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The eukaryotic cell nucleus enclosed within the nuclear envelope harbors organized
chromatin territories and various nuclear bodies as sub-nuclear compartments.This higher-
order nuclear organization provides a unique environment to regulate the genome during
replication, transcription, maintenance, and other processes. In this review, we focus on
the plant four-dimensional nuclear organization, its dynamics and function in response to
signals during development or stress.
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INTRODUCTION
In recent years, a growing number of studies utilizing advanced
imaging and Chromosome Conformation Capture (3C)-based
techniques have further revealed the hierarchical organization
of the chromosomes inside the cell nucleus, and suggested that
the eukaryotic genome is territorially organized and the genes
may be regulated by chromatin looping and interchromosomal
contacts (Deng and Blobel, 2014). It seems that each gene is sur-
rounded by a number of potential regulatory elements in the
very crowded nucleus, raising a major question: how do cells
ensure that genes respond to the right elements and avoid mis-
regulation (Dekker et al., 2013b). Spatial-temporal organization
of cell nucleus enables to achieve the required subtle and specific
regulation in the crowded nucleus. For more detailed view of the
nuclear biology, the readers are referred to the recent reviews,“The
Dynamic Nucleus” (Cell, Volume 152, Issue 6, 2013), “Genome
architecture and expression” (Current Opinion in Genetics &
Development, Volume 23, Issue 2, 2013; Volume 25, April 2014).
Here we mainly focus on the discoveries and evidence regarding
the four-dimensional organization of the plant cell nuclei. The
readers are also referred to the special journal issues (Molecular
Plant, Volume 3, Number 4, 2010; Plant Physiology, Volume 158,
Issue 1, 2012).

NUCLEAR ENVELOPE
The nuclear envelope (NE) in eukaryotic cells surrounds the cell
nucleus and is composed of a double membrane, nuclear pore
complexes (NPCs), and the lamina (Hetzer et al., 2005). The
double membrane surrounding the nucleoplasm is composed of
two distinct membranes: the outer nuclear membrane (ONM)
continuous with the endoplasmic reticulum (ER) and the inner
nuclear membrane (INM) harboring a unique set of membrane
proteins interacting with chromatin or the lamina (Hetzer and

Wente, 2009). The ONM and INM are separated by the perinu-
clear space, called as the NE lumen, which acts as a repository of
calcium as in ER (Erickson et al., 2006; Bootman et al., 2009). The
two membranes are fused at NPC responsible for nucleocytoplas-
mic trafficking and gene regulation (Ptak et al., 2014; Tamura and
Hara-Nishimura, 2014). In addition, they are also connected by
the linker of nucleoskeleton and cytoskeleton (LINC) complexes
comprising KASH (Klarsicht, ANC-1, and syne/nesprin homol-
ogy) and SUN (Sad1 and UNC-84) proteins on the ONM and
INM, respectively (Sosa et al., 2012; Zhou et al., 2012). Chromatin
associated with the NE has been described as silent chromatin,
which often interacts with the nuclear lamina, while active chro-
matin interacts with the nuclear pore proteins or resides at inner
nucleus (Akhtar and Gasser, 2007; Kalverda et al., 2008). INM pro-
teins interact with the lamina and/or chromatin in a tissue-specific
manner. Many NE components are known to participate in mitotic
progression, suggesting the key role of the NE in the disassembly
and reformation of the nucleus during cell division (Kutay and
Hetzer, 2008). In addition, in plants that lack centrosomes, NE
serves as a microtubule (MT) organizing center (MTOC) during
mitosis (Stoppin et al., 1994; Canaday et al., 2000).

THE NUCLEAR LAMINA IN METAZOANS AND LAMIN-LIKE
PROTEINS IN PLANTS
The nuclear lamina underlining the INM is an important struc-
ture, and is mainly composed of lamins and their interacting
proteins for supporting the NE, attaching chromatin domains
to the nuclear periphery, and localizing some proteins to NE
in metazoan cells (Burke and Stewart, 2013). Lamins have also
been shown to regulate numerous nuclear processes, includ-
ing DNA replication, transcription, and chromatin organization
(Dechat et al., 2010). Although, lamins preferentially interact
with transcriptionally silent chromatin, some genes can be active
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or activated at the nuclear lamina (Kumaran et al., 2008). The
lamina-associated chromatin domains (LADs) vary among dif-
ferent cell types, suggesting that LADs change spatiotemporally
(Van Bortle and Corces, 2013). In addition to the direct inter-
action with chromatin, lamins participate in the regulation of
transcription through interactions with histones, chromatin asso-
ciated proteins, and transcription factors, such as lamin B receptor
(LBR), heterochromatin protein 1 (HP1), barrier to autointegra-
tion factor (BAF), and octamer transcription factor 1 (OCT1;
Wilson and Foisner, 2010). Mutations in lamins or the related
proteins have been known to result in a group of phenotypically
diverse genetic disorders known as laminopathies with symptoms
ranging from muscular dystrophy and neuropathy to premature
aging syndromes (Schreiber and Kennedy, 2013). The nuclear
lamins fall into two separate classes: A-type and B-type, which
are considered to be evolutionary precursors of the intermediate
filament superfamily (Peter and Stick, 2012). The lamin A and
lamin C are the main A-type lamins encoded by a single gene
LMNA. The B-type lamins, lamin B1 is encoded by LMNB1, and
B2, B3 are encoded by LMNB2 in humans and other mammals
(Goldman et al., 2002). LMNA gene is developmentally regulated
and expressed primarily in differentiated cells, whereas, all ver-
tebrate cells express at least one B-type lamins (Goldman et al.,
2002). Caenorhabditis elegans has only one lamin gene (lmn-
1), Drosophila melanogaster has two lamin genes (Dm0 and C),
and the mammals have three lamin genes, LMNA, LMNB1, and
LMNB2, which encode for at least seven protein isoforms (Dittmer
and Misteli, 2011; Lyakhovetsky and Gruenbaum, 2014).

The existence of a plant nuclear lamina is debatable as lamin
homologues have not been identified in their genome databases
(Fiserova and Goldberg, 2010). The nucleoskeletal structure of the
plant nucleus was examined by biochemical analysis and trans-
mission electron microscopy in the early 1990s (Moreno Díaz
de la Espina et al., 1991; Li and Roux, 1992; Masuda et al., 1993,
1997). The isolated plant nuclear matrix “plamina” (plant lamina)
seems basically similar to the metazoan nuclear lamina (Espina,
1996). Even though plant lamins are absent, field emission scan-
ning electron microscopy (feSEM) of the plant nucleus revealed
the presence of a plant lamina-like structure attached to the INM
and NPCs, with a highly organized filamentous pattern (Evans
et al., 2009). Interestingly, the human LBR expressed in a plant cell
localizes to the INM (Graumann et al., 2007; Evans et al., 2009).
This indicates that the NE targeting machinery is functionally con-
served between the plant and animal species. Hence, identification
of lamin like proteins in plants is one of the major interests for
plant researchers.

Immunological methods have been used to identify a few
insoluble proteins including NIF (nuclear intermediate filaments)
group of proteins (Pérez-Munive et al., 2012; Ciska and Moreno
Diaz de La Espina, 2013). The nuclear matrix constituent pro-
teins (NMCPs) in plants exhibit many structural and biochemical
similarities with lamins including the domain organization, sub-
nuclear distribution and solubility (Ciska et al., 2013). So far
NMCPs are considered as the best candidate proteins that could
function as lamins in plants. NMCPs have a predicted tripartite
structure with a head, coiled coil rod, and tail domains similar
to that of lamins (Masuda et al., 1997). Additionally, NMCPs

assemble and disassemble during mitosis in a manner similar
to lamins (Masuda et al., 1999). NMCP1 was first described
in 1993 in carrot, as a residual protein of the nuclear matrix
with a pI value similar to that of lamins (Masuda et al., 1993).
The N-terminal region, and an NLS-linked motif RYNLRR in
the tail domain are responsible for the localization of NMCP1
to nuclear periphery (Masuda et al., 1993; Ciska and Moreno
Diaz de La Espina, 2013; Kimura et al., 2014). NMCP family
proteins have been characterized in several different species of
plants, suggesting that NMCPs are well conserved in plants, but
not in metazoans, yeast, or bacteria (Ciska et al., 2013; Wang
et al., 2013). All NMCP1-like proteins reported so far share a
long coiled-coil domain with a moderate amino acid sequence
similarity, while the head and tail domains exhibit remarkable
divergence (Kimura et al., 2010). A total of 97 NMCP proteins
from 37 plant genomes have recently been classified into 2 clusters
based on sequence similarity, structural analogy, and phylo-
genetic relationship: the NMCP1 and NMCP2 (Kimura et al.,
2010; Ciska et al., 2013; Ciska and Moreno Diaz de La Espina,
2013).

Arabidopsis thaliana carries 4 NMCP genes (LINC/CRWN 1–4).
LINC1 belongs to NMCP1 class, whereas, LINC2 and LINC3 are
NMCP1-like proteins (or classified as NMCP3), and LINC4 is an
NMCP2 protein (Dittmer et al., 2007; Kimura et al., 2010; Ciska
et al., 2013). Mutations in LINC1, 2 and 4 have been shown to
result in smaller nuclear size and altered nuclear morphology, and
LINC1 playing a predominant role followed by LINC4 (Dittmer
et al., 2007; Dittmer and Richards, 2008; Sakamoto and Takagi,
2013; Wang et al., 2013). Reduction in nuclear volume without
a commensurate reduction in endoreduplication levels can lead
to an increase in nuclear DNA density, therefore these proteins
were later named as CRWN (CROWDED NUCLEI) when the
name LINC (LITTLE NUCLEI) was often confused with the LINC
complexes (Wang et al., 2013). Interestingly, some of the dou-
ble (LINC1/2, 1/3, 1/4, 2/4) and triple (LINC1/2/4, LINC1/3/4)
LINC mutants show whole-plant dwarfing morphology (Dittmer
et al., 2007; Wang et al., 2013). In addition to the dramatic effects
of LINCs on nuclear size and morphology, the maintenance of
internal organization of the nucleus also requires LINC pro-
teins. Chromocenter organization was found to be altered in
LINC1/LINC2 double mutant and LINC4 single mutant by visu-
alizing the spatial organization of chromocenters, and scoring for
chromocenter numbers (Wang et al., 2013). A more interesting
observation is that LINC1 appears to localize to the condensing
chromatin during mitosis, while the other three LINCs, sim-
ilar to lamins, are dispersed in the cytoplasm from metaphase
to anaphase, indicating an extraordinary role of LINC1 in asso-
ciation with chromatin (Sakamoto and Takagi, 2013). This is
similar to histone H1, which also localizes to the nuclear periphery
and nucleoplasm in the nuclei isolated from suspension-cultured
tobacco BY-2 cells synchronized in S/G2 phase, and associates
with chromosomes during mitosis (Hotta et al., 2007; Nakayama
et al., 2008). Therefore, it will be interesting to understand the
potential relationship between LINC1 and histone H1. Recently,
a plant-specific protein of unknown function (KAKU4) on INM
was shown to modulate nuclear morphology and physically inter-
act with LINC1 and LINC4 (Goto et al., 2014). Taking together,
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it seems that plant cells have evolved with a unique lamina-like
structure composed of plant-specific proteins. In addition to iden-
tifying proteins that form the plant lamina, given the multiple
roles of lamin in metazoans, it will be of great interest to study the
potential roles of these proteins on nuclear organization and other
processes, in addition to formation of the nuclear skeleton.

