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While plant roots are specialized organs for the uptake and transport of water and
nutrients, the absorption of gaseous or liquid mineral elements by aerial plant parts has
been recognized since more than one century. Nitrogen (N) is an essential macronutrient
which generally absorbed either as nitrate (NO−

3 ) or ammonium (NH+
4 ) by plant roots.

Gaseous nitrogen pollutants like N dioxide (NO2) can also be absorbed by plant surfaces
and assimilated via the NO−

3 assimilation pathway. The subsequent NO−
3 flux may induce

or repress the expression of various NO−
3 -responsive genes encoding for instance,

the transmembrane transporters, NO−
3 /NO−

2 (nitrite) reductase, or assimilatory enzymes
involved in N metabolism. Based on the existing information, the aim of this review
was to theoretically analyze the potential link between foliar NO2 absorption and N
transport and metabolism. For such purpose, an overview of the state of knowledge
on the NO−

3 transporter genes identified in leaves or shoots of various species and
their roles for NO−

3 transport across the tonoplast and plasma membrane, in addition
to the process of phloem loading is briefly provided. It is assumed that a NO2-induced
accumulation of NO−

3 /NO−
2 may alter the expression of such genes, hence linking

transmembrane NO−
3 transporters and foliar uptake of NO2. It is likely that NRT1/NRT2

gene expression and species-dependent apoplastic buffer capacity may be also related to
the species-specific foliar NO2 uptake process. It is concluded that further work focusing
on the expression of NRT1 (NRT1.1, NRT1.7, NRT1.11, and NRT1.12), NRT2 (NRT2.1,
NRT2.4, and NRT2.5) and chloride channel family genes (CLCa and CLCd ) may help us
elucidate the physiological and metabolic response of plants fumigated with NO2.
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INTRODUCTION
Nitrate (NO−

3 ) is the most common form of nitrogen used by
plants for growth and development (Bertoni, 2012). Despite the
major role of plant roots is absorbing and transporting water and
mineral elements, there is abundant evidence showing that nutri-
ents can also be taken up by aerial plant parts (e.g., leaves, fruits
and stems) (Eichert and Fernández, 2012; Fernández and Brown,
2013). Foliar applied NO−

3 may be absorbed and assimilated
efficiently as shown in several studies carried out with differ-
ent plant species (e.g., Stiegler et al., 2011; Uscola et al., 2014).
Gaseous air pollutants like nitrogen dioxide (NO2) can also be
deposited into plant leaves and be taken up mainly through stom-
ata (Eichert and Fernández, 2012). NO2 molecules may dissolve
in the aqueous phase of the apoplastic space being consequently
transformed into nitrate (NO−

3 ) and/or nitrite (NO−
2 ) by chemi-

cal reactions. Thereafter, NO2-derived NO−
3 may be transported

across the plasma membrane by NO−
3 transporters and reach the

cytoplasm for further incorporation into cellular N-compounds
and/or storage in vacuoles (Hawkesford et al., 2012). The NO−

3
stored in the vacuoles may be exported to compensate for the con-
sumption of NO−

3 in the metabolic pool (De Angeli et al., 2006),

which suggests that vacuolar NO−
3 may largely serve as N buffer

for transport processes (Hawkesford et al., 2012). NO−
3 /proton

antiporters, which may be encoded by chloride channel family
(CLC) genes, are responsible for NO−

3 influx into plant vacuoles
(Geelen et al., 2000). NO−

3 transmembrane transporters may be
expected to play a role after the uptake of exogenous NO2 or NO−

3
by the foliage. Several NO−

3 transporters identified in leaves have
been demonstrated to be closely correlated with e.g., stomatal
opening (Guo et al., 2003), NO−

3 reductase activity (Loqué et al.,
2003), accumulation and remobilization of NO−

3 (De Angeli et al.,
2006; Fan et al., 2009; Lv et al., 2009). Thereby, such physiological
processes may significantly influence and also be affected by the
foliar uptake of NO2 or NO−

