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INTRODUCTION
Silicification in angiosperms is a phe-
nomenon that has attracted increasing
attention in recent years. It is now widely
acknowledged that silicification has many
benefits to angiosperms (Richmond and
Sussman, 2003; Ma and Yamaji, 2008;
Epstein, 2009; Guntzer et al., 2012), and
that it probably plays appreciable roles at
the ecosystem and landscape levels as well
(Cooke and Leishman, 2011; Reynolds
et al., 2012; Schoelynck et al., 2014).
High silica accumulating plant species
are considered a major pool in the sil-
icon cycle, affecting silicon fluxes and
turnover rates (Conley, 2002; Falkowski
et al., 2004; Derry et al., 2005; Sommer
et al., 2006; Li et al., 2011; Carey and
Fulweiler, 2012; Struyf and Conley, 2012;
Vandevenne et al., 2013; Schoelynck et al.,
2014). Indeed, recent studies have demon-
strated the significant roles of plant silici-
fication on the silicon cycle in grasslands
(e.g., Melzer et al., 2012), freshwater
and tidal ecosystems (e.g., Jacobs et al.,
2013; Schoelynck et al., 2014) and forests
(e.g., Farmer, 2005; Farmer et al., 2005;
Cornelis et al., 2011). Furthermore, since
silicate weathering is a CO2-consuming
process, the effects of silica uptake and
accumulation by plants on the silicon
cycle may also influence the global car-
bon cycle (Street-Perrott and Barker,
2008).

Silica contents vary greatly among the
angiosperms, with high concentrations
occurring most commonly in the Poaceae
(hereafter referred to as grasses) and
other related monocotyledonous com-
melinid families (Hodson et al., 2005;
Piperno, 2006) and aquatic macrophytes

(Schoelynck et al., 2012). Due to the rel-
atively high silica concentrations in grasses
and to their high economic and ecological
importance, silicification has been stud-
ied more frequently and more intensely in
this family than in any other plant family.
However, a better understanding of silicifi-
cation in non-grass taxa can promote our
understanding of the function and impor-
tance of silicon for plants. Unfortunately,
studies of non-grass taxa are not only rarer,
but also usually focus on a small num-
ber of taxa, mostly families and species
that are silica-rich (e.g., Cucurbitaceae:
Rogalla and Römheld, 2002), economi-
cally important (e.g., Fabaceae: Shen et al.,
2010), or serve as model plant species (e.g.,
Arabidopsis: Fauteux et al., 2006), which
are unlikely to be a fair representation
of non-grass taxa. This means there is a
significant gap in our knowledge of sil-
icon processes, patterns and roles, given
the fact that non-grass taxa, such as forest
tree, are a major component of the silicon
cycle (Farmer, 2005; Farmer et al., 2005;
Cornelis et al., 2011). I shall therefore
briefly discuss the variability of silicifica-
tion among non-grass taxa, and how it can
be used to promote a better and broader
understanding of this phenomenon.

LOW SILICA CONCENTRATIONS ARE
NOT NECESSARILY “INSIGNIFICANT”
Recent studies on non-grass taxa have
revealed that the dichotomous view of
angiosperm taxa as being either high
silica accumulators (e.g., grasses, other
commelinids, and Cucurbitaceae) or
low silica accumulators (i.e., most non-
commelinid angiosperms) is flawed. First,
some dicotyledonous species (other than