THE LINKER OF NUCLEOSKELETON AND CYTOSKELETON
COMPLEX
Lamins interact with many components transiently or stably and
mediate a diverse range of functions (Wilson and Foisner, 2010).
One group of these lamin-binding proteins are the SUN domain
proteins located in the INM which together with KASH proteins
in the ONM form the nuclear-envelope bridge, the LINC com-
plex (Starr and Fridolfsson, 2010). SUN domain proteins contain
a highly conserved SUN domain in their C-terminal fragment that
is required for KASH protein binding, while the other regions are
rather diverse (Rothballer and Kutay, 2013). Both budding and
fission yeast have only one SUN domain protein, C. elegans and D.
melanogaster have two, and mammals have at least five with SUN1
and SUN2 expressed in most of tissues and organs, whereas oth-
ers are restricted to male germline (Hiraoka and Dernburg, 2009;
Razafsky and Hodzic, 2009). KASH proteins are taIL-anchored
membrane proteins with large cytoplasmic domains interacting
with actin filaments, MTs, intermediate filaments, or centrosomes.
The KASH domain at the C terminus is necessary and sufficient
for the localization of KASH proteins to the ONM (Starr and
Fridolfsson, 2010; Sosa et al., 2012). Both budding and fission
yeast have two KASH proteins, three are found in C. elegans, two
in D. melanogaster, and six in vertebrates: nesprin-1 to nesprin-4,
KASH5, and LRMP (Mellad et al., 2011; Noegel and Neumann,
2011; Morimoto et al., 2012). The crystal structure of the human
SUN2-KASH complex revealed that LINC complexes are formed
by binding of three KASH peptides to the domain interfaces of
the trimeric SUN proteins (Sosa et al., 2012). In addition to their
roles in maintaining nuclear morphology and membrane struc-
ture, organization of the cytoskeleton, transmitting forces at the
NE and in anchoring and moving of the nucleus, LINC complexes
can also organize the genome and regulate signaling, cell division,
and apoptosis (Rothballer and Kutay, 2013).

In Saccharomyces cerevisiae, telomeres are anchored to the
nuclear periphery during interphase in different ways (Garten-
berg, 2009; Mekhail and Moazed, 2010). The SUN domain protein
Mps3 anchors and clusters the telomeres at the NE though interac-
tion with chromatin silencing factor Sir4 and telomerase subunit
Est1, respectively (Bupp et al., 2007; Schober et al., 2009; Horigome
et al., 2011). While in Schizosaccharomyces pombe, during inter-
phase, centromere clustering at the NE near the site of the spindle
pole body is mediated by SUN domain protein Sad1 and the nucle-
oplasmic adaptor Csi1, and disruption of this anchor results in
defects in chromosome segregation and mitotic progression (Hou
et al., 2012). The DNA damage response (DDR) and DNA repair
are critical for maintaining genomic stability in which the SUN
domain proteins also play an important role. Persistent DNA dou-
ble strand breaks (DSBs) are shuttled to the nuclear periphery and
are retained by Mps3 and Ku70/Ku80 in yeast cells (Oza et al.,
2009). It was also found that SUN1 and SUN2 were involved

in DDR through their interaction with DNA-dependent protein
kinase (DNAPK) complex in mouse cells (Lei et al., 2012). The
embryonic fibroblast cells derived from null Sun1−/− Sun2−/−
mouse display increased DNA damage and decreased perinuclear
heterochromatin (Lei et al., 2012).

From yeast to humans, chromosomes are always anchored to
the NE by LINC complexes in the prophase of meiosis. In S. cere-
visiae, telomeres are anchored to the NE by the SUN domain
protein Mps3 (SUN domain) protein in association with Ndj1
(meiosis-specific nuclear adaptor protein) that contacts telomere,
and Csm4 (atypical KASH domain) protein that interacts with
the actin cytoskeleton. (Conrad et al., 2007, 2008). In S. pombe,
this is achieved by Sad1 (SUN domain) protein, Bqt1 and Bqt2
(meiosis-specific nuclear adaptor proteins) connecting Sad1 to
telomeres, and Kms1 (KASH domain) protein through interac-
tions with MTs and dynein on the cytoplasmic side. (Miki et al.,
2002; Chikashige et al., 2006). In mammals, tethering of meiotic
chromosomes to the NE requires SUN1 and KASH5 which colocal-
ize with dynein; however, the adaptor proteins that connect SUN1
to telomeres are still unknown (Ding et al.,2007; Koszul et al.,2008;
Morimoto et al., 2012; Rothballer and Kutay, 2013). In mitosis,
SUN1 and SUN2 facilitate the removal of NE/ER membranes from
chromatin, in early prometaphase when the NE breaks down. Con-
sistent with this observation, depletion of SUN1/2 affects spindle
assembly and cell cycle progression (Turgay et al., 2014).

Although a very few animal INM proteins have homologs
in plants, two divergent classes of SUN proteins exist in plants
(Murphy et al., 2010). Two SUN proteins, AtSUN1 and AtSUN2
from Arabidopsis were shown to interact with three WPP domain-
interacting proteins (WIPs): AtWIP1, AtWIP2, and AtWIP3,
which share a low degree of similarity with metazoan KASH
proteins (Graumann et al., 2010; Oda and Fukuda, 2011; Zhou
et al., 2012; Zhou and Meier, 2013). AtSUN1 and AtSUN2 have
structural similarities with the SUN-domain proteins identified
in other species such as an N-terminal domain with a NLS, a
transmembrane domain, a coiled-coil domain, and a highly con-
served C-terminal SUN domain (Graumann et al., 2010; Zhou
et al., 2012). AtSUN1 and AtSUN2 form homomers and het-
eromers through their coiled-coil domains and are localized to
the NE with low mobility through their N-termini and coiled-
coil domains (Graumann et al., 2010; Oda and Fukuda, 2011).
AtWIPs are plant specific ONM proteins which function to anchor
the RanGTPase-activating protein 1 (AtRanGAP1) to the NE (Xu
et al., 2007a). AtSUNs interact with AtWIP1 through their SUN
domains and are required for targeting AtWIP1 and AtRanGAP1
to the NE (Zhou et al., 2012). AtSUN1 also affects the mobility
of AtWIP1 and AtLINC1/CRWN1-YFP (Zhou et al., 2012; Grau-
mann, 2014). Similar to AtLINCs/CRWNs and the nucleoporin
AtNup136, AtWIPs and AtSUNs are necessary to maintain the
elongated nuclear shape (Dittmer et al., 2007; Tamura et al., 2010;
Zhou et al., 2012).

THE CHANNEL AND BEYOND THE CHANNEL BETWEEN
NUCLEUS AND CYTOPLASM: THE NUCLEAR PORE COMPLEX
Another major component of the NE is the NPCs, anchored in
the lamina and studded throughout NE at the ONM and the
INM fusion sites. NPCs mediate selective transport of molecules
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between the nucleus and cytoplasm (Wente and Rout, 2010). NPCs
consist of multiple copies of ∼30 different proteins known as
nucleoporins (or nups), which form an evolutionarily conserved
eightfold-symmetrical structure comprising of a NE-embedded
scaffold that surrounds a central transport channel and the cyto-
plasmic and nuclear rings attached with eight filaments loosing
outside or joined the nuclear basket, respectively (D’Angelo and
Hetzer, 2008). The core scaffold of the NPC, which includes
Nup84-subcomplex and Nup170-subcomplex, lines the circum-
ference of the pore where it interacts with the pore membrane and
membrane proteins, and supports the Nups rich in phenylalanine-
glycine (FG) residue repeats that occupy the central channel and
play a central role in transport (Ptak et al., 2014). A growing body
of experimental evidence suggests that the FG-Nups around the
central channel and other Nups that form the nuclear basket also
play important roles in modulating chromatin structure and gene
expression (Strambio-De-Castillia et al., 2010).

Functional compartmentalization and regulation of the
genome depend on the interactions between genomic regions and
various nuclear scaffolds and macro-molecular complexes, such
as the lamina and NPCs (Pascual-Garcia and Capelson, 2014). As
was mentioned earlier, heterochromatin tends to concentrate at
the nuclear periphery; however, the peripheral heterochromatic
landscape is disrupted near NPCs (Ptak et al., 2014). In contrast
to the lamina, the NPC has been recognized as a transcriptionally
permissive region for many inducible genes (Meldi and Brickner,
2011). These active genes interact with Nups present in differ-
ent parts of NPC and in nucleoplasm. Therefore, Nups also serve
as chromatin-associated factors, and play roles in transcriptional
activation or repression, transcript elongation and processing,
transcriptional memory, coupling of transcription and mRNA
export, and genome integrity (Arib and Akhtar, 2011; Ptak et al.,
2014).

The structure and organization of plant NPCs closely
resemble that of the known yeast and vertebrate NPCs
(Roberts and Northcote, 1970; Fiserova et al., 2009). Although
several proteins with significant similarity to animal and yeast
Nups have been identified by genetic approaches, it is difficult
to identify Nup proteins in plants solely based on sequence simi-
larity (Boruc et al., 2012). Until recently only a few nucleoporins
were identified and characterized in plants. In 2010, an interactive
proteomic approach by immunoprecipitation coupled with mass
spectroscopy using a GFP fused nucleoporin, GFP-RAE1 (RNA
export factor 1), was used to identify Arabidopsis nucleoporins
(Tamura et al., 2010). This approach has identified and charac-
terized 8 known and 22 novel Nups including Nup136/Nup1, a
unique nucleoporin with no vertebrate homolog (Tamura et al.,
2010). The homologs of human Nup358, Nup188, Nup153,
Nup45, Nup37, NUCLEAR DIVISION CYCLE1 (NDC1), and
pore membrane protein121 (Pom121) were not identified in this
experiment (Tamura et al., 2010). However, earlier genomic data
indicated that NDC1 is evolutionary conserved and AtNDC1 was
predicted to contain six transmembrane domains shared by all
NDC1 proteins (Mans et al., 2004; Stavru et al., 2006).

Nups in plants affect many processes including nuclear mor-
phogenesis, pollen development, regulation of flowering-time,
overall plant development, plant–microbe interactions, hormone

signaling, and cold-stress tolerance (Xu and Meier, 2008). The
unique plant Nup136, which exhibits a more dynamic behavior
on the NE than other Nups, is considered as a functional homolog
to animal Nup153, although they have no sequence homology
(Tamura et al., 2010). The mutant of nup136 has more spherical
and uniform nuclei, whereas overexpression of Nup136-GFP was
found to induce elongation of nuclei in various tissues, including
the guard cells, rosette leaf epidermal cells, trichome cells (Tamura
et al., 2010; Tamura and Hara-Nishimura, 2011). It will be neces-
sary to determine whether the effect of Nup136 on nuclear shape
is related to altered endoreduplication or interactions with other
factors responsible for the maintenance of nuclear morphology,
such as AtSUNs, AtWIPs, and AtLINCs. Furthermore, the nup136
mutant also showed developmental defects, with stunted fruits,
substantially fewer mature seed grains and early flowering (Tamura
et al., 2010). Strikingly, similar phenotypes, including dwarfism,
early flowering and/or other developmental defects, such as infer-
tility and abnormal meristem resulting in spiral phyllotaxy were
seen among some Nup mutants, including nup96 (Parry et al.,
2006), nup160 (Dong et al., 2006), tpr/nua (Jacob et al., 2007; Xu
et al., 2007b), and the overexpression-based co-suppression line of
AtNup62 (Zhao and Meier, 2011). These pleiotropic phenotypes
indicate that the NPCs play a critical role in plant development (Li
et al., 2008; Merkle, 2011; Parry, 2013).

Apart from the above-mentioned developmental roles, Nups
also regulate specific pathways. Nup160, which is required for
plant tolerance to cold stress, together with Nup96, were identified
as the suppressor of auxin resistance1 and 3 (sar1 and sar3) respec-
tively, in a screen for suppressors of the auxin-resistant Arabidopsis
mutant axr1, probably due to their influence on the localization
of transcriptional repressor AXR3/IAA17 and/or mRNA export
(Dong et al., 2006; Parry et al., 2006; Robles et al., 2012). AtTpr
was also shown to have a similar role in the suppression of auxin-
resistant phenotype of axr1 (Jacob et al., 2007). Nups have also
been shown to be involved in the plant-pathogen interaction.
In a screen aimed to identify suppressors of snc1 (suppressor of
npr1-1, constitutive 1) mutants with constitutive resistance to a
range of fungal and bacterial pathogens, a range of mos (mod-
ifier of snc1) mutants that rescue a majority of snc1 phenotypes
were identified, and most of MOS proteins including two Nups,
MOS3/NUP96, and MOS7/NUP88 were predicted to play a role
either in RNA processing or nuclear transport (Zhang, 2005;
Cheng et al., 2009). A reverse genetics approach was used to
examine a potential role of additional subunits of the predicted
Arabidopsis Nup107–160 complex in plant immunity. Two mem-
bers of the NUP107–160 complex, nup160 and seh1, were found
to contribute to pathogen defense (Roth and Wiermer, 2012;
Wiermer et al., 2012). In Mos7-1 mutant, the nuclear accumu-
lations of SNC1, enhanced disease susceptibility 1 (EDS1) and
non-expresser of PR genes 1 (NPR1) involved in defense sig-
naling were significantly reduced, suggesting that MOS7/NUP88
regulates plant defense by specifically modulating the nuclear con-
centrations of certain defense proteins (Cheng et al., 2009). In
contrast, NUP160 and SEH1 probably work through regulating
nuclear mRNA export and EDS1 protein accumulation (Roth
and Wiermer, 2012; Wiermer et al., 2012). In Lonicera japoni-
cas, Nup85 and Nup133 were found to affect processes including
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Ca2+ spiking, rhizobial and fungal symbiosis, and seed production
(Kanamori et al., 2006; Binder and Parniske, 2014). Nup85 and
Nup133 mutants exhibit severe defects in the temperature depen-
dent growth and development (Kanamori et al., 2006; Binder and
Parniske, 2014).