3 .
Recently some NO−

3 transporter genes were detected in leaves
including several members of plant NRT1 family genes (e.g.,
AtNRT1.1, AtNRT1.4, AtNRT1.7, AtNRT1.11, and AtNRT1.12,.),
NRT2 family genes (e.g., AtNRT2.1, AtNRT2.3, AtNRT2.4,
AtNRT2.5, AtNRT2.6, AtNRT2.7, NpNRT2.1 and ZmNrt2.1.), and
CLC family genes such as AtClCa and AtClCd (Orsel et al., 2002;
Guo et al., 2003; Chopin et al., 2007; Fan et al., 2009; Hsu and
Tsay, 2013) (Figure 1). These genes show various expression levels
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FIGURE 1 | Nitrate (NO−
3

) transporters and NR/NiR genes potentially involved after foliar uptake and assimilation of exogenous nitrogen dioxide

(NO2) (a)/ NO−
3

(b).

in leaves and play diverse roles in regulating NO−
3 metabolism

(Hawkesford et al., 2012). For example, AtNRT1.1, a dual-affinity
NO−

3 -inducible transporter, showed a strong expression in guard
cells and supports the stomatal function in the presence of NO−

3
(Guo et al., 2003). McNRT1, LeNRT1.1, and NpNRT1.1 were
detected in the leaves of M. crystallinum, tomato and Nicotiana
plumbaginifolia, respectively. McNRT1, sharing 60% homology
with the AtNRT1.1, was expressed in the mesophyll cells and cells
adjacent to metaxylem vessels in the leaves (Popova et al., 2003).
The gene plays potential roles in NO−

3 uptake in the mesophyll
cells, distribution and partitioning of NO−

3 within the leaves.
Moreover, AtNRT1.4 and AtNRT1.7 are of pure low-affinity trans-
porters. AtNRT1.4 was expressed primarily in the leaf petiole

(Chiu et al., 2004). NRT1.7 mRNA was detected in the distal
lamina of older leaves, but not in the roots (Fan et al., 2009).
The two transporter genes participate in the process of leaf NO−

3
storage and remobilization. For the members of the NRT2 fam-
ily, the amounts of AtNRT2.4 transcripts were predominant in
leaves of the adult plants, followed by AtNRT2.5; the expression
of AtNRT2.1, AtNRT2.6, and AtNRT2.7 were at low levels (Orsel
et al., 2002). AtNRT2.1, AtNRT2.3, AtNRT2.4, and AtNRT2.5
are NO−

3 -responsive genes, whereas AtNRT2.6 and AtNRT2.7
appear to be constitutive genes (Loqué et al., 2003). Particularly,
AtNRT2.7 showed a strong leaf- and seed-specific expression pat-
tern (Orsel et al., 2002; Chopin et al., 2007), while AtNRT2.3 was
specifically expressed in leaves at a reproductive stage.
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Previous studies on foliar uptake of NO2 mainly focused on
the deposition pathways, metabolic processes associated with
NO2-derived NO−

3 (Hu, 2011; Hu et al., 2014), and downstream
products of NO2-N assimilation (Nussbaum et al., 1993; Weber
et al., 1995). The current state of knowledge on the poten-
tial plant responses to NO2 exposure is summarized in Table 1.
However, the relationship between NO−

3 transmembrane trans-
porters and foliar NO2 uptake has received only limited scientific
attention so far. Foliar uptake of NO2 seems to be species-specific
and concentration-dependent (Hu and Sun, 2010). Expression
of the genes encoding leaf NO−

3 transporters also appears to be
species-specific (Ono et al., 2000; Orsel et al., 2002). The con-
tribution of various expression patterns of transporter genes to
species-specific NO2 uptake is currently unknown. Given the N
transport mechanisms described above, a potential relationship
between foliar NO2 uptake (substomatal build-up of NO2 and
the subsequent reduction, storage, and remobilization of NO−

3 )
and NO−

3 -responsive genes encoding the transmembrane trans-
porters and NO−

3 /NO−
2 reductases may be hypothesized. For

validating such hypothesis, future work focusing on the relation-
ship between organ-specific expression of NRT1/NRT2 genes and
species-specific NO2 uptake should be carried out.

