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Recent advances in the field of sequencing technologies and bioinformatics allow a more
rapid access to genomes of non-model organisms at sinking costs. Accordingly, draft
genomes of several economically important cereal rust fungi have been released in the
last 3 years. Aside from the very recent flax rust and poplar rust draft assemblies there are
no genomic data available for other dicot-infecting rust fungi. In this article we outline rust
fungus sequencing efforts and comment on the current status of Phakopsora pachyrhizi
(Asian soybean rust) genome sequencing.
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Sequencing of fungal genomes represented a significant milestone
in the emerging era of “genomics.” In fact, the first eukaryotic
genome ever sequenced was that of baker’s yeast, Saccharomyces
cerevisiae, which consequently strengthened its position as a fun-
gal model organism after the release of the 12 Mb genome with
approximately 6000 genes in 1996 (Goffeau et al., 1996). Some
time thereafter the genomes of the fission yeast S. pombe (14 Mb)
and the filamentous ascomycete Neurospora crassa (40 Mb) were
released in Wood et al. (2002) and Galagan et al. (2003), respec-
tively. Accelerated progress in sequencing technology from early
clone-by-clone approaches through Sanger-based whole-genome
shotgun sequencing (WGS) to today’s next-generation sequencing
(NGS) shortened the periods between releases of novel genomes
considerably (Grigoriev, 2014). This paved the way for compara-
tive genomics which opened new possibilities for people working
in the field of agriculture and biotechnology or combating human,
animal or plant diseases (Vebø et al., 2009; Manning et al., 2013;
Bolger et al., 2014).

In the latter field, the sequencing of the genome of the
ascomycete Magnaporthe oryzae was achieved by Dean et al.
(2005). Along with the genome of rice (Goff et al., 2002), the
M. oryzae host plant, an understanding of the plant–pathogen
interaction became possible at the genome level. Since then, sev-
eral plant-pathogenic fungi were sequenced; however, a group of
pathogens that exclusively feed from living plant tissue, so-called
obligate biotrophs, remained recalcitrant. This was disappointing
particularly because some of the most economically serious threats
to human nutrition, such as powdery mildew fungi and rust fungi,
are among this group.

Rust fungi have long been in the focus of plant pathologists.
Already in the 19th century, Anton de Bary, who is considered
as a founder of plant pathology, picked up Puccinia graminis
with its various formae speciales that are specialized for para-
sitism on particular cereal hosts, as subject for his groundbreaking
studies. Later Harold Henry Flor developed the famous “gene-
for-gene” concept based on his work on the interaction of flax
rust (Melampsora lini) with its host plant flax (Linum usitatissi-
mum; Flor, 1955). Despite considerable interest, sequencing of
rust genomes was not achieved until most recently. Thus, the
101 Mb genome of Melampsora larici-populina and the 89 Mb
draft genome of Puccinia graminis f. sp. tritici were sequenced in
a common effort by the Joint Genome Institute and the Broad
Institute, respectively, and published in Duplessis et al. (2011).
Following, more or less advanced draft genomes of other rust
fungi were sequenced and published by the community, such as
several Puccinia striiformis f. sp. tritici races (56–110 Mb) and
the flax rust genome M. lini (Cantu et al., 2011, 2013; Zheng
et al., 2013; Nemri et al., 2014; see Table 1). Although Puc-
ciniales is an order with a lesser coverage compared to other
fungi1, more genomic resources are becoming accessible. A major
drawback encountered during sequencing efforts of rust genomes
was their unexpected large sizes, a fact that also hampered
attempts of sequencing the genome of the Asian soybean rust
fungus Phakopsora pachyrhizi, an economically important threat
to soybean cultivation. The following commentary is written to
give an overview on the current status of P. pachyrhizi genome

1http://genome.jgi.doe.gov/programs/fungi/1000fungalgenomes.jsf
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Table 1 | Published rust fungi draft genomes and genome size estimations in alphabetical order.

Organism Genome size

(Mb)

Estimation/sequencing

method

Reference

Cronartium quercuum f. sp.

fusiforme

90 Flow cytometry Anderson et al. (2010)

Hemileia vastatrix 733.5 Flow cytometry Carvalho et al. (2013)

Melampsora larici-populina 101 Sanger sequencing Duplessis et al. (2011)

Melampsora lini 189 Next-generation sequencing Nemri et al. (2014)

Puccinia coronata 77 Flow cytometry Eilam et al. (1994)

Puccinia graminis f. sp. tritici 89 Sanger sequencing Duplessis et al. (2011)

Puccinia hordei 121 Flow cytometry Eilam et al. (1994)

Puccinia recondita 127 Flow cytometry Eilam et al. (1994)