In summary, nuclear pores are involved in many pathways
from developmental regulation to stress signaling. However, the
molecular mechanisms were only roughly explained by the trans-
port of various factors, including RNAs and proteins essential for
corresponding processes (Tamura and Hara-Nishimura, 2014).
Therefore, the transport-independent functions of plant Nups,
like Nup-chromatin interactions in spatio-temporal organization
of gene expression remains to be explored (Boruc et al., 2012).

THREE-DIMENSIONAL ORGANIZATION OF THE GENOME
The genome is non-randomly organized in the three-dimensional
(3D) nuclear space of cell nucleus to facilitate its appropriate
expression (Gibcus and Dekker, 2013). High-order genome orga-
nization is cell-type specific and is modulated by cellular processes,
such as proliferation, differentiation, and stress. Hence, unraveling
the mechanism and regulation of genome organization is criti-
cal to understand the genome functions (Meaburn and Misteli,
2008; Schwartz and Hakim, 2014). The study of 3D genomics
with a focus on the 3D structure and function of the whole
genome has become an important part of the current genomics
era. Recent findings using the ChIA-PET (Chromatin Interaction
Analysis by Paired-end Tag Sequencing) and Hi-C showed the
influence of the 3D genomic structure on genome functions (Li
et al., 2014). Transcriptional control and other processes including
DNA repair, DNA replication, and X chromosome inactivation
have been shown to be influenced by 3D genome organization
(Gibcus and Dekker, 2013; Gorkin et al., 2014). A hierarchy of
structures is involved in the proper folding of each of the large
complex chromosomes, ranging from chromatin loops that con-
nect genes and enhancers to large chromosomal domains and
nuclear compartments (Gibcus and Dekker, 2013). One of the
basic levels of eukaryotic genomic organization is the chromo-
some territory (CT) where each chromosome occupies a distinct
sub-nuclear volume. CT is common to yeast, plants, and ani-
mals (Cremer and Cremer, 2010; Schwartz and Hakim, 2014).
The existence of CT was demonstrated by fluorescence in situ
hybridization (FISH) technology using probe sets designed to
paint entire chromosomes (Bolzer et al., 2005). CTs are spatially
distinct with considerable intermingling between different chro-
mosomes near the borders of CTs (Branco and Pombo, 2006;
Gorkin et al., 2014). Smaller chromosomes are generally located
in the interior and larger chromosomes toward the periphery of
the nucleus (Sun et al., 2000). Besides the size of chromosome,
gene density can also influence the location of CT. For example,
the gene-rich human chromosome 19 is located in a more central
position in the nucleus, whereas, the similarly sized, but gene-poor
chromosome 18 was found at the nuclear periphery (Croft et al.,
1999; Boyle et al., 2001; Cremer and Cremer, 2001). Within a CT,
the position of specific regions are non-random and often correlate
relative to their transcriptional activity (Gorkin et al., 2014). Gene-
rich regions prefer to localize to the periphery of CTs, and specific
regions can shift from the interior to the periphery based on their

activities during development (Chambeyron and Bickmore, 2004;
Morey et al., 2007; Boyle et al., 2011). However, the details on the
relationship between CT positioning and transcriptional activity
remain unclear, and shifts in CT position do not always alter the
transcriptional activity (Gorkin et al., 2014). In addition to the
organization of CTs, it was suggested that chromosomes are orga-
nized into topologically associating domains (TADs), the building
blocks of CTs, which are relatively invariant across cell types
and conserved between mouse and human (Dixon et al., 2012;
Schwartz and Hakim, 2014). As intra-chromosomal contacts are
more frequent than inter-chromosomal ones, TADs located within
the chromosome associate more frequently than those located on
different chromosomes. In addition, chromosomal loci within
the TADs associate more frequently than those between TADs
(Gibcus and Dekker, 2013; Tanay and Cavalli, 2013; Schwartz
and Hakim, 2014). The enhancers and other regulatory elements
often communicate with each other and with the promoters of
genes within the same TAD. For example, Hox genes are regu-
lated by several different distal enhancers within the same TAD
(Montavon et al., 2011; Noordermeer et al., 2011). Binding sites
of the protein CTCF, which functions as a transcriptional insula-
tor, are highly enriched at TAD boundaries. Deletion of a TAD
boundary containing CTCF binding sites increases the interac-
tions between adjacent TADs (Dixon et al., 2012; Nora et al., 2012;
Gorkin et al., 2014). Genomic regions with similar transcriptional
activity normally associate with each other, as the transcription-
active regions frequently interact in space with other active loci
and regions that lack transcriptional activity tend to interact
with other inactive regions as demonstrated by Hi-C technolo-
gies (Simonis et al., 2006; Lieberman-Aiden et al., 2009; Gorkin
et al., 2014). These distinct active and inactive interaction net-
works are referred to as A and B compartments respectively,
reflecting the segregation of euchromatin and heterochromatin
in space (Gorkin et al., 2014). Moreover, inactive chromatin tends
to associate primarily with inactive nuclear landmarks, such as
the nuclear lamina and nucleolar periphery, while the position
and translocation of active chromatin are more difficult to char-
acterize (Schwartz and Hakim, 2014). Similar to the rRNA gene
clusters from different chromosomes colocalize at the nucleolus
for the transcription by RNA polymerase I, genes transcribed by
RNA polymerase II have also been shown to colocalize together
at transcription factors (Edelman and Fraser, 2012; Papantonis
and Cook, 2013; Gorkin et al., 2014). Although TAD domains are
essentially invariant across different cell types, the connectivity
of the intra-domain and inter-domain is cell type specific and is
dictated by lineage specific transcription factors (Schwartz and
Hakim, 2014). It is suggested that cell type specific transcription
factors associated with the genome play a predominant role in
configuring the higher order genome organization. However, the
role of transcription factors as nuclear organizers and the linkers
between transcriptional activity and co-localization of genomic
loci remain controversial (Hakim et al., 2011; Rieder et al., 2014;
Schwartz and Hakim, 2014). When DNA lesions occur at ran-
dom locations, the probabilities of chromosomal translocations
correlate well with the frequency of chromosomal contacts. The
targeted DNA damage at specific chromosomal loci, such as pro-
grammed DNA damage that occur during B cell antibody diversity
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in B cells, is a major contributor to the observed translocation fre-
quency at its interacting chromosomal loci (Schwartz and Hakim,
2014).

These conclusions are largely addressed or confirmed by the
revolutionary Chromosome Conformation Capture (3C) technol-
ogy and its derivatives, together with automation and computation
of image acquisition and analysis. These studies have provided
unprecedented genome-wide perspectives on the spatial relation-
ships of DNA sequences, both within and between chromosomes
(Dostie and Bickmore, 2012). As the 3C technology was success-
fully used both in animal-model systems and yeast, plant-specific
3C protocols, particularly for maize, were documented (Dekker
et al., 2002; Louwers et al., 2009; Hovel et al., 2012). Recently, circu-
lar chromosome conformation capture (4C) technology was used
to characterize the chromosomal architecture of Arabidopsis (Grob
et al., 2013). Arabidopsis genome seems to be packed in a predic-
tive manner with heterochromatin and euchromatin representing
two distinct interactomes. Chromosome interactions relate with
the linear position on the chromosome arm, for example, distal
chromosome regions have more potential to interact with other
chromosomes (Grob et al., 2013). A gene loop containing the flo-
ral repressor FLC was identified using 3C and was found to be
disrupted during vernalization (Crevillen et al., 2013). It is pre-
dictable that large amounts of data in this field will emerge in the
coming years. It is anticipated that the 3D-genome organization
field will continue to produce large data sets, and therefore, it is
important to develop improved statistical and computational tools
(Dekker et al., 2013a).

Most studies on chromosome organization and dynamics
in plants in the past few years are based on FISH and live-
imaging techniques (Tiang et al., 2011). CTs were first visualized
in Arabidopsis using FISH in 2001 (Lysak et al., 2001). The CT
arrangement and homologous pairing were found to be predom-
inantly random except for chromosomes 2 and 4, which bear
nuclear organizer regions (NORs) in Arabidopsis (Pecinka et al.,
2004). NOR-bearing chromosomes also tend to associate with
each other, likely because of their association with the nucleo-
lus (Pecinka et al., 2004; Berr and Schubert, 2007). Chromosome
arrangement and nuclear architecture are conserved between Ara-
bidopsis thaliana and A. lyrata, although the centromeric sequences
are different (Berr et al., 2006). Chromosomes in many plant
species adopt Rabl configuration during interphase when the
centromeres and telomeres are located at opposite sides of the
nucleus. However, Arabidopsis exhibit a strikingly different type
of chromatin arrangement with telomeres clustering around the
nucleolus and centromeres positioning at the nuclear periphery
(Armstrong et al., 2001; Cowan et al., 2001; Fransz et al., 2002;
Fang and Spector, 2005). The rosette-like structure of Arabidopsis
CTs is formed from the euchromatic loops of 0.2 to 2 Mb from
the chromcenters, the distinct dense bodies of centromeric het-
erochromatin, which contains the majority of genomic repeats
and exhibits epigenetic marks of inactive chromatin (Fransz et al.,
2002; Tiang et al., 2011). The organization of endoreduplicated sis-
ter centromeres is cell type dependent, clustering in root epidermal
cells and dispersed in leaf epidermal cells (Fang and Spector, 2005).
Endoreduplication-driven polyploidy has been found to affect
chromosome arrangement by reducing the speed and increasing

the freedom of chromosome movement (Kato and Lam, 2003;
Berr and Schubert, 2007). In AtLINC/AtCRWN mutants, altered
chromosome arrangement, slightly changed endoreduplication,
and altered nuclear size and shape were observed, but we still
have no idea about which is the cause or result (Dittmer et al.,
2007; Sakamoto and Takagi, 2013; Wang et al., 2013). Light-
regulated large-scale reorganization of chromatin was reported
during the floral transition with chromocenters being smaller
before the transition and restored after (Tessadori et al., 2007).
A study on the nuclear phenotypes of Arabidopsis from different
geographical origins and habitats has suggested that natural vari-
ation in chromatin compaction is likely to be dependent on light
intensity, demonstrating a positive correlation with latitude of geo-
graphic origin, with PHYTOCHROME-B (PHYB) and HISTONE
DEACETYLASE-6 (HDA6) as positive regulators (Tessadori et al.,
2009).

Chromosomes in mitosis are more dynamic compared to
their limited movements in interphase. During the prophase to
metaphase transition, condensed chromosomes tend to relocate
to the center of the cell while their centromeres rotate gradu-
ally to orient perpendicular to the metaphase plate. In anaphase,
centromeres direct the chromosomes towards the opposite poles
(Fang and Spector, 2005; Tiang et al., 2011). Following anaphase,
centromere arrangements in two daughter cell nuclei are clearly
asymmetrical and show significant differences in their 3-D dis-
tribution compared to the mother cell nucleus, although the
centromeres in both mother and daughter cell nuclei locate at
the nuclear periphery (Fang and Spector, 2005). This is consis-
tent with a study in HeLa cells, which showed large-scale CT
arrangements change from one cell cycle to the next (Walter et al.,
2003). However, it was also reported that chromosome positions
often exhibit mirror symmetry in daughter cells immediately after
mitosis (Gerlich et al., 2003; Berr and Schubert, 2007). In plants,
dynamic chromosomes in meiotic prophase I undergo major reor-
ganization, such as chromosome condensation, establishment
of meiotic-specific chromosome structure, homologous chromo-
some pairing, and dynamic chromosome movements (Tiang et al.,
2011). In early meiosis, adoption of the meiosis-specific chro-
mosome structure by chromatin condensation in leptotene stage
is one of the key processes in meiotic prophase I (Dawe et al.,
1994; Golubovskaya et al., 2006). Incidently, the transcriptome
analyses of Arabidopsis meiocytes showed that a staggering num-
ber of genes are expressed during the meiotic prophase I (Chen
et al., 2010). The following homologous chromosome pairing was
shown to be tightly linked to the progression of meiotic recom-
bination (Tiang et al., 2011). For a more detailed description of
the chromatin in meiosis, the readers are referred to the reviews
(Pawlowski, 2010; Ronceret and Pawlowski, 2010; Tiang et al.,
2011).