SUBSTOMATAL BUILD-UP OF NO2 MAY DISTURB
APOPLASTIC pH AND NO−

3
TRANSPORTERS

The apoplast is defined as the area within the plant tissues which
is beyond the cell plasma membrane, and includes the cell wall,
middle lamella, xylem and gas and water filled intercellular spaces
(Sattelmacher, 2001). The leaf apoplastic space plays a role in
ion exchange and as a diffusion barrier (Sattelmacher, 2001).
Estimates of the volume of leaf water in the apoplast vary from
10 to 35% of total leaf water (Speer and Kaiser, 1991; Wardlaw,
2005). Dissolution of NO2 in the apoplast may produce H+ and
NO−

3 /NO−
2 . Foliar NO2 uptake is calculated to yield at most

0.22 mol excess H+ per mol N (Raven, 1988). Therefore, a build-
up of NO2 in the leaf substomatal cavities may lead to apoplastic
pH disturbances. Among other factors, the resulting apoplastic
pH changes will depend on NO2 concentration, root N sup-
ply and plant N status. The supply of NO−

3 via the root system
significantly increased the leaf apoplastic pH of Phaseolus vul-
garis and Helianthus annuus, whereas the depletion of NO−

3 in
nutrient solution led to lower leaf apoplastic pH values in Zea
mays (Mühling and Lauchli, 2001). NH4NO3 nutrition did not
change the leaf apoplastic pH in sunflower (Kosegarten et al.,
1999). Moreover, foliar NH+

4 fertilization may either lead to
apoplastic alkalinization (Felle and Hanstein, 2002) or acidifi-
cation (Mühling and Lauchli, 2001). When supplying NH4C1
(1 mM) via the root to soybean plants, low concentrations of
NO2 (0.2–0.25 μL· L−1) significantly increased the leaf apoplastic
pH (Qiao and Murray, 1997), whereas under a higher root NO−

3
dose (5 mM), high concentrations of NO2 (1.1 μl· l−1) increased
the acidity of the leaves (Qiao and Murray, 1998). Apoplastic
pH is an important factor affecting plasmalemma proton pumps
(Hoffmann et al., 1992; Sattelmacher, 2001). Apoplastic alkalin-
ization or acidification may induce plasma membrane depolariza-
tion or hyperpolarization (Hedrich et al., 2001). This may further
modulate the deactivation or activation of membrane-bound

proton-transporting enzymes, and the corresponding ion chan-
nel regulation for co-transport of anions (Savchenko et al., 2000).
Wippel et al. (2010) found that the fluctuation of apoplastic pH
had a regulatory effect on plant sucrose transporters. Based on
the above information, it can be reckoned that the apoplastic pH
changes caused by NO2 may repress or induce NO−

3 -responsive
genes encoding the transmembrane transporters.

Some NO−
3 transporter genes (such as AtNRT1.1 and

ZmNrt2.1) in leaves are NO−
3 -inducible, while others such as

AtNRT2.5 are NO−
3 -repressible (Okamoto et al., 2003). Low-

affinity transporter systems (NRT1 family) may significantly
contribute to NO−

3 uptake at external NO−
3 concentrations

above 250 μM. However, high-affinity transporters (NRT2 fam-
ily) including the constitutive (cHATS Km = 6–20 mM) and
inducible HATS (Km = 20–100 mM), are active at low exter-
nal concentrations of 0–0.5 mM (Crawford and Glass, 1998;
Quaggiotti et al., 2003; Hawkesford et al., 2012). When analyz-
ing the AtNRT1.7 NO−

3 transporter gene in Arabidopsis, Fan et al.
(2009) applied 50 mM K15NO3 to carry out measurements on
distal parts of the rosette leaf. The 15N-NO−

