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The dynamics of nitrate (NO−
3 ), a major nitrogen (N) source for natural plants, has

been studied mostly through experimental N addition, enzymatic assay, isotope labeling,
and genetic expression. However, artificial N supply may not reasonably reflect the N
strategies in natural plants because NO−

3 uptake and reduction may vary with external
N availability. Due to abrupt application and short operation time, field N addition, and
isotopic labeling hinder the elucidation of in situ NO−

3 -use mechanisms. The concentration
and natural isotopes of tissue NO−

3 can offer insights into the plant NO−
3 sources and

dynamics in a natural context. Furthermore, they facilitate the exploration of plant NO−
3

utilization and its interaction with N pollution and ecosystem N cycles without disturbing
the N pools. The present study was conducted to review the application of the denitrifier
method for concentration and isotope analyses of NO−

3 in plants. Moreover, this study
highlights the utility and advantages of these parameters in interpreting NO−

3 sources and
dynamics in natural plants. We summarize the major sources and reduction processes of
NO−

3 in plants, and discuss the implications of NO−
3 concentration in plant tissues based

on existing data. Particular emphasis was laid on the regulation of soil NO−
3 and plant

ecophysiological functions in interspecific and intra-plant NO−
3 variations. We introduce N

and O isotope systematics of NO−
3 in plants and discuss the principles and feasibilities of

using isotopic enrichment and fractionation factors; the correlation between concentration
and isotopes (N and O isotopes: 18δ O and 17� O); and isotope mass-balance calculations
to constrain sources and reduction of NO−

3 in possible scenarios for natural plants are
deliberated. Finally, we offer a preliminary framework of intraplant 18δ O-NO−

3 variation,
and summarize the uncertainties in using tissue NO−

3 parameters to interpret plant NO−
3

utilization.

Keywords: atmospheric nitrate, denitrifier method, isotopic enrichment, isotopic fractionation, nitrate reductase,
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PLANT NITRATE (NO−
3

) IN A NATURAL CONTEXT
Nitrogen (N) is a key factor in the control of the primary pro-
ductivity in terrestrial plant ecosystems (Vitousek and Howarth,
1991; LeBauer and Treseder, 2008). Among the N species avail-
able to plants, ammonium (NH+

4 ) is dominant in the inorganic
N of unfertilized soils (Schimel and Bennett, 2004) and atmo-
spheric N deposition (Stevens et al., 2011). Some plants prefer
NH+

4 (Britto and Kronzucker, 2013) while the roots of a few
plants directly absorb organic N (Chapin et al., 1993; Näsholm
et al., 2009; Hill et al., 2013). However, nitrate (NO−

3 ) is an impor-
tant N source for all plants because of its versatile functions
in both plant nutrition and physiological regulations (Raven,
2003; Wang et al., 2012). The utilization of NO−

3 (mainly uptake
and reduction/assimilation) has been investigated intensively in
plants through characterization of related enzymes including
nitrate reductase (NR) and nitrite reductase (NiR) and their
activities (NRA and NiRA, respectively) in response to different

environmental conditions (Beevers and Hageman, 1969; Atkin
et al., 1993; Kronzucker et al., 1995; Campbell, 1999). The
framework of plant NO−

3 studies has expanded in the past few
decades due to the availability of molecular techniques. A few
model plants have been used in understanding the transporters
responsible for NO−

3 uptake and transportation (Wang et al.,
2012). Besides its function in nutrient supply, plant NO−

3 and
its metabolism contain unique information related to the medi-
ation of plant physiology, diversity, and the ecosystem N cycle
(Crawford, 1995; Tischner, 2000). However, evolution has yielded
diverse strategies by which plants acquire N and NO−

3 from
natural environments to adapt to changes in ecosystem N avail-
ability (Chapin, 1980; Raven and Yin, 1998; Nacry et al., 2013).
Therefore, there are considerable uncertainties in assessing the
utilization of NO−

3 by plants in natural habitats, which can-
not be explained fully by laboratory-based mechanisms because
of methodological constraints. Consequently, a great need exists
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for a straightforward estimation of plant NO−
3 availability and

a mechanistic understanding of the processes controlling plant
NO−

3 uptake and reduction. These can enhance our understand-
ing of the role of plant NO−

3 utilization in the ecosystem N cycle
and the changes of plant growth and diversity with ecosystem N
status (Lambers et al., 2008; Bloom et al., 2010; Boudsocq et al.,
2012).

DENITRIFIER METHOD FOR NO−
3

IN NATURAL PLANTS
Natural abundance of stable isotopes in natural plants can inte-
grate the information related to N sources and physiological pro-
cesses (Högberg, 1997; Robinson, 2001; Craine et al., 2009). The
stable isotopes include δ15N, δ18O, and δ17O for NO−

3 ; 15N:14N,
18O:16O, and 17O:16O ratios expressed relative to atmospheric
N2 and standardized mean ocean water (VSMOW), respectively
(Coplen, 2011). These isotopes have been broadly used for study-
ing plant N strategies and enzymatic dynamics in natural settings
(Evans, 2001; Tcherkez and Farquhar, 2006; Granger et al., 2010).
Nevertheless, it is difficult to measure the concentration and iso-
topes (δ15N and δ18O) of NO−

3 in plant tissues precisely using
traditional methods (Liu et al., 2012a). The use of the denitri-
fier method for measuring low (sub-nanomole) concentrations of
NO−

3 ([NO−
3 ]) started during the mid-1980s (Lensi et al., 1985).