NUCLEAR BODIES
In the dynamically organized cell nucleus, CTs harbor a vari-
ety of functionally distinct nuclear bodies (NBs). NBs are
highly dynamic structures, enriched with proteins and/or RNAs
involved in similar processes in a constrained space, presumably
to improve reaction efficiency and/or regulation (Sleeman and
Trinkle-Mulcahy, 2014). In addition to serving as reaction sites to
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efficiently facilitate specific biological processes, NBs can also act as
hubs for regulating the expression of recruited gene loci or as stor-
age/modification sites for recycling and modifying RNA or protein
molecules (Mao et al., 2011b). Recently, in a human whole genome
wide screen using markers of known NBs, 325 proteins were iden-
tified to localize to distinct NBs, including nucleoli, promyelocytic
leukemia nuclear bodies (PMLNBs), nuclear speckles, paraspeck-
les, cajal bodies (CBs), Sam68 NBs, polycomb bodies, and other
uncharacterized NBs (Fong et al., 2013). In addition, biochemical
approaches have been used to identify the protein components in
nucleoli and speckles/interchromatin granule clusters (Andersen
et al., 2002; Scherl et al., 2002; Saitoh et al., 2004). Using a modified
RNA tagging and recovery of associated proteins (TRAP) method,
known as Immuno-TRAP, gene loci associated with PML NBs were
recently identified (Ching et al., 2013).

All these approaches were aimed to reveal the novel compo-
nents of the NBs; the question is how these individual components
assemble and interact with each (Matera et al., 2009). Three mod-
els have been proposed to explain the assembly of NBs through
dynamic interactions between the individual components: (1)
stochastic assembly model, in which each component contributes
equally, and the assembly process is largely random; (2) ordered
assembly model, in which hierarchically individual components
follow a tightly controlled sequential order to assemble one after
another; (3) seeding assembly model, in which RNAs or pro-
teins hierarchically different from the other components serve as
seeds to initiate and nucleate the formation of a nuclear body,
subsequently followed by either stochastic or ordered assembly
(Dundr and Misteli, 2010; Mao et al., 2011a,b). Using a bacte-
rial Lac operator/repressor (LacO/LacI) tethering system, CB was
found to be de novo assembled via stochastic interactions (Kaiser
et al., 2008). In contrast, nucleoli were found to be assembled
through an “RNA-seeded” model, likely triggered by activation
of rDNA transcription (Karpen et al., 1988). Nucleations of his-
tone locus bodies, speckles, paraspeckles, and nuclear stress bodies
have been shown to follow“RNA-seeded”model (Mao et al., 2011a;
Shevtsov and Dundr, 2011). Similar to LacO/LacI tethering sys-
tem used in the assembly of nuclear body, LacI-Lamin B fusion
protein was developed to tether LacO locus to the nuclear lamina
in mammalian cells (Kumaran and Spector, 2008; Dundr, 2013).
Recently, nucleolus-tethering system (NoTS) was developed to
tether a protein to nucleolus in plant cells (Liu et al., 2014). These
tethering systems have greatly enabled to test models of nuclear
organization.

Plant NBs include the nucleolus, CBs, nuclear speckles,
cyclophilin-containing speckles, nuclear dicing bodies (or D-
bodies), photobodies, and AKIP1-containing NBs. Nucleolus and
CBs were characterized in details as early as in 1990s (Beven
et al., 1995, 1996; Boudonck et al., 1998, 1999; Brown and Shaw,
1998; Shaw et al., 1998; Acevedo et al., 2002; Cui and Moreno
Diaz de la Espina, 2003). For detailed information on nucleo-
lus, recent reviews are recommended (Shaw and Brown, 2012;
Stepinski, 2014). CBs are likely to be involved in the maturation
and transport of snRNPs and snoRNPs (Sleeman et al., 2001; Gall,
2003). In Arabidopsis, the number of CBs per nucleus is regu-
lated by cell type, developmental stage, and cell cycle parameters
in the root epidermis and during pollen development and pollen

tube growth (Boudonck et al., 1998; Scarpin et al., 2013). Using a
green fluorescent protein (GFP) fusion to the spliceosomal pro-
tein U2B”, CBs were shown to be very dynamic, moving within
the nucleus into the nucleolus, and fusing together (Boudonck
et al., 1999). In Arabidopsis, a screen for mutants with altered
CBs has identified ncb1 (no cajal bodies 1) with no CBs due to
a single base change at a splice site in Atcoilin, a distant homolog
of vertebrate coilin (Collier et al., 2006). Atcoilin is required for
cajal body formation, though Arabidopsis plants lacking CBs are
viable and appear normal (Collier et al., 2006). It was reported
that CBs and the nucleolus are required for the systemic infection
of plants by viruses and atcoilin was found to be involved in the
interactions between plants and viruses (Shaw et al., 2014). ARG-
ONAUTE4 (AGO4), the small RNA-binding protein involved in
RNA-directed DNA methylation (RdDM), was found to be local-
ized to CBs and other sites (Li et al., 2006, 2008). Nuclear speckles,
considered as storage sites for splicing factors, are often observed
near active transcription sites with pre-mRNAs in fibrillar struc-
tures outside the speckles (Fang et al., 2004; Spector and Lamond,
2011). Speckles are dynamic structures with changes in size, shape,
and number in response to temperature, stress, and status of tran-
scription or phosphorylation (Reddy et al., 2012). CypRS64 and
CypRS92, two RS domain containing cyclophilins, have been iden-
tified to interact with SR proteins and localize to a small number of
novel NBs called cyclophilin-containing speckles, and are distinct
from CBs (Lorkoviæ et al., 2004). AKIP1 is a RNA-binding motifs
containing protein with homology to heterogeneous nuclear RNA
(hnRNP)-binding protein A/B, and was reported to relocate into
speckle-like domains when treated with abscisic acid (Li et al.,
2002). Dicing bodies, which contain microRNA-processing pro-
teins like DICER-LIKE1 (DCL1) and HYPONASTIC LEAVES1
(HYL1) were found to be essential for the accurate processing of
primary microRNAs (Fang and Spector, 2007; Song et al., 2007;
Liu et al., 2013).

An amazing example of dynamic nuclear organization in plants
is the light-regulated photobodies. Phytochromes (phys) include
the red (R) and far-red (FR) light receptors, which can interconvert
between two relatively stable conformers: Pr and Pfr (Rockwell
et al., 2006). Phys rapidly translocate from the cytoplasm to the
nucleus upon photoactivation of Pr to the Pfr. During this process
the photobodies containing both phyA and phyB can be observed
after exposure to light for 1–2 min (Chen, 2008). PhyA mediates
responses during the dark-to-light transition, accumulates in the
dark, and rapidly degrades under R light, forming transient/early
photobodies (Chen, 2008). PhyB on the other hand is the major
phytochrome, which mediates responses under R light and is rel-
atively stable, forming stable/late photobodies (Chen, 2008). The
size and number of phyB-containing photobodies under contin-
uous R light is determined by the percentage of phyB in the Pfr;
under low intense R light, low R-to-FR ratio, phyB were observed
in many smaller photobodies or diffused in the nucleoplasm.
Under high-intense R light, high R-to-FR ratio, phyB exclu-
sively localized to a few large photobodies were observed (Chen
et al., 2003; Chen, 2008; Van Buskirk et al., 2012). The changes
tightly correlate with the light-dependent hypocotyl inhibition. In
addition to the photoreceptors, COP1 (CONSTITUTIVELY PHO-
TOMORPHOGENIC 1) and several other light-regulated proteins
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including transcription factors also form photobodies. The assem-
bly of NBs was recently revealed by a NoTS (Liu et al., 2014).
In this system, different components involved in the light sig-
naling pathways were tethered to the nucleolus by fusing them
with nucleolin2 (Nuc2), a nucleolar marker protein, for analyzing
the initiation of photobodies. The assembly of photobodies was
evaluated by visualizing the fused protein in body-like structures
containing other components at the periphery of the nucleolus
(Liu et al., 2014). COP1, phyB, cry1, cry2, and PIF7 fusion proteins
all formed body-like foci at the periphery of the nucleolus contain-
ing other components in photobodies. Interestingly, COP1, cry1,
cry2, UVR8, and CO were found in Nuc2-COP1 bodies, COP1
in Nuc2-cry1 and Nuc2-cry2 bodies, PIF7 in the Nuc2-phyB bod-
ies, and phyB in Nuc2-PIF7 containing bodies, indicating that the
assembly of photobodies follows a self-organization model (Liu
et al., 2014).

CONCLUDING REMARKS
Taking advantage of the recent developments in imaging and 3C
technologies, we now have a better understanding of the eukary-
otic cell nucleus as a highly ordered structure, harboring organized
chromatin territories and various NBs in spatial-temporal dynam-
ics. The transcriptional activity of chromatin is tightly regulated
through interaction with its self and other major nuclear compart-
ments, such as the lamina and NPCs. Many NBs which can serve
as storage/modification or reaction sites contribute to gene regu-
lation, post-transcriptional processing and/or modification. The
nuclear organization of the animal cell is the best studied, with
studies on plants relatively lagging behind. Therefore, it will be of
great general interest to further understand the four-dimensional
organization and function of the plant sub-nuclear compartments.

ACKNOWLEDGEMENTS
We thank Dr. R. Ileng Kumaran at CSHL for a critical reading
of this manuscript. We apologize to all colleagues whose relevant
works could not be discussed due to space limitations. This work
was supported by grants to Yuda Fang from National Natural Sci-
ence Foundation of China (31171168 and 91319304), National
Basic Research Program of China (973 Program, 2012CB910503).

REFERENCES
Acevedo, R., Samaniego, R., and Moreno Díaz De La Espina, S. (2002). Coiled bodies

in nuclei from plant cells evolving from dormancy to proliferation. Chromosoma
110, 559–569. doi: 10.1007/s00412-001-0178-9

Akhtar, A., and Gasser, S. M. (2007). The nuclear envelope and transcriptional
control. Nat. Rev. Genet. 8, 507–517. doi: 10.1038/nrg2122

Andersen, J. S., Lyon, C. E., Fox, A. H., Leung, A. K. L., Lam, Y. W., Steen, H., et al.
(2002). Directed proteomic analysis of the human nucleolus. Curr. Biol. 12, 1–11.
doi: 10.1016/S0960-9822(01)00650-9

Arib, G., and Akhtar, A. (2011). Multiple facets of nuclear periphery in gene expres-
sion control. Curr. Opin. Cell Biol. 23, 346–353. doi: 10.1016/j.ceb.2010.12.005

Armstrong, S. J., Franklin, F. C., and Jones, G. H. (2001). Nucleolus-associated
telomere clustering and pairing precede meiotic chromosome synapsis in
Arabidopsis thaliana. J. Cell Sci. 114, 4207–4217.

Berr, A., Pecinka, A., Meister, A., Kreth, G., Fuchs, J., Blattner, F. R., et al.
(2006). Chromosome arrangement and nuclear architecture but not centromeric
sequences are conserved between Arabidopsis thaliana and Arabidopsis lyrata.
Plant J. 48, 771–783. doi: 10.1111/j.1365-313X.2006.02912.x

Berr, A., and Schubert, I. (2007). Interphase chromosome arrangement in Ara-
bidopsis thaliana is similar in differentiated and meristematic tissues and shows

a transient mirror symmetry after nuclear division. Genetics 176, 853–863. doi:
10.1534/genetics.107.073270

Beven, A. F., Lee, R., Razaz, M., Leader, D. J., Brown, J. W., and Shaw, P. J. (1996).
The organization of ribosomal RNA processing correlates with the distribution
of nucleolar snRNAs. J. Cell Sci. 109, 1241–1251.

Beven, A. F., Simpson, G. G., Brown, J. W., and Shaw, P. J. (1995). The organization of
spliceosomal components in the nuclei of higher plants. J. Cell Sci. 108, 509–518.