Puccinia sorghi 102 Flow cytometry Eilam et al. (1994)

Puccinia striiformis f. sp. tritici,

race PST-130

65 Next-generation sequencing Cantu et al. (2011)

Puccinia striiformis f. sp. tritici,

races PST-21, PST-43, PST-87/7,

PST-08/21

73, 71, 53, 56 Next-generation sequencing Cantu et al. (2013)

Puccinia striiformis f. sp. tritici,

isolate CY32

110 Next-generation sequencing,

“fosmid-to-fosmid”

sequencing

Zheng et al. (2013)

Puccinia triticiana 1-1 BBDB

race 1

135 Assembly Fellers et al. (2013)

Uromyces appendiculatus 418 Flow cytometry Eilam et al. (1994)

Uromyces vignae 407 Flow cytometry Eilam et al. (1994)

sequencing and is intended to initiate combined activities toward
this goal.

What makes P. pachyrhizi so interesting? For sure it is a dev-
astating fungal disease of the important crop plant soybean. The
origin of the pathogen can be traced back to Asia and most likely
it spread alongside with the propagation of soybean cultivation.
P. pachyrhizi is able to infect more than 31 species from 17 genera
of legumes, which is a rather unusual feature for rust fungi that
usually are highly specialized for particular hosts (Goellner et al.,
2010). P. pachyrhizi differs in a further important aspect from the
majority of rusts: it directly penetrates leaf cells rather than enter-
ing the leaf via stomata at the uredinial stage. On the contrary, most
rust fungi use stomata to get inside the host tissues at this stage
and a direct penetration is only observed for some rust fungi when
basidiospores infect the aecial host at later stages of the rust life
cycle (Heath, 1997). Recent studies imply that generation of high
turgor pressure of around 5 MPa in the non-melanized appressoria
supports penetration (Loehrer et al., 2014). Penetrated epidermal
cells undergo a cell death response, again an unexpected property
for a biotrophic pathogen. Experiments with non-host plants such
as barley and Arabidopsis showed that during penetration and
concomitant epidermal cell death, marker genes associated with
responses to necrotrophic pathogens are switched on and that cell
death suppression had a negative influence on infection success of

P. pachyrhizi (Loehrer et al., 2008; Hoefle et al., 2009). Regarding its
lifestyle, P. pachyrhizi which forms so far only a single spore type
in the wild, i.e. urediospores, is a minimalist compared to, e.g.,
Puccinia graminis f. sp. tritici which has five distinct spore types
and performs a host jump (Leonard and Szabo, 2005). Despite
the unknown or missing sexual life cycle the genetic diversity of
P. pachyrhizi seems not to be impaired. This may be explained
by parasexual nuclear recombination occurring between different
isolates after germ tube fusion or hyphal anastomosis, a feature
also reported for cereal rusts (Wang and McCallum, 2009; Vittal
et al., 2012).

Public information about the P. pachyrhizi genome sequencing
project is rare. In the DoE JGI Community Sequencing Pro-
gram of 2004, a project was launched to sequence the genome
of P. pachyrhizi (isolate Taiwan 72-1) based on a fosmid shotgun
sequencing approach. The genome size prediction with 50 Mb
at that time was much underestimated. The sequencing project
has now a “permanent draft” status at the JGI2. Besides the
recently released mitochondrial genome sequence (Stone et al.,
2010), information on assembly attempts of the nuclear genome
have not been published. The major drawback for progress in

2http://genome.jgi.doe.gov/genome-projects/pages/project-status.jsf?projectId=
16847
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P. pachyrhizi genome sequencing seems to be its huge size. An
update on this topic was given at the National Soybean Rust Sym-
posium 2005 in Nashville (TN, USA). Genome size estimations
ranged from 300 to 950 Mb depending on the analysis method used
(Posada-Buitrago et al., 2005). A similar statement was provided
by Igor Grigoriev (Head of the JGI Fungal Program) suggesting a
genome size above 850 Mb (Duplessis et al., 2012). Besides, other
general features of rust fungi genomes unraveled since then, such
as expanded multigene families and very large amount of transpos-
able elements (>45%), pose serious problems for proper genome
assembly.