The method has high sensitivity and is especially applicable for
samples with low [NO−

3 ] but with high dissolved organic carbon
(DOC) (Christensen and Tiedje, 1988; Binnerup and Sørensen,
1992; Aakra et al., 2000). The denitrifier method developed for
both δ15N and δ18O analysis is based on the isotopic analysis of
nitrous oxide (N2O). The N2O is converted from sample NO−

3 by
cultured denitrifying bacteria (Pseudomonas aureofaciens; ATCC
13985) that lack N2O reductase activity (Sigman et al., 2001;
Casciotti et al., 2002). The method was initially performed on
seawater with 20–50 nmol NO−

3 . Since then, the application has
been expanded widely to accommodate isotopic analysis of NO−

3
in fresh water (e.g., groundwater, stream water, precipitation),
soil and sediment water, soil extracts, as well as dissolved organic
N (DON) in seawater and DON bound to diatoms as described
by Koba et al. (2010a) and McIlvin and Casciotti (2011), respec-
tively. This method has recently been used for measurements of
NO−

3 in natural plants and crops (Liu et al., 2012a, 2013a; Laursen

et al., 2013; Bloom et al., 2014; Mihailova et al., 2014). The
established protocol facilitates the �17O (�17O = [1 + δ17O] /
[1 + δ18O]0.5247 − 1; Kaiser et al., 2007) analysis of leaf NO−

3
to diagnose atmosphere-derived NO−

3 in leaf uptake (Mukotaka,
2014).

The denitrifier method enables more precise measurements of
subnanomole amounts of NO−

3 (Binnerup and Sørensen, 1992;
Højberg et al., 1994) as compared to traditional methods that use
flow injection analysis, ion chromatography, high-performance
liquid chromatography, and Kjeldahl distillation. Thus, the den-
itrifier method overcomes the difficulties in determining NO−

3
in plant, soil, and sediment samples (Norwitz and Keliher, 1986;
Anderson and Case, 1999; Alves et al., 2000). Moreover, it greatly
simplifies the pretreatment procedures and reduces the risk of
contamination during plant NO−

3 isotopic analysis (see the old
δ15N protocol in Volk et al., 1979 and Evans et al., 1996). The
denitrifier method especially avoids the influence of DOC in plant
extracts (Haberhauer and Blochberger, 1999) on the δ18O of NO−

3
(Figure 1) that was previously measured as carbon monoxide
with TC/EA-IRMS (Michalski, 2010).

Compared with NRA assays, concentrations and isotopic sig-
natures of tissue NO−

3 provide more authentic evidence related to
NO−

3 uptake and reduction under in situ N availability. In vitro
and in vivo NRA measurements (Stewart et al., 1992, 1993) do
not reflect the in situ ability of plant NO−

3 reduction. This is
because firstly, the added amount of NO−

3 (often at the micro-
molar level) during NRA assays is uniform. Moreover it is much
higher than normal NO−

3 availability and the endogenous NO−
3

in natural plants. The synthesis of the NR enzyme or the acti-
vation of NRA, however, is substrate-inducible (Beevers and
Hageman, 1969; Somers et al., 1983; Campbell, 1999). Secondly,
the reagents used in the assay can affect the estimation of NRA.
Different analytical settings (e.g., with or without ethanol) can
alter the fluxes of NO−

3 and photosynthate, resulting in differ-
ent estimations (Ferrari and Varner, 1970; Aslam, 1981). Thirdly,
NRA might be altered by pH adjustment and vacuum infil-
tration during the NRA analysis. High DOC concentrations in
the plant extract also easily destroy the precision of the colori-
metric determination of NO−

3 or nitrite (NO−
2 ) (Alves et al.,

2000).

FIGURE 1 | Assigned isotopic ratios (A: δ15N; B: δ18O) of NO−
3

standards (IAEA NO3, USGS-32, USGS-34, and USGS-35) shown

against corresponding isotope values measured in MQ (Millipore)

water and in plant extracts (the initial NO−
3

in plant extracts was

removed using the same protocol as that described in Liu et al.,

2012a).
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Since natural isotope analysis does not require artificial N
addition, it presents no risk of changing the soil N pools and plant
N-uptake kinetics (Liu et al., 2012b). The natural abundance
approach does not disturb the N pools in plants and provides
information related to the NO−

3 behavior in plant tissues based
on isotopic compositions and fractionations. In fact, the field
application of 15NO−

3 tracer is advantageous in terms of the total
and short-term incorporation of NO−

3 into plants (e.g., McKane
et al., 2002; Wanek and Zotz, 2011). However, the added tracer
cannot bypass the influence of soil microbial activity, which can
greatly change the picture of N uptake and preference over time
(Harrison et al., 2007). Measurements of cytosolic and vacuolar
NO−

3 concentrations have been conducted to explore factors con-
trolling uptake, intracellular transport and assimilation. However,
related techniques such as compartmental radiotracer (e.g., 13N;
Kronzucker et al., 1995), efflux analysis, nuclear magnetic res-
onance, cell fractionation, and NO−

3 -selective microelectrodes
showed high cost and low field operability (Zhen et al., 1991;
Miller and Smith, 1996). The calculated [NO−

3 ] is especially sen-
sitive to the small error of the estimation of cytosolic and vacuolar
volumes, the precisions of which are difficult to ascertain.

MAJOR SOURCES AND PROCESSES OF NO−
3

IN NATURAL
PLANTS
Root NO−

3 uptake from the soil is achieved by active transporta-
tion (Wang et al., 2012). The extracellular NO−

3 enters the cytosol
of plant cells where it is either reduced by NR to NO−

2 or stored in
the vacuoles (Figure 2). The NO−

2 will be transported into plas-
tids (in root) or chloroplasts (in leaf) and reduced further by NiR
to reduced N (Figure 2). Both NRA and NiRA are well known
to be substrate-inducible, meaning that the de novo synthesis of
the enzyme results from the presence and increase of the NO−

3
in plants (Beevers and Hageman, 1969; Campbell, 1999). The
induction of NRA by both soil and airborne NO−

3 is an impor-
tant mechanism to elucidate the interactions among NO−

3 uptake,
translocation/allocation, and reduction dynamics (Norby et al.,
1989; Scheible et al., 1997a; Tischner, 2000).