3 tracing assay showed
that the percentage of total 15N in the leaves ranged from 0 to
10% for wild-type plants, and between 5 and 15% for the nrt1.7
mutants. The percentage of NO−

3 –15N was in the range of the
NO2-derived reduced N of wild herbaceous plants (from 0.98 to
10.1%) and woody plants (0.15–12.7%) for the 217 taxa fumi-
gated with 4.0 ± 0.1 μmol· mol−1 NO2 (Morikawa et al., 1998).
Accordingly, the content of NO2-derived reduced N ranged from
0.25 to 5.72 mg N· g−1 dry weight for wild herbaceous plants, and
0.04–6.57 mg N· g−1 dry weight for woody plants. This compari-
son suggests that the amounts of NO2-derived NO−

3 in leaves are
in the range of the NO−

3 concentrations which may induce the
two types of transporter systems (i.e., high and low affinity).

From the reasoning provided above, it can be reckoned
that substomatal build-up of NO2 may lead to concentration-
dependent changes of apoplastic pH and NO−

3 concentration.
Such pH fluctuations may influence NO−

3 transmembrane trans-
port by the induction or repression of the transporters and
transporter gene expression, and may provide some sort of feed-
back regulation on the uptake of NO2 by the foliage. For example,
apoplastic mesophyll signals have been recently found to induce
rapid stomatal responses in Commelina communis (Fujita et al.,
2013). In response to NO2 fumigation, multiple physiological
and metabolic responses may occur which could either ultimately
favor or inhibit the process of symplastic N uptake (Table 1). The
multi-responses of NO−

3 transporters to the substomatal build-up
of NO2 may partially contribute to species-specific NO2 uptake,
but future studies with different plant species shall be carried out
for clarifying this complex issue.

NITRATE TRANSPORTERS ARE POSSIBLY INVOLVED IN THE
REDUCTION AND ACCUMULATION OF NO2-DERIVED NO−

3

In leaf cytoplasm, NO2-derived NO−
3 has at least two fates: (i)

assimilation into amino acids, and (ii) accumulation in vacuole
(Hawkesford et al., 2012). The metabolic pathway will depend on
the external NO−

3 concentration and leaf N demand (Stulen et al.,
1998). NO2-derived NO−

3 will be assimilated mainly through
the NO−

3 assimilation pathway (Morikawa et al., 1998). NO−
3
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Table 1 | Physiological and metabolic responses of plant organs to nitrogen dioxide (NO2) exposure.

Plant organ Action site Physiological function of exogenous NO2 on plants References

Low NO2 concentration (e.g., 40–60

nl.l−1)

High NO2 concentration (e.g., 1–4

µl.l−1)

Leaf Stomata Stimulation on stomatal aperture and
stomatal conductance[1.3];
Reduced stomatal density[1.2]

Stomatal closure and declined stomatal
conductance[1.1]

[1.1]Qiao and Murray,
1998;
[1.2]Siegwolf et al., 2001;
[1.3]Takagi and Gyokusen,
2004

Apoplast Increase in the malondialdehyde (MDA)
level and superoxide dismutase (SOD) at
0.5 μL.L−1 NO[2.1]

2

Acidity of apoplast[1.1];
Induced expression of germin-like proteins
(RmGLP2) [2.2];
Decline in MDA content and SOD
activity[2.3];
Decline in ASA[2.1]

[2.1]Ma et al., 2007;
[2.2]Kondo et al., 2008;
[2.3]Chen et al., 2010

Chloroplast Increase in NR, NiR[3.4], photosynthetic
rate[3.5], and chlorophyll content, etc.