Binder, A., and Parniske, M. (2014). Analysis of the Lotus japonicus nuclear pore
NUP107-160 subcomplex reveals pronounced structural plasticity and functional
redundancy. Front. Plant Sci. 4:552. doi: 10.3389/fpls.2013.00552

Bolzer, A., Kreth, G., Solovei, I., Koehler, D., Saracoglu, K., Fauth, C., et al.
(2005). Three-dimensional maps of all chromosomes in human male fibrob-
last nuclei and prometaphase rosettes. PLoS Biol. 3:26. doi: 10.1371/journal.pbio.
0030157

Bootman, M. D., Fearnley, C., Smyrnias, I., Macdonald, F., and Roderick, H. L.
(2009). An update on nuclear calcium signalling. J. Cell Sci. 122, 2337–2350. doi:
10.1242/jcs.028100

Boruc, J., Zhou, X., and Meier, I. (2012). Dynamics of the plant nuclear envelope
and nuclear pore. Plant Physiol. 158, 78–86. doi: 10.1104/pp.111.185256

Boudonck, K., Dolan, L., and Shaw, P. J. (1998). Coiled body numbers in the
Arabidopsis root epidermis are regulated by cell type, developmental stage and
cell cycle parameters. J. Cell Sci. 111, 3687–3694.

Boudonck, K., Dolan, L., and Shaw, P. J. (1999). The movement of coiled bodies
visualized in living plant cells by the green fluorescent protein. Mol. Biol. Cell 10,
2297–2307. doi: 10.1091/mbc.10.7.2297

Boyle, S., Gilchrist, S., Bridger, J. M., Mahy, N. L., Ellis, J. A., and Bickmore,
W. A. (2001). The spatial organization of human chromosomes within the
nuclei of normal and emerin-mutant cells. Hum. Mol. Genet. 10, 211–219. doi:
10.1093/hmg/10.3.211

Boyle, S., Rodesch, M. J., Halvensleben, H. A., Jeddeloh, J. A., and Bickmore, W.
A. (2011). Fluorescence in situ hybridization with high-complexity repeat-free
oligonucleotide probes generated by massively parallel synthesis. Chromosome
Res. 19, 901–909. doi: 10.1007/s10577-011-9245-0

Branco, M. R., and Pombo, A. (2006). Intermingling of chromosome territo-
ries in interphase suggests role in translocations and transcription-dependent
associations. PLoS Biol. 4:25. doi: 10.1371/journal.pbio.0040138

Brown, J. W., and Shaw, P. J. (1998). Small nucleolar RNAs and pre-rRNA processing
in plants. Plant Cell 10, 649–657. doi: 10.1105/tpc.10.5.649

Bupp, J. M., Martin, A. E., Stensrud, E. S., and Jaspersen, S. L. (2007). Telomere
anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84
domain protein Mps3. J. Cell Biol. 179, 845–854. doi: 10.1083/jcb.200706040

Burke, B., and Stewart, C. L. (2013). The nuclear lamins: flexibility in function. Nat.
Rev. Mol. Cell Biol. 14, 13–24. doi: 10.1038/nrm3488

Canaday, J., Stoppin-Mellet, V., Mutterer, J., Lambert, A. M., and Schmit,
A. C. (2000). Higher plant cells: gamma-tubulin and microtubule nucle-
ation in the absence of centrosomes. Microsc. Res. Tech. 49, 487–495. doi:
10.1002/(SICI)1097-0029(20000601)49:5<487::AID-JEMT11>3.0.CO;2-I

Chambeyron, S., and Bickmore, W. A. (2004). Chromatin decondensation and
nuclear reorganization of the HoxB locus upon induction of transcription. Genes
Dev. 18, 1119–1130. doi: 10.1101/gad.292104

Chen, C., Farmer, A. D., Langley, R. J., Mudge, J., Crow, J. A., May, G. D., et al. (2010).
Meiosis-specific gene discovery in plants: RNA-Seq applied to isolated Arabidopsis
male meiocytes. BMC Plant Biol. 10:1471–2229. doi: 10.1186/1471-2229-10-280

Chen, M. (2008). Phytochrome nuclear body: an emerging model to study inter-
phase nuclear dynamics and signaling. Curr. Opin. Plant Biol. 11, 503–508. doi:
10.1016/j.pbi.2008.06.012

Chen, M., Schwab, R., and Chory, J. (2003). Characterization of the requirements
for localization of phytochrome B to nuclear bodies. Proc. Natl. Acad. Sci. U.S.A.
100, 14493–14498. doi: 10.1073/pnas.1935989100

Cheng, Y. T., Germain, H., Wiermer, M., Bi, D., Xu, F., Garcia, A. V., et al. (2009).
Nuclear pore complex component MOS7/Nup88 is required for innate immunity
and nuclear accumulation of defense regulators in Arabidopsis. Plant Cell 21,
2503–2516. doi: 10.1105/tpc.108.064519

Ciska, M., and Moreno Diaz de La Espina, S. (2013). NMCP/LINC proteins: putative
lamin analogs in plants? Plant Signal. Behav. 8, e26669. doi: 10.4161/psb.26669

Chikashige, Y., Tsutsumi, C., Yamane, M., Okamasa, K., Haraguchi, T., and Hiraoka,
Y. (2006). Meiotic proteins bqt1 and bqt2 tether telomeres to form the bouquet
arrangement of chromosomes. Cell 125, 59–69. doi: 10.1016/j.cell.2006.01.048

Frontiers in Plant Science | Plant Genetics and Genomics August 2014 | Volume 5 | Article 378 | 8

http://www.frontiersin.org/Plant_Genetics_and_Genomics/
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive


Guo and Fang Spatial-temporal organization of nucleus

Ching, R. W., Ahmed, K., Boutros, P. C., Penn, L. Z., and Bazett-Jones, D.
P. (2013). Identifying gene locus associations with promyelocytic leukemia
nuclear bodies using immuno-TRAP. J. Cell Biol. 201, 325–335. doi: 10.1083/jcb.
201211097

Ciska, M., Masuda, K., and Moreno Díaz de la Espina, S. (2013). Lamin-like ana-
logues in plants: the characterization of NMCP1 in Allium cepa. J. Exp. Bot. 64,
1553–1564. doi: 10.1093/jxb/ert020

Collier, S., Pendle, A., Boudonck, K., Van Rij, T., Dolan, L., and Shaw, P. (2006). A dis-
tant coilin homologue is required for the formation of cajal bodies in Arabidopsis.
Mol. Biol. Cell 17, 2942–2951. doi: 10.1091/mbc.E05-12-1157

Conrad, M. N., Lee, C. Y., Chao, G., Shinohara, M., Kosaka, H., Shinohara, A., et al.
(2008). Rapid telomere movement in meiotic prophase is promoted by NDJ1,
MPS3, and CSM4 and is modulated by recombination. Cell 133, 1175–1187. doi:
10.1016/j.cell.2008.04.047

Conrad, M. N., Lee, C. Y., Wilkerson, J. L., and Dresser, M. E. (2007). MPS3 mediates
meiotic bouquet formation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci.
U.S.A. 104, 8863–8868. doi: 10.1073/pnas.0606165104

Cowan, C. R., Carlton, P. M., and Cande, W. Z. (2001). The polar arrangement of
telomeres in interphase and meiosis. Rabl organization and the bouquet. Plant
Physiol. 125, 532–538. doi: 10.1104/pp.125.2.532

Cremer, T., and Cremer, C. (2001). Chromosome territories, nuclear architec-
ture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292–301. doi:
10.1038/35066075

Cremer, T., and Cremer, M. (2010). Chromosome territories. Cold Spring Harb.
Perspect. Biol. 2:a003889. doi: 10.1101/cshperspect.a003889

Crevillen, P., Sonmez, C., Wu, Z., and Dean, C. (2013). A gene loop containing the
floral repressor FLC is disrupted in the early phase of vernalization. EMBO J. 32,
140–148. doi: 10.1038/emboj.2012.324

Croft, J. A., Bridger, J. M., Boyle, S., Perry, P., Teague, P., and Bickmore, W. A. (1999).
Differences in the localization and morphology of chromosomes in the human
nucleus. J. Cell Biol. 145, 1119–1131. doi: 10.1083/jcb.145.6.1119

Cui, P., and Moreno Diaz de la Espina, S. (2003). “Sm and U2B” proteins redistribute
to different nuclear domains in dormant and proliferating onion cells. Planta 217,
21–31. doi: 10.1007/s00425-002-0966-3

D’Angelo, M. A., and Hetzer, M. W. (2008). Structure, dynamics and function
of nuclear pore complexes. Trends Cell Biol. 18, 456–466. doi: 10.1016/j.tcb.
2008.07.009

Dawe, R. K., Sedat, J. W., Agard, D. A., and Cande, W. Z. (1994). Meiotic chromosome
pairing in maize is associated with a novel chromatin organization. Cell 76, 901–
912. doi: 10.1016/0092-8674(94)90364-6

Dechat, T., Adam, S. A., Taimen, P., Shimi, T., and Goldman, R. D. (2010).
Nuclear Lamins. Cold Spring Harb. Perspect. Biol. 2:a000547. doi: 10.1101/csh-
perspect.a000547

Dekker, J., Marti-Renom, M. A., and Mirny, L. A. (2013a). Exploring the three-
dimensional organization of genomes: interpreting chromatin interaction data.
Nat. Rev. Genet. 14, 390–403. doi: 10.1038/nrg3454

Dekker, J., Wysocka, J., Mattaj, I., Aiden, E. L., and Pikaard, C. (2013b). Nuclear biol-
ogy: what’s been most surprising? Cell 152, 1207–1208. doi: 10.1016/j.cell.2013.
02.041

Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002). Capturing chromosome
conformation. Science 295, 1306–1311. doi: 10.1126/science.1067799

Deng, W., and Blobel, G. A. (2014). Manipulating nuclear architecture. Curr. Opin.
Genet. Dev. 25, 1–7. doi: 10.1016/j.gde.2013.10.014

Ding, X., Xu, R., Yu, J., Xu, T., Zhuang, Y., and Han, M. (2007). SUN1 is required for
telomere attachment to nuclear envelope and gametogenesis in mice. Dev. Cell
12, 863–872. doi: 10.1016/j.devcel.2007.03.018

Dittmer, T., and Misteli, T. (2011). The lamin protein family. Genome Biol. 12, 222.
doi: 10.1186/gb-2011-12-5-222

Dittmer, T. A., and Richards, E. J. (2008). Role of LINC proteins in plant nuclear
morphology. Plant Signal. Behav. 3, 485–487. doi: 10.4161/psb.3.7.5682

Dittmer, T. A., Stacey, N. J., Sugimoto-Shirasu, K., and Richards, E. J. (2007). LITTLE
NUCLEI genes affecting nuclear morphology in Arabidopsis thaliana. Plant Cell
19, 2793–2803. doi: 10.1105/tpc.107.053231

Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., et al. (2012). Topological
domains in mammalian genomes identified by analysis of chromatin interactions.
Nature 485, 376–380. doi: 10.1038/nature11082

Dong, C.-H., Hu, X., Tang, W., Zheng, X., Kim, Y. S., Lee, B.-H., et al. (2006).
A putative Arabidopsis nucleoporin, AtNUP160, is critical for RNA export and

required for plant tolerance to cold stress. Mol. Cell. Biol. 26, 9533–9543. doi:
10.1128/mcb.01063-06

Dostie, J., and Bickmore, W. A. (2012). Chromosome organization in the nucleus –
charting new territory across the Hi-Cs. Curr. Opin. Genet. Dev. 22, 125–131. doi:
10.1016/j.gde.2011.12.006

Dundr, M. (2013). “Nucleation of nuclear bodies,” in Imaging Gene Expression, ed.
Y. Shav-Tal (Totowa: Humana Press), 351–364.