The NO−
3 transported by the xylem flow, either directly from

soil or partially processed by root NR, is the initial NO−
3 reach-

ing leaves and shoots (Peuke et al., 2013). This is especially true
for plants growing at some pristine sites (e.g., arctic tundra)

where the atmospheric NO−
3 availability is negligible. However, in

regions with substantial NO−
3 deposition, both atmospheric NOx

and NO−
3 serve as potential sources of NO−

3 in leaves (Wellburn,
1990; Raven and Yin, 1998; Sparks et al., 2001), especially for non-
vascular plants such as mosses, which rely more on atmospheric
nutrients (Liu et al., 2012c). Leaf NO−

3 acquisition from the
atmosphere is conducted through passive diffusion mechanisms
wherein uptake through the stomata is dominant (Wellburn,
1990; Raven et al., 1992; Gessler et al., 2002) (Figure 2). The leaf-
accessible NO−

3 in the atmosphere includes an array of inorganic
and organic ions and compounds (Wellburn, 1998; Teklemariam
and Sparks, 2004; Vallano and Sparks, 2008). Although, previ-
ous tracer studies have described their incorporation into leaves
(Hanson and Garten, 1992; Yoneyama et al., 2003; Lockwood
et al., 2008), it is rather difficult to apply the natural abundance
method for estimating field contributions of atmospheric NO−

3 .
This can be attributed to the heterogeneity in chemical and depo-
sition forms, and temporal and spatial distributions (Sievering
et al., 2007; Sparks, 2009).

CONCENTRATION LEVELS AND IMPLICATIONS OF NO−
3

IN
NATURAL PLANTS
Nitrate cannot be produced in photoautotrophic plants, except
in a few legumes (Hipkin et al., 2004). The presence of NO−

3 in
any part of a plant constitutes evidence of NO−

3 uptake by the
plant and reflects that external NO−

3 is available; and that the rate
of uptake is higher than the rate of reduction. The NO−

3 that is
extractable from a plant organ is often a sum of the amounts
from the extracellular pool, cytosolic pool, and vacuolar pool
(Figure 2). These pool sizes and turnover rates are regulated by
both environmental and physiological factors (Zhen et al., 1991;
Miller and Smith, 1996), which determine the isotopic signatures
of the extracted NO−

3 . Generally, the concentration level and dis-
tribution of NO−

3 in vascular plants and the variations among
species is a complex result of two important factors: external
availability (previously often evaluated through NO−

3 concentra-
tion and net nitrification rate in soil) and physiological strategies
(mainly including uptake, translocation, and reduction dynam-
ics). Moreover, the external factors also consider the availability
of NO−

3 relative to NH+
4 or other N sources because it can influ-

ence both plant NO−
3 uptake and assimilation (Boudsocq et al.,

FIGURE 2 | Schematic map showing major NO−
3

sources and processes in leaves and roots of natural plants.
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2012; Liu et al., 2012c; Britto and Kronzucker, 2013) while the
physiological factors include the affinity of plants to different soil
NO−

3 levels (Wang et al., 2012; Kalcsits and Guy, 2013).
First, the distribution of organ-specific NO−

3 concentrations
among plants under different growing conditions (Figures 3, 4A)
showed that plants growing in natural soils might also have a
high NO−

3 accumulation. In natural forests, leaf NO−
3 concentra-

tions of some species can be as high as 1000–10000 μg-N g−1 dw
(Figure 4A; Gebauer et al., 1988; Koyama et al., 2013), which was
even higher than those of some crops (e.g., Bloom et al., 2014)
and N-polluted natural plants (Figure 3). Plant NO−

3 concentra-
tions are indicators or predictors of the soil N cycle (e.g., soil
nitrification and soil NO−

3 ) and forest N pollution (Stams and
Schipholt, 1990; Aber et al., 1998; Fenn and Poth, 1998; Koba
et al., 2003). Such concentrations show higher sensitivities than
bulk N and NRA parameters in revealing species-level responses
to N enrichment (Fenn et al., 1996; Jones et al., 2008; Tang et al.,
2012). The increase in NO−

3 concentration in roots and or leaves
with external NO−

3 was observed under both natural soil condi-
tions and experimental N addition (e.g., Stewart et al., 1993; Lexa
and Cheeseman, 1997; Wang and Schjoerring, 2012). However,
the level of leaf NO−

3 and its response to soil NO−
3 variation dif-

fer among species with distinct uptake or accumulation rates. For
example, the NO−

3 concentrations in plants (mostly as mosses) we
recently investigated (Liu et al., 2012a,c, 2013a) were much lower
than those reported by Gebauer et al. (1988) or Koyama et al.
(2013) on vascular plants (Figure 4A) when compared within a
similar soil [NO−

3 ] range (e.g., 0–15 mg-N kg−1 soil, dw). Besides,
the correlation between leaf NO−

3 and soil NO−
3 is apparent

for plants with low NO−
3 concentrations (Figure 4A). However,

synthesis or extrapolation to different plants with distinct NO−
3

FIGURE 3 | Tissue NO−
3

concentrations in natural plants growing under

disturbed conditions (acidic irrigation and liming; Gebauer et al.,

1988), in N-polluted forest plants (Stams and Schipholt, 1990), in

natural and crop plants with artificial NO−
3

supply (data of natural

plants were cited from Gebauer et al., 1984; Stadler and Gebauer,

1992; Robe et al., 1994; Simon et al., 2014. Data of crop plants were

cited from Evans et al., 1996; Yoneyama and Tanaka, 1999; Prasad and

Chetty, 2008 and references cited therein).

accumulation abilities should be done carefully when evaluating
soil N enrichment or N saturation.

Second, considerable differences (up to 4–5 orders) exist in the
level of NO−

3 among plant organs and species (Figures 3, 4A).
The organ-specific patterns of NO−

3 accumulation among coex-
isting plants can differ with soil N availability and the plant
growing stage (Gebauer et al., 1984; Stewart et al., 1993; Liu
et al., 2013a). However, this has complicated the use and selection
of proper organs and species to evaluate ecosystem N availabil-
ity based on tissue NO−

3 analysis. McKane et al. (2002) used
15N tracers in the field to show that NO−

3 uptake in the tundra
plants did not passively follow external availability, but depended
on specific ecophysiological traits. NO−

3 preference in Carex was
determined by the appearance of 15N tracer in Carex biomass,
which showed that the NO−

3 preference might reflect only the
15NO−

3 -acquiring efficiency associated with root traits, but not
NO−

3 assimilation given significantly lower NRA in Carex than
in other species (Nadelhoffer et al., 1996). Therefore, additional
studies should be conducted to determine the extent of organ-
specific and species-specific variability of NO−