Decline in chlorophyll content, ratio of
Fv/Fm[2.3], and apparent
photosynthesis[3.1];
Accumulation of NO−

3 and NO−[3.2]
2 as well

as increase in NR and NiR[3.2];
Inhibition of NR[3.3]

[3.1]Srivastava et al., 1974;
[3.2]Yoneyama et al.,
1979;
[3.3]Hisamatsu et al.,
1988;
[3.4]Weber et al., 1995
[3.5]Schmutz et al., 1995

Mitochondria/
Peroxisome

Inhibition of dark respiration and apparent
photorespiration[3.1,4.2];
Protrusions from both plastids and
mitochondria of Phaseolus vulgaris
exposed to NO2 (10 ml.l−1)[4.1]

[4.1]Dolzmann and Ullrich,
1966;
[4.2]Carlson, 1983

In developing
or maturing
leaves

Increased leaf area[1.2];
NO2-N incorporation into free amino acids
such as Glu, Asp and Gln[3.4;5.3];
Stimulation on cell proliferation and
enlargement as well as up-regulation of
the related genes, such as ARGOS, GRF5,
and KLU[5.4]

NO2-N incorporation into free amino acids
such as glutamine, glutamic acid, γ-amino
butyric acid and aspartic acid[5.1];
NO2 led to swollen thylakoids and a
reduction in the number of grana
stacks[5.2]

[5.1]Yoneyama and
Sasakawa, 1979;
[5.2]Schiffgens-Gruber
and Lutz, 1992
[5.3]Nussbaum et al.,
1993;
[5.4]Takahashi et al., 2014

Stems Xylem Enlarged width of xylem in the main stem
of Poplar trees[3.5]

stem growth significantly decreased by
NO2 at 1.0 μl.l−1 [6.1]

[6.1]Eastham and
Ormrod, 1986

Phloem NO2-N incorporation into free amino acids
of bark of Norway spruce[5.3]

NO2-N incorporation into free amino acids
such as serine, asparagine and
glutamine[6.2]

[6.2]Wellburn, 1990

Roots NO2-N incorporation into free amino acids
in Norway spruce roots[5.3]

Decrease in root/shoot ratio, dry matter
production, concentration of soluble
sugars in roots, root respiration of kidney
bean plants [7.1]
Decrease in root nitrate uptake in
sunflower plants[7.2] and soybean
plants[1.1], increase in the ammonium
concentration in roots of soybean plants at
1.1 μl.l−1 NO[1.1]

2

[7.1]Ito et al., 1985;
[7.2]Okano et al., 1985

Flowers Acceleration of flowering time and
increase in flower number[5.4;8.1]

[8.1]Takahashi et al., 2011;

Fruits Increased fruit yield[8.1] or grain yield (the
number and weight of grain) and protein
stored (at NO2 of 170 nl.1−1)[9.1]

[9.1]Murray et al., 1994
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reductase (NR) is considered as a key rate-limiting enzyme of
NO2-N assimilation (Hawkesford et al., 2012). A linear corre-
lation was found between NR activity, NO2 concentration and
amounts of N incorporated into amino acids (Sparks et al.,
2001). However, high levels of NO2 fumigation resulted into
a loss of NR activity or a rapid inactivation of the leaf NR
(Takeuchi et al., 1985; Hisamatsu et al., 1988), and NO−

3 accu-
mulation (Ma et al., 2007). This down-regulation of the NR may
be ascribed to at least one of the following phenomena: (i) a
high NO2 concentration will inhibit the activities of glutamine
synthetase and glutamate synthase, which leads to NH+

4 accu-
mulation and subsequently brings about a loss of NR activity
(Orebamjo and Stewart, 1975; Padidam et al., 1991), and (ii)
a high NO2-induced stomatal closure may lead to a rapid NR
inactivation due to a low CO2 availability. High NO2 rapidly
induced stomatal closure (Qiao and Murray, 1998). Stomatal
closure may trigger a chain reaction wherein the lower CO2 avail-
ability will lead to the subsequent leaf NR activity decrease (Kaiser
and Forster, 1989). NIA1 and NIA2 genes encode the two iso-
forms of the NR apoprotein (Wilkinson and Crawford, 1993).
Recent reports show a close relationship between the expression
of NIA1/NIA2 genes and NRT1/NRT2 genes. Addition of exter-
nal NO−

