inter-
action between the TOR and SnRK1 signaling pathways remains
to be further analyzed. Additionally, many of the described genes
are missing in Arabidopsis, such as Rheb itself, TSC1, and TSC2
(van Dam et al., 2011). Their functions were taken over by other
factors, indicating that plants evolved energy signaling pathways
different from mammals or yeast that remain to be fully described
(Xiong and Sheen, 2014).

TOWARD A BETTER UNDERSTANDING OF LES
The studies discussed above underline the central role of the
energy signaling network composed of TOR, SnRK1, bZIP tran-
scription factors, and T6P in the control of growth and devel-
opment. Exposure of plants to conditions that challenge their
energy homeostasis results in significant metabolic reprogram-
ming to prevent damage to cells, tissue, and organs. LES involves

various changes in transcription, translation, enzymatic activi-
ties, and metabolite levels ultimately aiming at the adaptation
to energy deprivation (Figure 4). Amongst others, this leads
to protein, lipid, and chlorophyll breakdown (Contento et al.,
2004; Thimm et al., 2004), while in parallel, carbon utiliza-
tion is inhibited, which, taken together, severely affects growth
(Gibon et al., 2004).

Even though much is already known about the LES network,
there are still many open questions. More experimental data is
needed to unravel unknown mechanisms behind LES, but sev-
eral experimental limitations may be restraining new discoveries.
For example, most studies were conducted in protoplasts, whole
seedlings or plant tissue without distinguishing source and sink
organs. Since the interplay of molecules is complex and coor-
dinated in both time and space, increasing spatial resolution of
metabolites with the use of better techniques, like subcellular
fractionation (Nägele and Heyer, 2013), is necessary to enable
a better understanding of regulation of stress conditions by allow-
ing tissue-, cell-, and compartment specific analyses of metabolic
changes. Furthermore, the pleiotropic nature of SnRK1 and TOR
limits the use of mutants as mutations result in undesired effects
that can hardly be precluded. The use of constitutive promot-
ers for overexpression leads to the loss of information about
the localization of the expression of a certain gene. This infor-
mation is very important as many of the discussed genes are
differentially expressed between source or sink tissues, which
likely impacts on their role and function. It would thus be use-
ful to develop additional mutants, especially including organ and
temporal specific promoters, to overcome these current issues.
The use of inducible systems is of high interest for both SnRK1
and TOR, but particularly for the latter since knock-out mutants
are not available due to lethality. Hence, the uses of inducible
artificial microRNAs are a valuable option to down-regulate its
expression.
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The study of networks like LES requires the analysis of com-
plex datasets. It is important to realize that the challenge is not
only the acquisition of more and better experimental data, but
especially to be able to integrate it to facilitate its interpretation
via methods often referred to as systems biology or omics-based
approaches. To improve upon current approaches, theoretical
methods of uni- and multivariate statistics and mathematical
modeling have been developed which now allow large scale analy-
sis of biological networks (Nägele and Weckwerth, 2012). Several
problems related to plant science are being addressed using these
approaches, including responses to stress, (Yamaguchi-Shinozaki
and Shinozaki, 2006), plant defense (Li et al., 2006b) and the iden-
tification of new players, such as transcription factors (Hirai et al.,
2007).

Low energy signaling is a complex network that integrates
multiple cellular and environmental signals and comprises sev-
eral cellular changes. To avoid limitation in the interpretation of
the biological events, it is important to study this pathway on
all possible levels, comprising the gene, transcript, protein, and
metabolite levels. Limitations can arise, for example, from the
consideration of only transcriptomic data. With this type of data,
differences in transcription and RNA stability cannot be distin-
guished. Also, changes in transcript levels often do not reflect
changes in protein or metabolic levels and little information is
obtained at this level. Substantial contributions have been made
mainly concerning the integration of transcript and metabolite
data for A. thaliana (Hirai et al., 2004, 2005; Tohge et al., 2005). By
combining data from different molecular levels, a better under-
standing of pathway regulation being affected under low energy
conditions and contributing to the acclimatory response will be
significantly promoted. One type of systems biology approach is
based on the collection of data from different platforms followed
by data driven integration using advanced statistical models to
study the dynamic interactions between components (Yuan et al.,
2008; Fukushima et al., 2009; Keurentjes, 2009). Another more
targeted approach where a specific regulatory model involving
all known molecular players is built uses mathematical model-
ing to advance understanding of biological processes (Pokhilko
et al., 2010, 2012, 2013; Gould et al., 2013; Seaton et al., 2014). The
interaction between predictive models and experimental confir-
mation can be very effective, as having a more directed approach
in a given experiment could enable the achievement of faster
and more targeted results. Furthermore, unknown components
of the studied system can be discovered (Dalchau et al., 2011).
Some of the components that comprise the LES network may still
be unknown, but this type of approach could provide very use-
ful information especially in the connection between TOR and
SnRK1.

The use of systems biology is limited by the availability of
data and requires generalization, simplification, and assumptions.
However, it clearly has great potential to increasingly contribute
to the understanding of biological networks, including the LES
pathway, in combination with other approaches that involve cell
biology, biochemistry, or genetics. TOR and SnRK1 are related in
the processes they regulate and are activated under opposite con-
ditions, but so far there is no indication in plants that they or their
targets interact directly to optimize the activation and repression

of certain processes. While in mammals AMPK phosphorylates the
TSC2/TSC1 complex and Raptor, TSC2 and the AMPK phospho-
rylation site in Raptor are missing in Arabidopsis and it is not yet
clear whether TOR and SnRK1 pathways interact in a similar way.
It is possible that despite their connection, TOR down-regulation
is just another way to limit energy use, independent from SnRK1.
However, given the complexity of the network and the intercon-
nections seen so far, not only in plants but also in other systems,
it seems more likely that additional links or factors are yet to be
unraveled. It is crucial to establish if there is a direct interaction
between TOR and SnRK1, or if they act independently. In this
context, a better understanding of their (sub-)cellular localiza-
tion could provide insights to their mode of action and possible
interaction. Protein interaction studies may uncover novel inter-
actions between known LES components or even unravel new
components of the network. Their role in the metabolic repro-
gramming induced by energy deprivation may then be tested
by metabolomics studies which directly give information about
changes in the concentrations of central metabolite pools. A mul-
tidisciplinary approach on various levels of cellular and organismal
organization is needed to be able to draw a comprehensive picture
about low energy induced metabolic reprogramming.
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