3 concentration that
reflects plant NO−

3 strategy, and the heterogeneity of NO−
3 avail-

able to roots. The available data for natural plants revealed a clear
increase in NO−

3 concentration with bulk N while a decrease with
C/N (a clear turning at the C/N of 20–30) in different organs
or tissue types (Figure 4B). Similarly, Zhen and Leigh (1990)
reported that shoot NO−

3 accumulated as a linear function of bulk
N in wheat plants once a threshold N was exceeded. These results
reflected the regulation of overall physiological N demand on the
NO−

3 utilization in natural plants (Imsande and Touraine, 1994).
The regulation might be unidirectional because the contribution
of NO−

3 to bulk N assimilation appears to be much lower than
that for other N forms in plants (portrayed in Figure 4B). The
complexity of the mutual regulations behind the inverse relation
between NO−

3 and C/N might be comparable with the multi-scale
inverse relation prevailing between NO−

3 and organic C observed
in different ecosystems (Taylor and Townsend, 2010). So far, lit-
tle direct and simple evidence has been obtained for the driving
mechanisms of C and N metabolism on NO−

3 uptake, alloca-
tion, and accumulation in natural plants. A clearer relation is
that even when external NO−

3 is uniform, the NO−
3 concentra-

tion is often higher in organs (especially for growing leaves) of
species with higher NRA than in those with lower NRA (Gebauer
et al., 1988; Cruz et al., 1991; Widmann et al., 1993; Min et al.,
1998). Mutual induction between the maintenance of high NO−

3
concentration and that of NR synthesis or NRA activation were
elucidated in view of C metabolism and N demand in response to
availability and growing conditions (Stewart et al., 1993; Scheible
et al., 1997a,b; Scheurwater et al., 2002). The lower NO−

3 concen-
tration and NRA might be associated with lower N metabolism
and demand in organs and plants with higher C/N and vice
versa. Therefore, except regulation by soil NO−

3 concentration,
the uptake and distribution of NO−

3 in a plant might follow the
regime of organ-specific or whole-plant metabolic activities.

Other factors such as light and water regimes might also
influence plant NO−

3 accumulation through the pathway of
photosynthetic regulation (Widmann et al., 1993; Simon et al.,
2014). Cárdenas-Navarro et al. (1999) found concurrent and

Frontiers in Plant Science | Plant Physiology July 2014 | Volume 5 | Article 355 | 4

http://www.frontiersin.org/Plant_Physiology
http://www.frontiersin.org/Plant_Physiology
http://www.frontiersin.org/Plant_Physiology/archive


Liu et al. Stable isotopes of plant nitrate

FIGURE 4 | (A) Relation between NO−
3 concentrations in soil and natural

plants. Plant NO−
3 data in the left panel are shown for individual samples in

Guiyang, southwestern China and western Tokyo, Japan reported by Liu et al.
(2012a; 2012c, 2013a; 2013b). Plant NO−

3 data in the right panel show
organ-specific and whole-plant concentrations (averages of different species)
in ecosystems of Central Europe (see details in Gebauer et al., 1988), and
leaf NO−

3 of different species (H. hirta, P. japonica, L. stellipilum, L. triloba) in a
temperate forest of central Japan (Koyama et al., 2013). (B) Relations

between total N, C/N, and tissue NO−
3 concentration in natural plants.

Mosses include different species in different habitats of Guiyang,
Southwestern China, and Western Tokyo, Japan (cited from Liu et al.,
2012a,c). Vascular leaves I, petioles and roots were reported for a coniferous
and a broadleaved plant in western Tokyo, Japan (cited from Liu et al., 2013a).
Vascular leaves II included fern, oak, and pine species at the Camp Paivika
and Camp Osceola forest sites in the San Bernardino Mountains of southern
California, USA (cited from Fenn et al., 1996).

linearly correlated changes in whole-plant NO−
3 and water con-

tent during the day–night cycle, reflecting a homoeostasis effect of
endogenous NO−

3 concentration. Besides, as discussed above, the
heterogeneity of soil NO−

3 available to roots of coexisting species
should not be excluded considering the differences in root mor-
phology and spatial distribution. Given the difficulties in deter-
mining rhizospheric soil NO−

3 concentration and flux, it would
be promising to measure NO−

3 concentrations in roots to evaluate
NO−

3 availability to the whole plant or aboveground organs.

ISOTOPIC SYSTEMATICS OF NO−
3

IN PLANTS
Stable isotopes of NO−

3 in plants are controlled mainly by NO−
3

sources and isotopic effects involved in NO−
3 acquisition and

reduction processes (Robinson et al., 1998; Comstock, 2001;
Evans, 2001; Cernusak et al., 2009).

The δ15N of NO−
3 in soil is reported mostly within −10

to +10�; however, the δ15N of newly-produced NO−
3 in soil

is usually low because of strong isotopic effects of nitrifica-
tion, on the other hand, the values can be elevated at sites with
marked denitrification (Mariotti et al., 1981; Högberg, 1997; Koba
et al., 1998, 2003, 2010b; Houlton et al., 2006; Takebayashi et al.,
2010). Atmospheric NO−

3 has a wider δ15N range (−15 – +15�)
because of its complex production pathways and sources (Heaton,
1990; Felix et al., 2012; Altieri et al., 2013). The δ15N of NO−

3
is generally lower in wet than in dry deposition (Heaton et al.,
1997; Elliott et al., 2009), but both often show a δ15N range
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overlapping with that of soil NO−
3 . The δ18O of initial NO−

3 pro-
duced in soil is usually estimated using the δ18O of in situ H2O
(normally −25 – 4�) and atmospheric O2 (ca. 23.5�) in a 2:1
ratio, assuming no exchange and fractionation of oxygen (O)
isotopes occurs during nitrification and the NO−

3 is produced
solely through chemolithoautotrophic nitrification (Amberger
and Schmidt, 1987). However, kinetic isotopic fractionation and
O exchange between NO−

2 and H2O often occur during nitrifi-
cation, which can eliminate the isotopic signal of O2 effecting
lower δ18O than the predicted values (Fang et al., 2012). The O
of NO−

3 in atmospheric deposition is derived mainly from O2

and O3, which have distinctly higher δ18O and �17O signatures
than those of soil NO−

3 . In contrast to the overlapping δ15N for
different NO−

3 sources, δ18O and or �17O provide a clear sep-
aration between soil and atmospheric NO−

3 sources. The δ18O
of soil NO−

3 produced by nitrification is distinctly lower (mean
= −4.0�; −7.3 to −0.9�; Fang et al., 2012) than that of atmo-
spheric NO−

3 (60 − 100�). The latter has high �17O values
(around 25�) in contrast to 0� of soil-derived NO−

3 (Kendall
et al., 2007; Michalski, 2010; Costa et al., 2011) (Figure 5).