Dundr, M., and Misteli, T. (2010). Biogenesis of nuclear bodies. Cold Spring Harb.
Perspect. Biol. 2. doi: 10.1101/cshperspect.a000711

Edelman, L. B., and Fraser, P. (2012). Transcription factories: genetic programming
in three dimensions. Curr. Opin. Genet. Dev. 22, 110–114. doi: 10.1016/j.gde.
2012.01.010

Erickson, E. S., Mooren, O. L., Moore, D., Krogmeier, J. R., and Dunn, R. C.
(2006). The role of nuclear envelope calcium in modifying nuclear pore complex
structure. Can. J. Physiol. Pharmacol. 84, 309–318. doi: 10.1139/y05-109

Espina, S. M. D. D. L. (1996). Nuclear matrix isolated from plant cells. Int. Rev.
Cytol. 162, 75–139. doi: 10.1016/S0074-7696(08)62615-7

Evans, D., Graumann, S. L. I. K. I., and Runions, J. (2009). “The plant nuclear
envelope,” in Functional Organization of the Plant Nucleus, ed. I. Meier (Berlin,
Heidelberg: Springer), 9–28. doi: 10.1007/978-3-540-71058-5_2

Fang,Y., Hearn, S., and Spector, D. L. (2004). Tissue-specific expression and dynamic
organization of SR splicing factors in Arabidopsis. Mol. Biol. Cell 15, 2664–2673.
doi: 10.1091/mbc.E04-02-0100

Fang, Y., and Spector, D. L. (2005). Centromere positioning and dynamics in living
Arabidopsis plants. Mol. Biol. Cell 16, 5710–5718. doi: 10.1091/mbc.E05-08-0706

Fang, Y., and Spector, D. L. (2007). Identification of nuclear dicing bodies containing
proteins for microRNA biogenesis in living Arabidopsis plants. Curr. Biol. 17,
818–823. doi: 10.1016/j.cub.2007.04.005

Fiserova, J., and Goldberg, M. W. (2010). Relationships at the nuclear envelope:
lamins and nuclear pore complexes in animals and plants. Biochem. Soc. Trans.
38, 829–831. doi: 10.1042/BST0380829

Fiserova, J., Kiseleva, E., and Goldberg, M. W. (2009). Nuclear envelope and nuclear
pore complex structure and organization in tobacco BY-2 cells. Plant J. 59, 243–
255. doi: 10.1111/j.1365-313X.2009.03865.x

Fong, K. W., Li, Y., Wang, W., Ma, W., Li, K., Qi, R. Z., et al. (2013). Whole-genome
screening identifies proteins localized to distinct nuclear bodies. J. Cell Biol. 203,
149–164. doi: 10.1083/jcb.201303145

Fransz, P., De Jong, J. H., Lysak, M., Castiglione, M. R., and Schubert, I. (2002).
Interphase chromosomes in Arabidopsis are organized as well defined chromo-
centers from which euchromatin loops emanate. Proc. Natl. Acad. Sci. U.S.A. 99,
14584–14589. doi: 10.1073/pnas.212325299

Gall, J. G. (2003). The centennial of the Cajal body. Nat. Rev. Mol. Cell Biol. 4,
975–980. doi: 10.1038/nrm1262

Gartenberg, M. R. (2009). Life on the edge: telomeres and persistent DNA breaks
converge at the nuclear periphery. Genes Dev. 23, 1027–1031. doi: 10.1101/gad.
1805309

Gerlich, D., Beaudouin, J., Kalbfuss, B., Daigle, N., Eils, R., and Ellenberg, J. (2003).
Global chromosome positions are transmitted through mitosis in mammalian
cells. Cell 112, 751–764. doi: 10.1016/S0092-8674(03)00189-2

Gibcus, J. H., and Dekker, J. (2013). The hierarchy of the 3D genome. Mol. Cell. 49,
773–782. doi: 10.1016/j.molcel.2013.02.011

Goldman, R. D., Gruenbaum, Y., Moir, R. D., Shumaker, E. A., and Spann, T. P.
(2002). Nuclear lamins: building blocks of nuclear architecture. Genes Dev. 16,
533–547. doi: 10.1101/gad.960502

Golubovskaya, I. N., Hamant, O., Timofejeva, L., Wang, C. J., Braun, D., Meeley, R.,
et al. (2006). Alleles of afd1 dissect REC8 functions during meiotic prophase I. J.
Cell Sci. 119, 3306–3315. doi: 10.1242/jcs.03054

Gorkin, D. U., Leung, D., and Ren, B. (2014). The 3D genome in transcriptional
regulation and pluripotency. Cell Stem Cell 14, 762–775. doi: 10.1016/j.stem.2014.
05.017

Goto, C., Tamura, K., Fukao, Y., Shimada, T., and Hara-Nishimura, I. (2014).
The novel nuclear envelope protein KAKU4 modulates nuclear morphology in
Arabidopsis. Plant Cell 13, 122168. doi: 10.1105/tpc.113.122168

Graumann, K. (2014). Evidence for LINC1-SUN associations at the plant nuclear
periphery. PLoS ONE 9:e93406. doi: 10.1371/journal.pone.0093406

Graumann, K., Irons, S. L., Runions, J., and Evans, D. E. (2007). Retention and
mobility of the mammalian lamin B receptor in the plant nuclear envelope. Biol.
Cell 99, 553–562. doi: 10.1042/bc20070033

www.frontiersin.org August 2014 | Volume 5 | Article 378 | 9

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive


Guo and Fang Spatial-temporal organization of nucleus

Graumann, K., Runions, J., and Evans, D. E. (2010). Characterization of SUN-
domain proteins at the higher plant nuclear envelope. Plant J. 61, 134–144. doi:
10.1111/j.1365-313X.2009.04038.x

Grob, S., Schmid, M., Luedtke, N., Wicker, T., and Grossniklaus, U. (2013).
Characterization of chromosomal architecture in Arabidopsis by chromosome
conformation capture. Genome Biol. 14, R129. doi: 10.1186/gb-2013-14-
11-r129

Hakim, O., Sung, M. H., Voss, T. C., Splinter, E., John, S., Sabo, P. J., et al. (2011).
Diverse gene reprogramming events occur in the same spatial clusters of distal
regulatory elements. Genome Res. 21, 697–706. doi: 10.1101/gr.111153.110

Hetzer, M. W., Walther, T. C., and Mattaj, I. W. (2005). Pushing the envelope:
structure, function, and dynamics of the nuclear periphery. Annu. Rev. Cell Dev.
Biol. 21, 347–380. doi: 10.1146/annurev.cellbio.21.090704.151152

Hetzer, M. W., and Wente, S. R. (2009). Border control at the nucleus: biogenesis
and organization of the nuclear membrane and pore complexes. Dev. Cell 17,
606–616. doi: 10.1016/j.devcel.2009.10.007

Hiraoka, Y., and Dernburg, A. F. (2009). The SUN rises on meiotic chromosome
dynamics. Dev. Cell 17, 598–605. doi: 10.1016/j.devcel.2009.10.014

Horigome, C., Okada, T., Shimazu, K., Gasser, S. M., and Mizuta, K. (2011). Ribo-
some biogenesis factors bind a nuclear envelope SUN domain protein to cluster
yeast telomeres. EMBO J. 30, 3799–3811. doi: 10.1038/emboj.2011.267

Hotta, T., Haraguchi, T., and Mizuno, K. (2007). A novel function of plant histone
H1: microtubule nucleation and continuous plus end association. Cell Struct.
Funct. 32, 79–87. doi: 10.1247/csf.07031

Hou, H., Zhou, Z., Wang, Y., Wang, J., Kallgren, S. P., Kurchuk, T., et al. (2012). Csi1
links centromeres to the nuclear envelope for centromere clustering. J. Cell Biol.
199, 735–744. doi: 10.1083/jcb.201208001

Hovel, I., Louwers, M., and Stam, M. (2012). 3C Technologies in plants. Methods
58, 204–211. doi: 10.1016/j.ymeth.2012.06.010

Jacob, Y., Mongkolsiriwatana, C., Veley, K. M., Kim, S. Y., and Michaels, S. D. (2007).
The nuclear pore protein AtTPR is required for RNA homeostasis, flowering time,
and auxin signaling. Plant Physiol. 144, 1383–1390. doi: 10.1104/pp.107.100735

Kaiser, T. E., Intine, R. V., and Dundr, M. (2008). De novo formation of a subnuclear
body. Science 322, 1713–1717. doi: 10.1126/science.1165216

Kalverda, B., Röling, M. D., and Fornerod, M. (2008). Chromatin organiza-
tion in relation to the nuclear periphery. FEBS Lett. 582, 2017–2022. doi:
10.1016/j.febslet.2008.04.015

Kanamori, N., Madsen, L. H., Radutoiu, S., Frantescu, M., Quistgaard, E. M., Miwa,
H., et al. (2006). A nucleoporin is required for induction of Ca2+ spiking in
legume nodule development and essential for rhizobial and fungal symbiosis.
Proc. Natl. Acad. Sci. U.S.A. 103, 359–364. doi: 10.1073/pnas.0508883103

Karpen, G. H., Schaefer, J. E., and Laird, C. D. (1988). A Drosophila rRNA gene
located in euchromatin is active in transcription and nucleolus formation. Genes
Dev. 2, 1745–1763. doi: 10.1101/gad.2.12b.1745

Kato, N., and Lam, E. (2003). Chromatin of endoreduplicated pavement cells has
greater range of movement than that of diploid guard cells in Arabidopsis thaliana.
J. Cell Sci. 116, 2195–2201. doi: 10.1242/jcs.00437

Kimura, Y., Fujino, K., Ogawa, K., and Masuda, K. (2014). Localization of Daucus
carota NMCP1 to the nuclear periphery: the role of the N-terminal region and an
NLS-linked sequence motif, RYNLRR, in the tail domain. Front. Plant Sci. 5:62.
doi: 10.3389/fpls.2014.00062

Kimura, Y., Kuroda, C., and Masuda, K. (2010). Differential nuclear envelope
assembly at the end of mitosis in suspension-cultured Apium graveolens cells.
Chromosoma 119, 195–204. doi: 10.1007/s00412-009-0248-y

Koszul, R., Kim, K. P., Prentiss, M., Kleckner, N., and Kameoka, S. (2008).
Meiotic chromosomes move by linkage to dynamic actin cables with trans-
duction of force through the nuclear envelope. Cell 133, 1188–1201. doi:
10.1016/j.cell.2008.04.050

Kumaran, R. I., and Spector, D. L. (2008). A genetic locus targeted to the nuclear
periphery in living cells maintains its transcriptional competence. J. Cell Biol. 180,
51–65. doi: 10.1083/jcb.200706060

Kumaran, R. I., Thakar, R., and Spector, D. L. (2008). Chromatin dynamics and
gene positioning. Cell 132, 929–934. doi: 10.1016/j.cell.2008.03.004

Kutay, U., and Hetzer, M. W. (2008). Reorganization of the nuclear envelope during
open mitosis. Curr. Opin. Cell Biol. 20, 669–677. doi: 10.1016/j.ceb.2008.09.010

Lei, K., Zhu, X., Xu, R., Shao, C., Xu, T., Zhuang, Y., et al. (2012). Inner nuclear
envelope proteins SUN1 and SUN2 play a prominent role in the DNA damage
response. Curr. Biol. 22, 1609–1615. doi: 10.1016/j.cub.2012.06.043

Li, C. F., Henderson, I. R., Song, L., Fedoroff, N., Lagrange, T., and Jacobsen,
S. E. (2008). Dynamic regulation of ARGONAUTE4 within multiple nuclear
bodies in Arabidopsis thaliana. PLoS Genet. 4:e27. doi: 10.1371/journal.pgen.
0040027

Li, C. F., Pontes, O., El-Shami, M., Henderson, I. R., Bernatavichute, Y. V., Chan,
S. W., et al. (2006). An ARGONAUTE4-containing nuclear processing center
colocalized with Cajal bodies in Arabidopsis thaliana. Cell 126, 93–106. doi:
10.1016/j.cell.2006.05.032

Li, G. L., Ruan, Y. J., Gu, R. S., and Du, S. M. (2014). Emergence of 3D genomics.
Chin. Sci. Bull. 59, 1165–1172. doi: 10.1360/N972014-00163

Li, H., and Roux, S. J. (1992). Casein kinase II protein kinase is bound to lamina-
matrix and phosphorylates lamin-like protein in isolated pea nuclei. Proc. Natl.
Acad. Sci. U.S.A. 89, 8434–8438. doi: 10.1073/pnas.89.18.8434

Li, J., Kinoshita, T., Pandey, S., Ng, C. K. Y., Gygi, S. P., Shimazaki, K.-I., et al. (2002).
Modulation of an RNA-binding protein by abscisic-acid-activated protein kinase.
Nature 418, 793–797. doi: 10.1038/nature00936

Lieberman-Aiden, E., Van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy,
T., Telling, A., et al. (2009). Comprehensive mapping of long-range interac-
tions reveals folding principles of the human genome. Science 326, 289–293.
doi: 10.1126/science.1181369