3 strongly induced the expression of genes encoding the
NR (AtNIA1 and AtNIA2) and the transmembrane transporters
(AtNRT1.1, AtNRT2.1, NpNRT2.1; Fraisier et al., 2001; Jonassen
et al., 2009). In contrast, high levels of external NO−

3 caused a
down-regulation of AtNRT1.1 and AtNIA1 through a pathway
of NO−

2 -induced repression (Loqué et al., 2003). This down-
regulation of the AtNRT1.1 gene is associated with a decrease
in the NO−

3 influx. Earlier studies showed that high NO2 con-
centration fumigation under light or dark conditions resulted in
leaf NO−

2 accumulation (Yoneyama and Sasakawa, 1979; Yu et al.,
1988). Thus, we may assume that a high NO2-caused NO−

2 accu-
mulation may lead to a negative feedback regulation on leaf NO2

uptake through the down-regulation of the NRT1.1 gene and the
subsequent repression of the NO−

3 influx. Moreover, studies on
NR mutants showed that AtNRT1.1, AtNRT1.7, NpNRT2.1, and
AtNIA1 are up-regulated in NR-deficient mutants (NIA2- and/or
MoCo biosynthesis-deficient mutants) (Lejay et al., 1999; Vidmar
et al., 2000; Fan et al., 2009). Under NR-repressible or -deficient
conditions, this up-regulation of the transporter genes may be
beneficial to an exportation of excess NO−

3 in the leaf (Fan et al.,
2009). Moreover, Jonassen et al. (2009) demonstrated that the
bZIP transcription factors HY5 and HYH regulate positively NIA2
gene and negatively NRT1.1 gene. However, HY5 and HYH appear
to be mediated by light but not by external NO−

3 .
Excess NO−

3 may be accumulated in leaf vacuole (Hawkesford
et al., 2012). The H+/NO−

3 antiport across tonoplast is respon-
sible for NO−

3 influx and H+/NO−
3 symport for NO−

3 efflux
(Figure 1). The flux direction will depend on the requirements
and conditions of the cell (Schumaker and Sze, 1987). Three
members of the chloride channel family (CLC) genes AtClCa (De
Angeli et al., 2006), AtClCc (Harada et al., 2004) and AtClCd (Lv
et al., 2009) have been identified in the leaf tonoplast. De Angeli
et al. (2009) demonstrated that adenosine triphosphate (ATP)
induces a negative regulation on AtCLCa activity. NO2 fumi-
gation significantly increased ATP amounts of Lolium perenne

and Phleum pratense, the amounts increasing with raising NO2

concentrations (Wellburn et al., 1981). This may be due to the
formation of free radicals in response to NO2 fumigation, which
may damage photosynthetic membranes and hence alter the pro-
ton gradients to which ATP formation is linked (Wellburn et al.,
1981). Yoneyama and Sasakawa (1979) found that 8 ppm NO2

fumigation under dark conditions resulted in NO−
2 accumulation

in spinach leaves. High doses of NO−
2 resulted in the peroxida-

tion of lipid constituents of chloroplastic membrane (Ezzine and
Ghorbel, 2006). Chen et al. (2010) found that leaf uptake of NO2

reduced the rate of photosynthesis and increased the malondi-
aldehyde (MDA) concentration, may be due to a competition for
nicotinamide adenine dinucleotide phosphate (NADPH) between
the processes of NO−

2 reduction vs. carbon assimilation, and the
generation of reactive oxygen species (ROS) (Sabaratnam and
Gupat, 1988; Shimazaki et al., 1992).