The process of NO−
3 entry into root cells and subsequent trans-

port processes within plants per se cause no isotope effect because
of the lack of bond breakage. However, the acquisition of NO−

3
through mycorrhizae to root cells potentially causes an isotopic
difference between tissue NO−

3 in roots and NO−
3 in soil. Root

NO−
3 may be enriched in heavier isotopes relative to soil NO−

3
if the NO−

3 has experienced reduction during the N assimila-
tion of mycorrhizae associated with the roots. Mycorrhizal fungi
have substantial NO−

3 reduction capacity (Ho and Trappe, 1975),
but the fungal NR is present only in the presence of NO−

3 and
absence of NH+

4 (Cove, 1966). So far, the isotopic effect of NO−
3

acquisition through mycorrhizae on tissue NO−
3 in natural plants

has not been estimated or differentiated. Pate et al. (1993) demon-
strated that the bulk δ15N differences between non-mycorrhizal
and mycorrhizal species (with significant NO−

3 storage and NRA)

reflected the utilization of different N sources. There appears to
be little or no isotopic discrimination within the plant during or
subsequent to uptake of NO−

3 . Mycorrhizal fungi are expected
to show higher bulk δ15N than available N sources [potentially
including NO−

3 , NH+
4 , and DON (at least amino acids)] in soil

and bulk N of host plants. However, the isotopic mechanism dif-
fered from that of tissue NO−

3 and the isotope effect differed
among mycorrhizal types (Högberg, 1997; Craine et al., 2009;
Hobbie and Högberg, 2012). Högberg et al. (1999) showed that
the ECM fungus had higher bulk δ15N relative to the Pinus
sylvestris plant, and the fractionation against 15N was smaller
when NO−

3 was the source than when NH+
4 . It caused a marginal

decrease in δ15N of the N passing from the substrate through the
fungus to the host, which is explained by the small size of the
fungal N pool relative to the total N of the plant, i.e., the high effi-
ciency of transfer (Emmerton et al., 2001; Hobbie and Högberg,
2012). The significant shift in δ15N of fungal species was a func-
tion of fungal physiology; thus, it is difficult to constrain the N
sources (using bulk δ15N) by mycorrhizal fungi or their plant
partners in natural conditions (Emmerton et al., 2001).

The efflux of NO−
3 from root to soil or the subsequent trans-

port of NO−
3 within plants is not expected to discriminate 15N

as with the entry of soil NO−
3 into root cells (Mariotti et al.,

1982; Shearer et al., 1991). This can be attributed to that the
diffusion of NO−

3 through the membrane carriers of plant cells
does not cause bonding breakage or consumption (Werner and
Schmidt, 2002; Granger et al., 2004; Needoba et al., 2004).
However, isotopic differences can occur between organs if par-
tial NO−

3 reduction occurs in roots before transportation. The
transport of NR-processed NO−

3 from roots to leaves might be
misunderstood as isotopic fractionations of NO−

3 transport or
NO−

3 reduction in shoots. So far, isotopic fractionations (ε =
(lk/hk − 1) × 1000, where lk and hk respectively stand for the
reaction rate constants for lighter and heavier isotopes) during
the reduction of NO−

3 by NR in leaves were reported as 15� for

FIGURE 5 | Preliminary relation between δ18O and �17O values of NO−
3

in mosses and vascular plants. The δ18O and �17O values were considered
respectively, as −5 to 5� and 0� for soil NO−

3 (black and solid line), 70 and

25� for atmospheric NO−
3 (red square). Dashed lines show the isotopic

range of mixing between atmospheric and soil sources. Dashed lines with
arrows show the vectors of δ18O enrichments because of NR reduction.
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both N in spinach (Ledgard et al., 1985; Tcherkez and Farquhar,
2006) and O in wheat (Olleros-Izard, 1983) (Table 1). Direct
measurement of endogenous NO−

3 reduction in mosses after N
deprivation showed similar values (Liu et al., 2012b) (Table 1).
Although, NR isotopic fractionations have not been directly mea-
sured in roots, predictions can be made about the net enrichment
of NO−

3 isotopes in roots relative to those of soil NO−
3 (�root;

expressed as δroot − δsoil). These values should be either negli-
gible if substantial NO−

3 reduction did not occur (Scenario 1;
�root = δroot − δsoil ≈ 0), or be close to the reported ε values
of NRA in leaves (εNR) (0 − 27�; Table 1) if NO−

3 reduction
occurred in the root (Scenario 2; �root = δroot − δsoil ≈ εNR > 0)
(Figure 6). However, if the modification of soil NO−

3 isotopes
by soil microbial activities such as denitrification occurred later
than root uptake, the observed isotopic values of root NO−

3 can
also be slightly lower than those of soil NO−

3 despite reduc-
tion in roots (e.g., in the fine roots of a conifer investigated in
Liu et al., 2013a). Furthermore, the variation of NO−

3 isotopes
with soil depth directly caused isotopic differences in initial NO−

3
sources available to co-existing plants with different root depths.
Therefore, considering this fact, soil reference samples should be
collected corresponding to root distribution for characterizing
the soil NO−

3 isotopes available to specific plants.
In a closed system, isotopic enrichment occurs with the enzy-

matic consumption of substrate NO−
3 and εNR is expressed as

�/ln[NO−
3 ]remaining fitted to the Rayleigh isotope fractionation

model, where � represents the isotopic difference of remaining
NO−

3 from the initial NO−
3 (δremaining − δinitial) (e.g., Granger

et al., 2004, 2010). Isotopic enrichment also takes place for
NO−

3 remaining in plants after deprivation of NO−
3 or N sup-

ply, because the tissue NO−
3 pool is only changed by the NRA

in a closed system (e.g., Liu et al., 2012b). Thus far, no experi-
mental work has been done to explain the variability of 18εNR in
and among vascular plants. In NO−

3 -supply studies, shoots tend
to have higher δ15N values because of the allocation of root NR-
processed NO−

3 from roots to shoots (Kalcsits and Guy, 2013) or
significantly higher 15εNR (by 3.3–6.9�) than roots (Yoneyama
and Kaneko, 1989; Evans et al., 1996; Yoneyama et al., 2001).