We started our own efforts toward uncovering the genome size
of P. pachyrhizi by using our lab isolate (Brazil 05-1) and we
followed a strategy based on k-mer analysis. By breaking down
the reads obtained by Illumina sequencing into short nucleotide
sequences of defined length k (k-mers), several characteristics of
genomes, like size, heterozygosity and repeat content, can be ana-
lyzed, that would normally require a complete de novo assembly. As
basis for our analysis, DNA was generated from urediospores of the
P. pachyrhizi isolate Brazil 05-1. A total of 47 Gb Illumina whole-
genome sequencing data (100 bp paired-end reads) were then
subjected to analysis using the program JELLYFISH (Marçais and
Kingsford, 2011). In the 17-mer distribution depicted in Figure 1,
two peaks could be differentiated at a depth of 37 and 75. This
can be explained by the dikaryotic nature of the urediospores of
rust fungi, which means that these organisms maintain two hap-
loid nuclei separately during prolonged stages of their lifecycle.
The two peaks in the k-mer histogram point to a high degree
of heterozygosity between the two nuclei or to largely heterozy-
gotic regions within the haploid nuclei. Similar results were also
observed by Zheng et al. (2013) in the case of the wheat stripe rust
fungus.

By adding up the products of k-mer depth coverage and fre-
quency for each pair of values in Figure 1, divided by the depth
coverage of the first peak (=37), the size of the genome in bp was
computed, similarly as in (Li et al., 2010). Values, smaller than
the first minimum in Figure 1, were considered noise caused by

FIGURE 1 | K-mer analysis for P. pachyrhizi whole-genome sequencing

data. The 17-mer distribution for 47 Gb of 100 bp paired-end Illumina
whole-genome sequencing data indicates two peaks at a depth of 37 and
75. These findings point to a possibly highly repetitive genome with a high
degree of heterozygosity between the genomes of the two haploid nuclei.

sequencing errors and were excluded from the calculation. Based
on this analysis, the overall size of the dikaryotic genome of P.
pachyrhizi is at most around 1 Gb. However, due to the unknown
degree of heterozygosity between or within the genomes of both
nuclei, this might be an overestimation (see above). The mini-
mal size of the haploid genome can be estimated to be around
500 Mb, based on the second peak in the k-mer analysis (Figure 1).
This would place the genome of the Asian soybean fungus in the
same range as published rust genomes, e.g., Hemileia vastatrix
(733.5 Mb) and Uromyces spp. (420 Mb; Table 1). It should be
noted, however, that the analysis method might considerably influ-
ence the outcome of such genome size estimations. The genome
size of H. vastatrix, e.g., was estimated by DNA-staining in com-
bination with flow cytometry which itself is prone to errors but
has the advantage of not being sequencing-dependent (Bainard
et al., 2010). Phenomena related to the partial heterozygosity of
the P. pachyrhizi genome are only detectable by assembly or k-
mer analysis as described above. Since we did not use a large
insert size sequencing approach for genome size estimation, we
obtained a N50 value of 569 bp after assembly and scaffolding
with SOAPdenovo. This allowed no prediction on gene number
or length. In future studies a combined BAC- and third generation
sequencing approach hopefully will increase the assembly qual-
ity to a point at which comprehensive gene predictions become
possible.

Working with organisms, whose genome has been sequenced
provides many advantages over working with non-sequenced
species. Besides the comprehensive prediction of all genes,
intra-genomic structural analyses or comparative genome anal-
yses between different species become possible. An alternative
to genomic-based approaches in large-scale analyses of plant-
pathogen-interactions, however, is the use of transcriptomics,
proteomics, or metabolomics (Tan et al., 2009). Up to now, only
limited information is available on P. pachyrhizi transcriptomics,
though very recent publications have broadened the view on par-
ticular aspects of the infection process of P. pachyrhizi (Tremblay
et al., 2010, 2012, 2013; Link et al., 2013). For instance, Illumina-
based transcriptome profiling at several stages of soybean leaf
infection has led to the identification of nearly 19,000 transcripts
not previously identified in other rust fungi (Tremblay et al., 2013).
This would imply a much larger gene complement in the soy-
bean rust than in other rust fungi. So far, the numbers of genes
reported in rust fungi are between 15,000 and 20,000 genes (Dup-
lessis et al., 2014). Although biases in the RNA-Seq approach can
not be excluded, it is possible that the P. pachyrhizi genome
has experienced a high level of gene duplication during its evo-
lution along with important transposable element activity that
could explain the huge genome size predicted for this species.
There is an urgent need for genome sequences as prerequisite
for accurate large scale expression analysis and more RNA-seq
efforts are needed. Without a genome, transcript reads have to be
assembled first and not only RNA quality and sequencing tech-
nique used will influence the resulting assembly quality but also
the algorithms used for assembly. And even if these problems
could be sufficiently solved, the resulting contigs are much smaller
than transcribed ORFs, limiting for example predictions of puta-
tively secreted proteins. Also, redundancy within gene families
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could be better resolved when compared to a reference genome
sequence.

Hopefully in the near future, the development of novel sequenc-
ing and assembly strategies, together with dropping costs for NGS,
will make the sequencing of large and complex genomes more
affordable and will help to unravel the secrets of the genome of P.
pachyrhizi.
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