TRANSMEMBRANE TRANSPORTERS IN LEAVES MEDIATING
NO−

3
SIGNALING

NO2 fumigation may significantly disrupt plant morphology and
physiology by, for instance, changing the shoot to root ratio,
stomatal, and gas exchange dynamics, or modifying root N uptake
(Qiao and Murray, 1997, 1998; Table 1). The exposure of plants
to NO2 increased the total content of soluble free amino acids
in leaves and shoots (Nussbaum et al., 1993). Most of the amino
acids may be used locally for the synthesis of e.g., Chlorophyll
and Rubisco during rapid vegetative growth, or be ultimately
designated for e.g., filling pods (Imsande and Touraine, 1994).
NO−

3 assimilation products (protein/nucleic acids and amino
acids/amides) can also be transferred into roots under soil N
deficit (Wellburn, 1990). Under a low NO−

3 supply, gaseous NO2

may change the amino acid ratio of the xylem. For example,
the amount of serine, asparagine and glutamine were high in
the xylem of plants exposed to atmospheric NO2, whereas argi-
nine, cysteine, valine and lysine were high in the control plants
(Wellburn, 1990; Table 1). Moreover, NO2 treatment increased
phloem transport of organic N and inhibited the rate of xylem
N translocation.

NO2-N metabolism and the mobilization of metabolic prod-
ucts will trigger various signaling pathways that regulate the
physiological and metabolic processes. The dissolution of NO2

and subsequent reduction can result in root NO−
3 uptake changes.

The xylem is part of leaf apoplast (Felle and Hanstein, 2002).
Thus, NO2-caused apoplastic pH changes may serve as a signal
to modify the uptake of NO−

3 via the root system. This NO−
3 sig-

naling pathway has been explained by Qiao and Murray (1998).
Moreover, NO−

3 reduction can produce malate (Touraine et al.,
1988); the organic acid needs to be membrane transported to
be loaded into the phloem. A transport of malate from leaves
to roots can serve as another signal to control root uptake of
NO−

3 (Touraine et al., 1992). This signaling pathway has been
reported by Imsande and Touraine (1994). Tonoplast transport
of malate plays an important role in physiological regulation in
NO−

3 nutrition (Hawkesford et al., 2012). At the cellular level,
NO−

3 accumulation led to increased expression of genes encod-
ing organic acid synthesis (PPC, cytosolic PK, CS, ICDH-1)
and accumulation of malate and a-oxoglutarat. In contrast, leaf
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malate supply can inhibit NIA expression, affecting both the NIA
transcript level and the activity (Müller et al., 2001).

NO−
3 itself may serve as a signaling molecule (Scheible et al.,

1997). NO−
3 addition to the growing media can induce or repress

the expression of various genes encoding e.g., NO−
3 transporters,

NO−
3 /NO−

2 reductase, ferredoxin reductase, and the enzymes
in the pentose phosphate pathway, or iron or sulfate trans-
port and metabolism (Wang et al., 2003; Marschner, 2012). The
expression of NO−

3 -responsive genes [such as NADH-specific and
NAD(P)H-bispecific NR genes] is dependent upon NO−

3 flux
but not on the NO−

3 amount stored in the tissue (Gojon et al.,
1991). Excess external NO−

3 may be stored in several vacuoles
and recirculated after storage (Hawkesford et al., 2012). NO−

3
remobilization may occur among different organs, for instance,
from older leaves to younger leaves during the vegetative stage or
from leaves to seeds during the reproductive stage (Schiltz et al.,
2005; Hawkesford et al., 2012). N remobilization is rate-limited
by the transport of NO−

3 across tonoplast of vacuole, plasma
membrane of mesophyll cell, plasma membrane of companion
cell and sieve element, and phloem loading (Fan et al., 2009).
CLC genes (AtClCa, AtClCc, and AtClCd) are required for the
transport of NO−

3 across tonoplast in vacuole. Disruption of one
of these genes will influence the flux of NO−

3 in vacuoles (De
Angeli et al., 2006). AtNRT2.4 showed a strong induction in a
low NO−

3 provision. Orsel et al. (2004) suggested that AtNRT2.4
and AtNRT2.5 participate in the transport of NO−