Evidence from marine biota showed that both 15εNR and 18εNR

can vary with growing conditions and that significantly differ-
ent ε values exist among species (Table 1). In field conditions,
NO−

3 in an organ is more likely to be an open system with con-
tinuous source inputs (uptake), sinks (reduction), and outputs
(translocation) (Figure 2). The uptake and allocation often occur
according to the reduction ability and the distribution of NR,
for example, a higher concentration and more NR are likely to
exist in growing leaves (Gebauer et al., 1988; Cruz et al., 1991;
Widmann et al., 1993). Passive or high accumulation as in mosses
(Liu et al., 2012c) can happen in some organs such as conifer roots
that are unable to reduce it (Liu et al., 2013a). Therefore, δ val-
ues of tissue NO−

3 might not always follow the normal “Rayleigh
type” relation, instead might increase with the increase in tissue
[NO−

3 ] or show a non-significant correlation with [NO−
3 ] in the

tissues (Liu et al., 2012c, 2013a). In fact, experimental studies
have also shown the interplay of plant NO−

3 uptake and reduc-
tion activity. The 15N discrimination during NO−

3 assimilation in
several higher plants was positively correlated with the supplied
and tissue NO−

3 concentrations, and negatively correlated with
plant age (Kohl and Shearer, 1980; Mariotti et al., 1980, 1982;
Bergersen et al., 1988; Liu et al., 2013a). Accordingly, the Rayleigh
relation between NO−

3 and its isotopes is not always applicable
to examine εNR values and NO−

3 reduction in organs of natural
plants.

For some plants, NO−
3 is not available in soil substrates. It

can only be acquired from deposition (e.g., non-vascular plants
or epiphytes). Alternatively, it is not available in deposition but
can only be taken up from the soil (e.g., plants growing in arc-
tic pristine ecosystems with negligible NO−

3 deposition). In these
plants, it is also feasible to diagnose leaf NO−

3 reduction using
�leaf (the net enrichment of NO−

3 isotopes in leaves relative to
those of source NO−

3 ) (Scenarios 3–6; Figure 6).
Scenario 3: If no NO−

3 was transported from soil to leaves, and
leaf NO−

3 if any, was completely derived from atmosphere, but no
reduction occurred, then:

�leaf = δleaf − δatm ≈ 0.

Table 1 | Isotopic effects reported for NO−
3

reduction (*) or net NO−
3

assimilation in different biota.

Biota 15ε / � 18ε / � References

Eukaryotic NR enzymes (from fungus and marine diatoms) 26.6* 24.9* Karsh et al., 2012

Moss 12.1* 14.4* Liu et al., 2012b

Strains of prokaryotic plankton 0.4–8.6 0.9–8.1 Granger et al., 2010

Spinach and wheat 15.0* 15.0* Olleros-Izard, 1983; Ledgard et al., 1985; Tcherkez
and Farquhar, 2006

Eukaryotic algae 5.6–20.4 5.1–21.0 Granger et al., 2004

Marine phytoplankton 2.7–15.2 – Needoba and Harrison, 2004

4–9 (field) 2.2–6.2 (lab) – Needoba et al., 2003

Tomato 11.3–12.9 – Evans et al., 1996

Leafy vegetable 14.2–18.1 – Yoneyama and Kaneko, 1989; Yoneyama et al.,
2003

Grasses 0.0–3.3 – Mariotti et al., 1982

Pearl Millet and soybeans 0.0-9.5 – Mariotti et al., 1980, 1982; Bergersen et al., 1988

Red clover 1.7–6.5 – Kohl and Shearer, 1980
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FIGURE 6 | Schematic showing δ18O-NO−
3

variations in plants under

different uptake (from soil and or atmospheric sources: distinct in the

δ18O value), translocation (from soil and or root to shoot), and reduction

(potentially inducible by increasing [NO−
3

] or no reduction and no

isotopic enrichment with NO−
3

accumulation, depending on species).

Long and short solid lines with arrows respectively show the vectors of
δ18O-NO−

3 and [NO−
3 ] variations. Dashed lines with arrows show the uptake,

transportation, and translocation of NO−
3 from the soil to roots and or to

leaves, from atmosphere to leaves, during which isotope effects were
regarded as negligible. Shaded areas (gray for roots, green for leaves) show
isotopic enrichment during the mixing of different sources (the δ18O-NO−

3 in
plants should be distributed between the δ18O values of sources, depending
on the fraction of each source) and or the occurrence of NR reduction
activities (the δ18O-NO−

3 in plants would be higher than the δ18O of sources
but the magnitude of enrichment depends on in situ NR dynamics;
presumably less than that presented in Table 1). For scenarios that occurred,
leaf uptake of atmospheric NO−

3 was assumed to be homogeneous. The
shaded area, the spatial distance, and length of lines had no quantitative
implications. S1–S12 correspond to scenarios 1–12 in the main text. Briefly,

S1, no occurrence of NO−
3 reduction in roots; S2, (inducible) root NO−

3
reduction; S3, no NO−

3 was transported from soil to leaves and leaf NO−
3 was

derived from the atmosphere, but no reduction occurred; S4, no NO−
3 was

transported from soil to leaves and leaf NO−
3 was from atmosphere and

(inducible) reduction occurred; S5, leaf NO−
3 was taken up directly from the

soil, but no reduction occurred; S6, leaf NO−
3 was taken up from the soil and

reduction occurred therein; S7, leaf NO−
3 is completely or partially transported

from the root where it has experienced reduction, but no further reduction in
the leaf; S8, leaf NO−