those belonging to the Cucurbitaceae; e.g.,
Abies pectinata, Cajanus cajan, Fagus
sylvatica, and Helianthus annuus) have
silica concentrations which are as high or
almost as high as those found in grasses
(e.g., Hodson et al., 2005; Piperno, 2006).
Second, there appear to be fundamen-
tal differences in the type, magnitude,
patterns and functions of silicification
between the high silica accumulating
grasses and the low silica accumulating
non-grass taxa. In grasses, it is gener-
ally accepted that silicification increases
under higher silicon and water availability
(reviewed in Katz et al., 2013) or if plants
are exposed to prolonged herbivory (e.g.,
Soininen et al., 2013). In comparison, the
effects of silicon and water availability on
silicon accumulation in non-grass taxa are
less clear. Cooke and Leishman (2012)
found that silicification in non-grass
species is probably less dependent on soil
silica availability compared to silicification
in grasses. Euliss et al. (2005) and Katz
et al. (2013) found that the effects of water
availability on silicification in non-grass
species are weaker than in grasses grow-
ing under otherwise similar conditions.
Herbivory seems to promote silicification
more commonly in grasses compared to
southwest Asian Asteraceae species, and it
is thus also probable that silica plays less of
a defensive role in Asteraceae species (Katz
et al., 2014). Yet, even in plant species with
very low silica concentrations, silica may
play substantial roles, including reducing
aluminum toxicity (Hodson and Evans,
1995; Britez et al., 2002; Khandekar and
Leisner, 2011) and defending plants from
pathogens (Fauteux et al., 2006; Zellner
et al., 2011). Thus, low silica accumulation
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is not indicative of low silica function, and
therefore silica function is not restricted to
high silica grass taxa.

DIFFERENT FAMILIES, DIFFERENT
VARIABILITY
There is both inter- and intra-familial
variation in silica accumulation in plants.
The grass family (approximately 10,000
species) and other commelinid fami-
lies consist of high silica accumulators
in which silicification patterns and roles
are highly consistent. The effects of water
availability (reviewed in Katz et al., 2013)
and herbivory (Soininen et al., 2013)
on silicification, as well as the multiple
roles silica plays in grasses (Richmond
and Sussman, 2003; Epstein, 2009; Cooke
and Leishman, 2011; Guntzer et al.,
2012), serve as good examples. The
Orchidaceae (22,000-26,000 species) is
a non-commelinid monocotyledonous
family that is the most closely related
to the commelinids (Bremer, 2000).
The more ancient orchid subfamilies,
Apostasioideaea and Cypripedioideae,
are characterized by high silica con-
tents, while members of the more derived
Vanilloideae and Orchidoideae, and some
Epidendrioideae species, have very low sil-
ica concentrations (Prychid et al., 2004).
The loss of this trait, most notably in par-
allel to the transition from epiphytism to
land-dwelling, is an evolutionary change
that deserves more attention.

The Cucurbitaceae (1000 species) is
a dicotyledonous family of high silica
accumulators, but given there are dis-
similarities in silicification mechanisms,
patterns and roles between the two fam-
ilies it is likely that high levels of silicon
accumulation evolved independently in
this family (e.g., Mitani and Ma, 2005).
The Asteraceae and Fabaceae, two of the
largest angiosperm families (23,000 and
20,000 species, respectively) also demon-
strate wide ranges of silica concentrations
(Hodson et al., 2005; Piperno, 2006; Katz
et al., 2013, 2014). At least in the case
of the Asteraceae, it is now known that
silicification patterns are probably poorly
dependent on intra-familial phylogeny
and soil silica concentrations (Katz et al.,
2013, 2014). In other angiosperm families,
such as the Rubiaceae (13,000 species),
most studied species were shown to have
very low silica concentrations (Piperno,

2006). Thus, there seem to be interest-
ing patterns of silicification in families
other than Poaceae which are likely to
demonstrate variation in silica function
and importance.

CONCLUDING REMARKS
It is clear that some groups, such as the
grasses, commelinids and some aquatic
macrophytes (Schoelynck et al., 2012),
evolved the ability to accumulate sili-
con as herbivore defenses and a mecha-
nism of alleviating abiotic stresses (e.g.,
Strömberg, 2011). Yet, these taxa repre-
sent only a part of the overall diver-
sity of silicification among angiosperms.
The inter-familial variability among non-
grass taxa suggests that silicification is
an ecologically-important trait in some
of these taxa as well, especially in taxa
which show silicification patterns resem-
bling those found in grasses. Further stud-
ies of silica contents, silicification patterns
and roles of silica in non-grass taxa are
likely to elucidate physiological, ecological
and evolutionary processes underlying the
inter- and intra-familial variability in sil-
ica accumulation. This has the potential to
increase our understanding of silicification
and its significance in the biology and ecol-
ogy of many species at a faster rate than
through the study of Poaceae alone.
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