Liu, Q., Yan, Q., Liu, Y., Hong, F., Sun, Z., Shi, L., et al. (2013). Comple-
mentation of HYPONASTIC LEAVES1 by double-strand RNA-binding domains
of DICER-LIKE1 in nuclear dicing bodies. Plant Physiol. 163, 108–117. doi:
10.1104/pp.113.219071

Liu, Y., Liu, Q., Yan, Q., Shi, L., and Fang, Y. (2014). Nucleolus-tethering system
(NoTS) reveals that assembly of photobodies follows a self-organization model.
Mol. Biol. Cell 25, 1366–1373. doi: 10.1091/mbc.E13-09-0527

Lorkoviæ, Z. J., Lopato, S., Pexa, M., Lehner, R., and Barta, A. (2004). Interac-
tions of Arabidopsis RS domain containing cyclophilins with SR proteins and
U1 and U11 small nuclear ribonucleoprotein-specific proteins suggest their
involvement in pre-mRNA splicing. J. Biol. Chem. 279, 33890–33898. doi:
10.1074/jbc.M400270200

Louwers, M., Splinter, E., Van Driel, R., De Laat, W., and Stam, M. (2009). Study-
ing physical chromatin interactions in plants using Chromosome Conformation
Capture (3C). Nat. Protoc. 4, 1216–1229. doi: 10.1038/nprot.2009.113

Lyakhovetsky, R., and Gruenbaum, Y. (2014). Studying lamins in invertebrate
models. Adv. Exp. Med. Biol. 773, 245–262. doi: 10.1007/978-1-4899-8032-8_11

Lysak, M. A., Fransz, P. F., Ali, H. B., and Schubert, I. (2001). Chromosome
painting in Arabidopsis thaliana. Plant J. 28, 689–697. doi: 10.1046/j.1365-
313x.2001.01194.x

Mans, B., Anantharaman, V., Aravind, L., and Koonin, E. V. (2004). Compara-
tive genomics, evolution and origins of the nuclear envelope and nuclear pore
complex. Cell Cycle 3, 1625–1650. doi: 10.4161/cc.3.12.1316

Mao, Y. S., Sunwoo, H., Zhang, B., and Spector, D. L. (2011a). Direct visualization
of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat.
Cell Biol. 13, 95–101. doi: 10.1038/ncb2140

Mao, Y. S., Zhang, B., and Spector, D. L. (2011b). Biogenesis and function of nuclear
bodies. Trends Genet. 27, 295–306. doi: 10.1016/j.tig.2011.05.006

Masuda, K., Haruyama, S., and Fujino, K. (1999). Assembly and disassembly of
the peripheral architecture of the plant cell nucleus during mitosis. Planta 210,
165–167. doi: 10.1007/s004250050666

Masuda, K., Takahashi, S., Nomura, K., Arimoto, M., and Inoue, M. (1993). Resid-
ual structure and constituent proteins of the peripheral framework of the cell
nucleus in somatic embryos from Daucus carota L. Planta 191, 532–540. doi:
10.1007/bf00195755

Masuda, K., Xu, Z. J., Takahashi, S., Ito, A., Ono, M., Nomura, K., et al.
(1997). Peripheral framework of carrot cell nucleus contains a novel protein
predicted to exhibit a long α-helical domain. Exp. Cell Res. 232, 173–181. doi:
10.1006/excr.1997.3531

Matera, A. G., Izaguire-Sierra, M., Praveen, K., and Rajendra, T. K. (2009). Nuclear
bodies: random aggregates of sticky proteins or crucibles of macromolecular
assembly? Dev. Cell 17, 639–647. doi: 10.1016/j.devcel.2009.10.017

Meaburn, K. J., and Misteli, T. (2008). Locus-specific and activity-independent
gene repositioning during early tumorigenesis. J. Cell Biol. 180, 39–50. doi:
10.1083/jcb.200708204

Mekhail, K., and Moazed, D. (2010). The nuclear envelope in genome organization,
expression and stability. Nat. Rev. Mol. Cell Biol. 11, 317–328. doi: 10.1038/
nrm2894

Frontiers in Plant Science | Plant Genetics and Genomics August 2014 | Volume 5 | Article 378 | 10

http://www.frontiersin.org/Plant_Genetics_and_Genomics/
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive


Guo and Fang Spatial-temporal organization of nucleus

Meldi, L., and Brickner, J. H. (2011). Compartmentalization of the nucleus. Trends
Cell Biol. 21, 701–708. doi: 10.1016/j.tcb.2011.08.001

Mellad, J. A., Warren, D. T., and Shanahan, C. M. (2011). Nesprins LINC the nucleus
and cytoskeleton. Curr. Opin. Cell Biol. 23, 47–54. doi: 10.1016/j.ceb.2010.11.006

Merkle, T. (2011). Nucleo-cytoplasmic transport of proteins and RNA in plants.
Plant Cell Rep. 30, 153–176. doi: 10.1007/s00299-010-0928-3

Miki, F., Okazaki, K., Shimanuki, M., Yamamoto, A., Hiraoka, Y., and Niwa,
O. (2002). The 14-kDa dynein light chain-family protein Dlc1 is required for
regular oscillatory nuclear movement and efficient recombination during mei-
otic prophase in fission yeast. Mol. Biol. Cell 13, 930–946. doi: 10.1091/mbc.
01-11-0543

Montavon, T., Soshnikova, N., Mascrez, B., Joye, E., Thevenet, L., Splinter, E., et al.
(2011). A regulatory archipelago controls Hox genes transcription in digits. Cell
147, 1132–1145. doi: 10.1016/j.cell.2011.10.023

Moreno Díaz de la Espina, S., Barthellemy, I., and Cerezuela, M. A. (1991). Isolation
and ultrastructural characterization of the residual nuclear matrix in a plant cell
system. Chromosoma 100, 110–117. doi: 10.1007/bf00418244

Morey, C., Da Silva, N. R., Perry, P., and Bickmore, W. A. (2007). Nuclear reorgan-
isation and chromatin decondensation are conserved, but distinct, mechanisms
linked to Hox gene activation. Development 134, 909–919. doi: 10.1242/dev.02779

Morimoto, A., Shibuya, H., Zhu, X., Kim, J., Ishiguro, K., Han, M., et al. (2012).
A conserved KASH domain protein associates with telomeres, SUN1, and dyn-
actin during mammalian meiosis. J. Cell Biol. 198, 165–172. doi: 10.1083/jcb.
201204085

Murphy, S. P., Simmons, C. R., and Bass, H. W. (2010). Structure and expression
of the maize (Zea mays L.) SUN-domain protein gene family: evidence for the
existence of two divergent classes of SUN proteins in plants. BMC Plant Biol.
10:269. doi: 10.1186/1471-2229-10-269

Nakayama, T., Ishii, T., Hotta, T., and Mizuno, K. (2008). Radial microtubule
organization by histone H1 on nuclei of cultured tobacco BY-2 cells. J. Biol.
Chem. 283, 16632–16640. doi: 10.1074/jbc.M705764200

Noegel, A. A., and Neumann, S. (2011). The role of nesprins as multifunctional
organizers in the nucleus and the cytoskeleton. Biochem. Soc. Trans. 39, 1725–
1728. doi: 10.1042/BST20110668

Noordermeer, D., Leleu, M., Splinter, E., Rougemont, J., De Laat, W., and Duboule,
D. (2011). The dynamic architecture of Hox gene clusters. Science 334, 222–225.
doi: 10.1126/science.1207194

Nora, E. P., Lajoie, B. R., Schulz, E. G., Giorgetti, L., Okamoto, I., Servant, N., et al.
(2012). Spatial partitioning of the regulatory landscape of the X-inactivation
centre. Nature 485, 381–385. doi: 10.1038/nature11049

Oda, Y., and Fukuda, H. (2011). Dynamics of Arabidopsis SUN proteins during
mitosis and their involvement in nuclear shaping. Plant J. 66, 629–641. doi:
10.1111/j.1365-313X.2011.04523.x

Oza, P., Jaspersen, S. L., Miele, A., Dekker, J., and Peterson, C. L. (2009). Mechanisms
that regulate localization of a DNA double-strand break to the nuclear periphery.
Genes Dev. 23, 912–927. doi: 10.1101/gad.1782209

Papantonis, A., and Cook, P. R. (2013). Transcription factories: genome organization
and gene regulation. Chem. Rev. 113, 8683–8705. doi: 10.1021/cr300513p

Parry, G. (2013). Assessing the function of the plant nuclear pore complex and the
search for specificity. J. Exp. Bot. 64, 833–845. doi: 10.1093/jxb/ers289

Parry, G., Ward, S., Cernac, A., Dharmasiri, S., and Estelle, M. (2006). The Arabidop-
sis SUPPRESSOR OF AUXIN RESISTANCE proteins are nucleoporins with an
important role in hormone signaling and development. Plant Cell 18, 1590–1603.
doi: 10.1105/tpc.106.041566

Pascual-Garcia, P., and Capelson, M. (2014). Nuclear pores as versatile platforms
for gene regulation. Curr. Opin. Genet. Dev. 25, 110–117. doi: 10.1016/j.gde.
2013.12.009

Pawlowski, W. P. (2010). Chromosome organization and dynamics in plants. Curr.
Opin. Plant Biol. 13, 640–645. doi: 10.1016/j.pbi.2010.09.015

Pecinka, A., Schubert, V., Meister, A., Kreth, G., Klatte, M., Lysak, M. A.,
et al. (2004). Chromosome territory arrangement and homologous pairing in
nuclei of Arabidopsis thaliana are predominantly random except for NOR-
bearing chromosomes. Chromosoma 113, 258–269. doi: 10.1007/s00412-004-
0316-2

Pérez-Munive, C., Blumenthal, S. S. D., and De La Espina, S. M. D. (2012). Charac-
terization of a 65 kDa NIF in the nuclear matrix of the monocot Allium cepa that
interacts with nuclear spectrin-like proteins. Cell Biol. Int. 36, 1097–1105. doi:
10.1042/cbi20120237

Peter, A., and Stick, R. (2012). Evolution of the lamin protein family: what introns
can tell. Nucleus 3, 44–59. doi: 10.4161/nucl.18927

Ptak, C., Aitchison, J. D., and Wozniak, R. W. (2014). The multifunctional nuclear
pore complex: a platform for controlling gene expression. Curr. Opin. Cell Biol.
28, 46–53. doi: 10.1016/j.ceb.2014.02.001

Razafsky, D., and Hodzic, D. (2009). Bringing KASH under the SUN: the
many faces of nucleo-cytoskeletal connections. J. Cell Biol. 186, 461–472. doi:
10.1083/jcb.200906068

Reddy, A. S., Day, I. S., Gohring, J., and Barta, A. (2012). Localization and dynamics
of nuclear speckles in plants. Plant Physiol. 158, 67–77. doi: 10.1104/pp.111.
186700

Rieder, D., Ploner, C., Krogsdam, A., Stocker, G., Fischer, M., Scheideler, M., et al.
(2014). Co-expressed genes prepositioned in spatial neighborhoods stochastically
associate with SC35 speckles and RNA polymerase II factories. Cell. Mol. Life Sci.
71, 1741–1759. doi: 10.1007/s00018-013-1465-3

Roberts, K., and Northcote, D. H. (1970). Structure of the nuclear pore in higher
plants. Nature 228, 385–386. doi: 10.1038/228385a0

Robles, L. M., Deslauriers, S. D., Alvarez, A. A., and Larsen, P. B. (2012). A loss-
of-function mutation in the nucleoporin AtNUP160 indicates that normal auxin
signalling is required for a proper ethylene response in Arabidopsis. J. Exp. Bot.
63, 2231–2241. doi: 10.1093/jxb/err424

Rockwell, N. C., Su, Y. S., and Lagarias, J. C. (2006). Phytochrome structure and
signaling mechanisms. Annu. Rev. Plant Biol. 57, 837–858. doi: 10.1146/annurev.
arplant.56.032604.144208

Ronceret, A., and Pawlowski, W. P. (2010). Chromosome dynamics in meiotic
prophase I in plants. Cytogenet. Genome Res. 129, 173–183. doi: 10.1159/
000313656

Roth, C., and Wiermer, M. (2012). Nucleoporins Nup160 and Seh1 are required
for disease resistance in Arabidopsis. Plant Signal. Behav. 7, 1212–1214. doi:
10.4161/psb.21426

Rothballer, A., and Kutay, U. (2013). The diverse functional LINCs of the nuclear
envelope to the cytoskeleton and chromatin. Chromosoma 122, 415–429. doi:
10.1007/s00412-013-0417-x