3 is completely or partially transported from the root
where it has experienced reduction, and is further reduced in the leaf; S9,
leaf NO−

3 was from both atmosphere and soil but no reduction occurred in
the leaf; S10, leaf NO−

3 was from both atmosphere and soil, and reduction
occurred in the leaf; S11, leaf NO−

3 is a mixture of atm-NO−
3 and root NO−

3 but
no reduction occurred; S12, leaf NO−

3 is a mixture of atm-NO−
3 and root NO−

3 ,
and reduction occurred in the leaf; S13, leaf NO−

3 is a mixture of soil NO−
3 ,

atm-NO−
3 , and root NO−

3 , but no reduction occurred in the leaf; S14, leaf NO−
3

is a mixture of soil NO−
3 , atm-NO−

3 , and root NO−
3 , and reduction occurred in

the leaf. The δ18O differences between S13 and S11, between S12 and S14
depend on the fraction of soil NO−

3 in the mixed pool of leaves.

Scenario 4: If no NO−
3 was transported from soil to leaves and leaf

NO−
3 was acquired from atmosphere; and reduction occurred,

then:

�leaf = δleaf − δatm > 0.

Scenario 5: If all leaf NO−
3 was taken up directly from the soil and

no reduction occurred in roots or leaves, then:

�leaf = δleaf − δsoil ≈ 0.

Scenario 6: If leaf NO−
3 was transported completely from the soil

and reduction occurred only in the leaves, then

�leaf = δleaf − δsoil > 0.

The induction of NR by atmospheric-derived NO−
3 has been

shown in plants exposed to airborne N oxides (e.g., Norby et al.,
1989; Wellburn, 1990). Scenarios 3–4 are expected to be true for

mosses because atmospheric NO−
3 has been assumed as the sole

source (Liu et al., 2012a). Nevertheless, isotopic partitioning of N
sources (Liu et al., 2013b) and further �17O analysis (Figure 5)
suggests that moss NO−

3 , even at epilithic habitats, is actually
a mixture of atmospheric NO−

3 and soil-derived NO−
3 . Thus, it

is becoming clear that mosses can acquire substantial N from
substrates; and moss NO−

3 is a valid atmospheric bio-monitor
only for species growing on rare N-free substrates. Scenarios 5–6
demonstrated NO−

3 dynamics of vascular plants in the tundra of
northern Alaska, where the �17O of NO−

3 in plants with surpris-
ingly high [NO−

3 ] was found as 0� (e.g., Polygonum bistorta).
However, examining only �leaf seems insufficient to determine
NO−

3 reduction location, since, isotopic enrichments of leaf NO−
3

might result from root reduction activities before moving up to
leaves (Scenario 7).

Scenario 7: If the leaf NO−
3 is completely or partly trans-

ported from the root where it has experienced reduction, but no
reduction has occurred in the leaf; then an isotope mass-balance
calculation can be conducted to quantify the amount of leaf NO−

3
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accumulated directly from soil and indirectly from roots:

�root = δleaf − δsoil ≈ δroot − δsoil > 0,

�leaf = δleaf − δroot < 0, and

δleaf = (1 − froot) × δsoil + froot × δroot.

The reduction of NO−
3 that has experienced reduction in roots

can further increase the isotopic enrichment of leaf NO−
3 relative

to soil NO−
3 (Scenario 8) (Figure 6). This has been demonstrated

by the δ15N difference between roots and leaves in plants growing
with NO−

3 with known δ15N values (Yoneyama and Kaneko, 1989;
Evans et al., 1996; Yoneyama et al., 2001). This NO3 reduction
occurs especially in plants that are capable of reducing NO−

3 in
both shoots and roots (Stewart et al., 1992).

Scenario 8: If the leaf NO−
3 is completely or partially trans-

ported from roots where it has experienced reduction; and if it
is further reduced in the leaf. In this case, a partitioning similar
to scenario 7 can be done by considering the �leaf in the isotope
mass-balance calculation:

�root = δroot − δsoil > 0 and

δleaf = [(1 − froot) × δsoil + froot × δroot] + �leaf.

Plant NO−
3 in scenarios 1–8 was derived either from the soil or

atmosphere (Figure 6). A supplemental diagnosis of NR dynam-
ics was to examine the covariance of �δ18O:�δ15N ratios (� is
the isotopic enrichment of plant NO−

3 relative to source NO−
3 ;

� = δplant − δsource). This diagnosis helped determine whether
the N–O bond breakage attributable to NO−

3 reduction was
the single process driving NO−

3
15N and 18O enrichments.

Theoretically, the dissociation of an O atom from NO−
3 pre-

dicted that NO−
3 isotopes would be fractionated in an O-to-N

ratio of ca. 0.6 (Brown and Drury, 1967). However, the NR
often had the same O-to-N isotopic imprint on substrate NO−

3
in experimental studies. Consequently, the 1:1 trend was consid-
ered ubiquitous for biological NO−

3 reduction (Granger et al.,
2004, 2010). However, for leaves of vascular plants that acquire
NO−

3 from both atmosphere and soil, it is difficult to constrain
leaf NO−

3 reduction based only on the �leaf (δleaf − δsource) and
εNR, because the mixing of atmospheric NO−

3 can raise the δ

values (especially δ18O). Liu et al. (2013a) observed that the
δ18O:δ15N ratios in roots of a conifer generally followed the
1:1 rule; although leaf NO−

3 showed distinctly higher δ18O:δ15N
ratios (2.5:1) because of the mixing of atmospheric NO−

3 .
As described above, the fraction of atmospheric-derived NO−

3
(Fatm) in leaves can be estimated using �17O mass-balance calcu-
lation (Fatm = �17Oleaf / �17Oatm < 1). Thereafter, the leaf NO−

3
sources and NR dynamics can be further constrained.