3 from stored
pools (vacuoles) to cytoplasm. Moreover, AtNRT2.7 was also
involved in this type of NO−

3 flux; this gene could play roles in
leaf balance between the amount of NO−

3 used for assimilation
and that re-absorbed for further transport (Orsel et al., 2002).
Four NRT1 family genes (AtNRT1.4, AtNRT1.7, AtNRT1.11, and
AtNRT1.12) participate in the phloem- and/or xylem-loading of
NO−

3 (Figure 1). AtNRT1.4 was expressed predominantly in the
leaf petiole and involved in petiole NO−

3 accumulation (Chiu
et al., 2004). The mutation of the AtNRT1:4 resulted in signif-
icant changes of NO−

3 content in leaf petiole and the lamina.
Furthermore, the deficiency of AtNRT1.4 can alter leaf develop-
ment. NRT1.7 was expressed in the phloem of the leaf minor
vein and mediated the remobilization of excess NO−

3 from older
leaves to younger leaves (Fan et al., 2009). Compared with the
wild-type plants, the nrt1.7 null mutants accumulated a higher
amount of NO−

3 in the older leaves and decreased the NO−
3 con-

tent of phloem exudates from older leaves. The newly identified
NO−

3 transporters (NRT1.11 and NRT1.12) were expressed in
the companion cells of the major vein (Hsu and Tsay, 2013).
They play roles in xylem-to-phloem transfer for redistributing
NO−

3 into developing leaves. Moreover, several NRT2 genes may
also be involved in the N remobilization. For example, ZmNrt2.1
plays a potential role in NO−

3 loading from the xylem or in its
compartmentation (Quaggiotti et al., 2003).

CONCLUSION
The substomatal build-up of NO2 and subsequent NO−

3
metabolism may lead to apoplastic alkalinization or acidifica-
tion and to NO−

3 /NO−
2 concentration fluctuations in the leaf

apoplast and symplast (e.g., cytoplasm and vacuole), which
depend on NO2 concentration and root N supply. These changes

will cause complex responses of NO−
3 -responsive genes encod-

ing NO−
3 transporters and NO−

3 /NO−
2 reductase. For exam-

ple, addition of external NO−
3 produced a strong induction on

NR genes (such as AtNIA1 and AtNIA2) and the transporter
genes (such as AtNRT1.1, AtNRT2.1, and NpNRT2.1). However,
excess NO−

2 significant inhibited the expression of AtNRT1.1
and AtNIA1, and disturbed CLC family genes by regulating the
generation of ATP. This down-regulation of the NRT1.1 gene is
associated with a decrease in NO−

3 influx. Moreover, AtNRT2.4,
AtNRT2.5, and AtNRT2.7 may participate in the transfer of NO−

3
from stored pools (vacuoles) to cytoplasm. AtNRT1.4, AtNRT1.7,
AtNRT1.11, and AtNRT1.12 are involved in the phloem- and/or
xylem-loading of NO−

3 . Thus, these genes are suggested to play
rate-limiting roles in foliar uptake of NO2. Further work is
proposed to investigate the relationship between organ speci-
ficity of NRT1/NRT2 gene expression and species-specific NO2

uptake.
In practical terms, a high rate of low concentration NO2

absorption by the foliage may be positive for preserving an ade-
quate plant N status. However, a high NO2 concentration may
alter leaf apoplast chemistry, leading to the accumulation of NO−

3
and NO−

2 , and providing signals which may negatively affect
plant N nutrition. These factors are however closely linked with
leaf NO−

3 transporters and may also interact with the foliar
uptake processes (e.g., by promoting stomatal closure). Thereby,
a low NO2 concentration may act as a positive regulation signal
(Takahashi et al., 2014) by stimulating the leaf NO−

3 transporters,
and enhancing NO−

3 transport and distribution. In contrast, a
high NO2 concentration in relation to a high rate of foliar NO2

absorption, may repress the expression of NO−
3 transporters and

enzymes, which may protect the cells or organelles from NO2

damage.
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