Saitoh, N., Spahr, C. S., Patterson, S. D., Bubulya, P., Neuwald, A. F., and Spector, D.
L. (2004). Proteomic analysis of interchromatin granule clusters. Mol. Biol. Cell
15, 3876–3890. doi: 10.1091/mbc.E04-03-0253

Sakamoto, Y., and Takagi, S. (2013). LITTLE NUCLEI 1 and 4 regulate nuclear
morphology in Arabidopsis thaliana. Plant Cell Physiol. 54, 622–633. doi:
10.1093/pcp/pct031

Scarpin, R., Sigaut, L., Pietrasanta, L., Mccormick, S., Zheng, B., and Muschietti, J.
(2013). Cajal bodies are developmentally regulated during pollen development
and pollen tube growth in Arabidopsis thaliana. Mol. Plant 6, 1355–1357. doi:
10.1093/mp/sst077

Scherl, A., Couté, Y., Déon, C., Callé, A., Kindbeiter, K., Sanchez, J.-C., et al. (2002).
Functional proteomic analysis of human nucleolus. Mol. Biol. Cell 13, 4100–4109.
doi: 10.1091/mbc.E02-05-0271

Schober, H., Ferreira, H., Kalck, V., Gehlen, L. R., and Gasser, S. M. (2009).
Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and
repress subtelomeric recombination. Genes Dev. 23, 928–938. doi: 10.1101/gad.
1787509

Schreiber, K H., and Kennedy, B. K. (2013). When lamins go bad: nuclear structure
and disease. Cell 152, 1365–1375. doi: 10.1016/j.cell.2013.02.015

Schwartz, M., and Hakim, O. (2014). 3D view of chromosomes, DNA damage, and
translocations. Curr. Opin. Genet. Dev. 25, 118–125. doi: 10.1016/j.gde.2013.
12.008

Shaw, J., Love, A. J., Makarova, S. S., Kalinina, N. O., Harrison, B. D., and Taliansky,
M. E. (2014). Coilin, the signature protein of Cajal bodies, differentially modulates
the interactions of plants with viruses in widely different taxa. Nucleus 5, 1. doi:
10.4161/nucl.28315

Shaw, P., and Brown, J. (2012). Nucleoli: composition, function, and dynamics.
Plant Physiol. 158, 44–51. doi: 10.1104/pp.111.188052

Shaw, P. J., Beven, A. F., Leader, D. J., and Brown, J. W. (1998). Localization and
processing from a polycistronic precursor of novel snoRNAs in maize. J. Cell Sci.
111, 2121–2128.

Shevtsov, S. P., and Dundr, M. (2011). Nucleation of nuclear bodies by RNA. Nat.
Cell Biol. 13, 167–173. doi: 10.1038/ncb2157

Simonis, M., Klous, P., Splinter, E., Moshkin, Y., Willemsen, R., De Wit, E., et al.
(2006). Nuclear organization of active and inactive chromatin domains uncovered

www.frontiersin.org August 2014 | Volume 5 | Article 378 | 11

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive


Guo and Fang Spatial-temporal organization of nucleus

by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–1354.
doi: 10.1038/ng1896

Sleeman, J. E., Ajuh, P., and Lamond, A. I. (2001). snRNP protein expression
enhances the formation of Cajal bodies containing p80-coilin and SMN. J. Cell
Sci. 114, 4407–4419.

Sleeman, J. E., and Trinkle-Mulcahy, L. (2014). Nuclear bodies: new insights into
assembly/dynamics and disease relevance. Curr. Opin. Cell Biol. 28, 76–83. doi:
10.1016/j.ceb.2014.03.004

Song, L., Han, M. H., Lesicka, J., and Fedoroff, N. (2007). Arabidopsis primary
microRNA processing proteins HYL1 and DCL1 define a nuclear body dis-
tinct from the Cajal body. Proc. Natl. Acad. Sci. U.S.A. 104, 5437–5442. doi:
10.1073/pnas.0701061104

Sosa, B. A., Rothballer, A., Kutay, U., and Schwartz, T. U. (2012). LINC complexes
form by binding of three KASH peptides to domain interfaces of trimeric SUN
proteins. Cell 149, 1035–1047. doi: 10.1016/j.cell.2012.03.046

Spector, D. L., and Lamond, A. I. (2011). Nuclear speckles. Cold Spring Harb.
Perspect. Biol. 3. doi: 10.1101/cshperspect.a000646

Starr, D. A., and Fridolfsson, H. N. (2010). Interactions between nuclei and the
cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. Annu. Rev.
Cell Dev. Biol. 26, 421–444. doi: 10.1146/annurev-cellbio-100109-104037

Stavru, F., Hülsmann, B. B., Spang, A., Hartmann, E., Cordes, V. C., and Görlich,
D. (2006). NDC1: a crucial membrane-integral nucleoporin of metazoan nuclear
pore complexes. J. Cell Biol. 173, 509–519. doi: 10.1083/jcb.200601001

Stepinski, D. (2014). Functional ultrastructure of the plant nucleolus. Protoplasma
23, 23. doi: 10.1007/s00709-014-0648-6

Stoppin, V., Vantard, M., Schmit, A. C., and Lambert, A. M. (1994). Isolated plant
nuclei nucleate microtubule assembly: the nuclear surface in higher plants has
centrosome-like activity. Plant Cell 6, 1099–1106. doi: 10.1105/tpc.6.8.1099

Strambio-De-Castillia, C., Niepel, M., and Rout, M. P. (2010). The nuclear pore
complex: bridging nuclear transport and gene regulation. Nat. Rev. Mol. Cell Biol.
11, 490–501. doi: 10.1038/nrm2928

Sun, H. B., Shen, J., and Yokota, H. (2000). Size-dependent positioning of human
chromosomes in interphase nuclei. Biophys. J. 79, 184–190. doi: 10.1016/S0006-
3495(00)76282-5

Tamura, K., Fukao, Y., Iwamoto, M., Haraguchi, T., and Hara-Nishimura, I.
(2010). Identification and characterization of nuclear pore complex components
in Arabidopsis thaliana. Plant Cell 22, 4084–4097. doi: 10.1105/tpc.110.079947

Tamura, K., and Hara-Nishimura, I. (2011). Involvement of the nuclear pore
complex in morphology of the plant nucleus. Nucleus 2, 168–172. doi:
10.4161/nucl.2.3.16175

Tamura, K., and Hara-Nishimura, I. (2014). Functional insights of nucleocytoplas-
mic transport in plants. Front. Plant Sci. 5:118. doi: 10.3389/fpls.2014.00118

Tanay, A., and Cavalli, G. (2013). Chromosomal domains: epigenetic contexts and
functional implications of genomic compartmentalization. Curr. Opin. Genet.
Dev. 23, 197–203. doi: 10.1016/j.gde.2012.12.009

Tessadori, F., Schulkes, R. K., Van Driel, R., and Fransz, P. (2007). Light-regulated
large-scale reorganization of chromatin during the floral transition in Arabidopsis.
Plant J. 50, 848–857. doi: 10.1111/j.1365-313X.2007.03093.x

Tessadori, F., Van Zanten, M., Pavlova, P., Clifton, R., Pontvianne, F., Snoek, L.
B., et al. (2009). Phytochrome B and histone deacetylase 6 control light-induced
chromatin compaction in Arabidopsis thaliana. PLoS Genet. 5:e1000638. doi:
10.1371/journal.pgen.1000638

Tiang, C. L., He, Y., and Pawlowski, W. P. (2011). Chromosome organization and
dynamics during interphase, mitosis, and meiosis in plants. Plant Physiol. 158,
26–34. doi: 10.1104/pp.111.187161

Turgay, Y., Champion, L., Balazs, C., Held, M., Toso, A., Gerlich, D. W., et al. (2014).
SUN proteins facilitate the removal of membranes from chromatin during nuclear
envelope breakdown. J. Cell Biol. 204, 1099–1109. doi: 10.1083/jcb.201310116

Van Bortle, K., and Corces, V. G. (2013). Spinning the web of cell fate. Cell 152,
1213–1217. doi: 10.1016/j.cell.2013.02.052

Van Buskirk, E. K., Decker, P. V., and Chen, M. (2012). Photobodies in light signaling.
Plant Physiol. 158, 52–60. doi: 10.1104/pp.111.186411

Walter, J., Schermelleh, L., Cremer, M., Tashiro, S., and Cremer, T. (2003). Chro-
mosome order in HeLa cells changes during mitosis and early G1, but is stably
maintained during subsequent interphase stages. J. Cell Biol. 160, 685–697. doi:
10.1083/jcb.200211103

Wang, H., Dittmer, T., and Richards, E. (2013). Arabidopsis CROWDED NUCLEI
(CRWN) proteins are required for nuclear size control and heterochromatin
organization. BMC Plant Biol. 13:200. doi: 10.1186/1471-2229-13-200

Wente, S. R., and Rout, M. P. (2010). The nuclear pore complex and nuclear
transport. Cold Spring Harb. Perspect. Biol. 2. doi: 10.1101/cshperspect.
a000562

Wiermer, M., Cheng, Y. T., Imkampe, J., Li, M., Wang, D., Lipka, V., et al. (2012).
Putative members of the Arabidopsis Nup107–160 nuclear pore sub-complex
contribute to pathogen defense. Plant J. 70, 796–808. doi: 10.1111/j.1365-
313X.2012.04928.x

Wilson, K. L., and Foisner, R. (2010). Lamin-binding proteins. Cold Spring Harb.
Perspect. Biol. 2:a000554–a000554. doi: 10.1101/cshperspect.a000554

Xu, X. M., and Meier, I. (2008). The nuclear pore comes to the fore. Trends Plant
Sci. 13, 20–27. doi: 10.1016/j.tplants.2007.12.001

Xu, X. M., Meulia, T., and Meier, I. (2007a). Anchorage of plant RanGAP to the
nuclear envelope involves novel nuclear-pore-associated proteins. Curr. Biol. 17,
1157–1163. doi: 10.1016/j.cub.2007.05.076

Xu, X. M., Rose, A., Muthuswamy, S., Jeong, S. Y., Venkatakrishnan, S., Zhao,
Q., et al. (2007b). NUCLEAR PORE ANCHOR, the Arabidopsis homolog of
Tpr/Mlp1/Mlp2/megator, is involved in mRNA export and SUMO homeosta-
sis and affects diverse aspects of plant development. Plant Cell 19, 1537–1548.
doi: 10.1105/tpc.106.049239

Zhang, Y. (2005). A putative nucleoporin 96 is required for both basal
defense and constitutive resistance responses mediated by suppressor of
npr1-1, constitutive 1. Plant Cell 17, 1306–1316. doi: 10.1105/tpc.104.
029926

Zhao, Q., and Meier, I. (2011). Identification and characterization of the Ara-
bidopsis FG-repeat nucleoporin Nup62. Plant Signal. Behav. 6, 330–334. doi:
10.4161/psb.6.3.13402

Zhou, X., Graumann, K., Evans, D. E., and Meier, I. (2012). Novel plant SUN-KASH
bridges are involved in RanGAP anchoring and nuclear shape determination. J.
Cell Biol. 196, 203–211. doi: 10.1083/jcb.201108098

Zhou, X., and Meier, I. (2013). How plants LINC the SUN to KASH. Nucleus 4,
206–215. doi: 10.4161/nucl.24088

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 16 May 2014; accepted: 16 July 2014; published online: 12 August 2014.
Citation: Guo T and Fang Y (2014) Functional organization and dynamics of the cell
nucleus. Front. Plant Sci. 5:378. doi: 10.3389/fpls.2014.00378
This article was submitted to Plant Genetics and Genomics, a section of journal Frontiers
in Plant Science.
Copyright © 2014 Guo and Fang. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Plant Science | Plant Genetics and Genomics August 2014 | Volume 5 | Article 378 | 12

http://dx.doi.org/10.3389/fpls.2014.00378
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Plant_Genetics_and_Genomics/
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive

	Functional organization and dynamics of the cell nucleus
	Introduction
	Nuclear envelope
	The nuclear lamina in metazoans and lamin-like proteins in plants
	The linker of nucleoskeleton and cytoskeleton complex
	The channel and beyond the channel between nucleus and cytoplasm: the nuclear pore complex
	Three-dimensional organization of the genome
	Nuclear bodies
	Concluding remarks
	Acknowledgements
	References