Scenario 9: If leaf NO−
3 was absorbed from both the atmo-

sphere and soil, but no reduction occurred in the leaf, then the
fraction of atmospheric-derived NO−

3 calculated using δ18O or
δ15N (fatm) is expected to be similar to Fatm, as

δleaf = (1 − fatm) × δsoil + fatm × δatm,

and fatm ≈ Fatm < 1.

Scenario 10: If leaf NO−
3 was absorbed from both the atmosphere

and soil, and reduction occurred in the leaf, then:

δleaf = [(1 − fatm) × δsoil + fatm × δatm] + �leaf,

fatm ≈ Fatm < 1,

and �leaf = δleaf − [(1 − Fatm) × δsoil + Fatm × δatm] > 0.

Scenario 11: If leaf NO−
3 is a mixture of atm-NO−

3 and root NO−
3 ,

but no reduction occurred, then:

δleaf = (1 − fatm) × δroot + fatm × δatm

≈ [(1 − fatm) × (δsoil + �root) + fatm × δatm],
fatm ≈ Fatm < 1,

and �root = δroot − δsoil

≈ [(δleaf − Fatm × δatm)/(1 − Fatm)] − δsoil > 0.

Scenario 12: If leaf NO−
3 is a mixture of atm-NO−

3 and root NO−
3 ;

and if the reduction occurred in the leaf, then:

δleaf = [(1 − fatm) × δroot + fatm × δatm] + �leaf

≈ [(1 − fatm) × (δsoil + �root) + fatm × δatm] + �leaf,

fatm ≈ Fatm < 1,

�root = δroot − δsoil > 0,

and �leaf = δleaf − [(1 − fatm) × δroot + fatm × δatm] > 0.

Scenario 13: If leaf NO−
3 is a mixture of soil NO−

3 , atm-NO−
3 , and

root NO−
3 , but no reduction occurred in the leaf, then:

δleaf = (1 − fatm − fsoil) × δroot + fatm × δatm + fsoil × δsoil,

fatm ≈ Fatm < 1,

and �root = δroot − δsoil > 0.

Scenario 14: If leaf NO−
3 is a mixture of soil NO−

3 , atm-NO−
3 , and

root NO−
3 , and if reduction occurred in the leaf, then:

δleaf = [
(1 − fatm − fsoil) × δroot + fatm × δatm

+fsoil × δsoil
] + �leaf,

fatm ≈ Fatm < 1,

�root = δroot − δsoil > 0,

and �leaf = δleaf − [
(1 − fatm − fsoil) × δroot

+ fatm × δatm + fsoil × δsoil
]

> 0.

The parameters in the scenarios 9–14 (fatm, Fatm, �root, �leaf)
above, provide theoretical constraints on possible NO−

3 sources
and reduction dynamics in leaves of field plants. As explained
above, δ15N values of NO−

3 often overlapped for soil and atmo-
spheric sources, although δ18O and or �17O can provide a clear
differentiation between them (Kendall et al., 2007; Michalski,
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2010). Consequently, the scenarios above are better suited to the
δ18O (depicted in Figure 6) than δ15N analysis, particularly when
leaf NO−

3 was a mixing pool for different sources. The other
solution to diagnose atmospheric NO−

3 mixing and reduction is
the �17O-δ18O correlation, which has been used to trace NO−

3
sources and dynamics in aquatic environments (Tsunogai et al.,
2011). Although preliminary, the �17O values in mosses showed
clearly higher Fatm than vascular plants, especially in epilithic
mosses. Although, the �17O in terricolous mosses and vascu-
lar leaf samples was as low as 0.0–2.2�, even at high NO−

3
concentration levels (Figure 5), suggesting a 0.0–8.8% of atmo-
spheric contribution to leaf NO−

3 pool. The NRA should be
responsible for δ18O enrichment relative to the mixing values if
plant-absorbed NO−

3 has not been influenced by denitrification
in soil. Such characterization cannot be warranted by correlation
between δ15N and δ18O, or between tissue [NO−

3 ] and isotopes
(e.g., Liu et al., 2012c).

UNCERTAINTIES IN TISSUE NO−
3

-ISOTOPE METHODS AND
FUTURE WORKS
Although, the sampling time of plant materials can be controlled,
diurnal and seasonal variations in tissue NO−

3 and its isotopes
should be verified in future works. Until now, no experimen-
tal work has directly examined NR enzymatic isotope kinetics in
roots and leaves of higher plants. Moreover, it is difficult to mimic
in situ NR isotope effects in field conditions. Isotope effects asso-
ciated with NO−

3 uptake and efflux remain unverified for roots.
They were measured recently as 1–3� in growing cells of marine
diatoms, and different O and N fractionations for both uptake
and efflux were thought to cause the net 18ε:15ε of NO−

3 assimila-
tion above 1 (Karsh et al., 2014). The routes of transformation and
entry of inorganic and organic NO−

3 sources from the atmosphere
into leaf cells and subsequent cellular actions have not been clar-
ified, especially for non-aqueous processes. Consequently, the
sources and supply rates of atmospheric NO−

3 and their isotope
signals should be explored further. Thus far, the �17O informa-
tion of leaf NO−

3 was sparse, and is mostly available for leaves with
high NO−

3 levels. It should be verified whether the atmospheric
contribution is higher in low-[NO−

3 ] leaves or not. It is promis-
ing to measure NO−

3 isotopes in xylem flow and twig samples
for NO−

3 transportation and translocation. Results of such stud-
ies can potentially provide useful insights into intraplant NO−

3
transportation and translocation, although the sampling meth-
ods of xylem flow are mostly destructive and in-twig NO−

3 might
be very low. For these reasons, more field works on tissue NO−

3 at
the organ, stand, and species levels should be done along with
source isotope analysis. The scenarios proposed above provide
the first conceptual constraint for both sources and NO−

3 iso-
tope effects in field plants. In conclusion, the concentration and
isotopic analyses of NO−

3 in plant tissues together provide new
insights for elucidating plant NO−

3 sources and strategies. These
strategies will be valuable for exploring the communication of
plant N utilization with environmental N pollution and altering
ecosystem N cycles.
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