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A concern with Bt-transgenic insect-resistant plants is their potential to harm non-target
organisms. Early studies reported that Cry1Ab-producing Bt maize and purified Cry1Ab
harmed larvae of the green lacewing, Chrysoperla carnea. Although these effects could
not be confirmed in subsequent studies, some authors still refer to them as evidence that
Bt maize harms beneficial species. We provide a comprehensive review of the studies
evaluating the effects of Bt (Cry1Ab) maize on C. carnea. The evidence indicates that
this important predator is not affected by Bt maize or by the produced Cry1Ab protein.
We discuss how conceptual models can assist environmental risk assessments, and we
emphasize the importance of robust and reproducible studies.
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INTRODUCTION
One concern with the growing of genetically modified (GM)
maize that produces insecticidal Cry proteins from the bacterium
Bacillus thuringiensis (so-called Bt maize, Box 1) is that the insec-
ticidal proteins may harm non-target organisms that provide
important ecosystem services including biological control, polli-
nation, and decomposition. Organisms providing these services
must be protected from unacceptable adverse effects of pest control
measures, i.e., they are classified as “protection goals” (Nienstedt
et al., 2012; Sanvido et al., 2012; Garcia-Alonso and Raybould,
2013). Effects on such protected entities are thus addressed in
the environmental risk assessment that precedes the approval for
cultivation of new GM plants (Garcia-Alonso et al., 2006; OECD,
2007; Rose, 2007; Romeis et al., 2008; Devos et al., 2014).

In 1998, Hilbeck et al. reported that Cry1Ab-producing Bt
maize (event Bt11) and pure Cry1Ab protein harmed larvae of
the green lacewing Chrysoperla carnea (Neuroptera: Chrysopidae)
(Hilbeck et al., 1998a,b), a common predator in many crop
and non-crop habitats (Box 2). These results received consider-
able attention in the scientific and popular press, particularly
in Europe. They were the first indication of adverse effects of
Lepidoptera-active Bt maize on a beneficial species unrelated to
the target organisms. Those reports have been repeatedly used as
evidence of environmental risks related to the use of Bt maize.
Authorities in Greece (EFSA, 2006) and Austria (EFSA, 2008),
for example, cited them when invoking a safeguard clause in
European genetic technology legislation to suspend the approval
of MON810.

Since these initial reports by Hilbeck et al. (1998a,b), numer-
ous studies with green lacewings and Bt maize have been con-
ducted. We here compile all available evidence regarding Bt maize
effects on green lacewings. In contrast to the initial reports,

we provide evidence that Bt maize producing Cry1Ab does not
harm this important insect predator. We believe that the evi-
dence available today should end the debate about Bt maize effects
on green lacewings and that the case of the green lacewing can
provide guidance on how findings from laboratory or field exper-
iments with other non-target species should be placed into a risk
assessment context.

IMPACT OF Bt MAIZE ON C. CARNEA
Two main hypotheses can be formulated on how Bt maize could
cause harm to C. carnea and its biological control function. First,
the intended production of the insecticidal Cry1Ab protein could
result in direct or indirect harm. Second, the genetic modifica-
tion of the maize plant could have resulted in unpredictable and
unintended adverse changes.

For the assessment of potential direct toxic effects, we con-
struct a “pathway to harm” as a conceptual model that assists
in formulating and testing specific risk hypotheses (Figure 2)
(Raybould, 2010; Gray, 2012). Steps 1–3 concern the Cry1Ab
level that lacewings are exposed to in Bt maize fields; Steps 4
and 5 concern hazard characterization; and Steps 6 and 7 relate
to the consequences of hazard and exposure. Using published
data, we will discuss these steps for C. carnea larvae and adults.
Subsequently, we also discuss the potential importance of indi-
rect, food-web related effects and briefly address transformation
related effects.

DIRECT TOXIN EFFECTS
STEP 1. Bt PROTEIN IS CONTAINED IN PREY/FOOD OF LACEWINGS
Cry proteins from Bt are gut active and thus toxic only after inges-
tion. Step 1 assesses whether the prey/food of lacewings contains
the insecticidal compound.

www.frontiersin.org August 2014 | Volume 5 | Article 391 | 1

http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/about
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/journal/10.3389/fpls.2014.00391/abstract
http://community.frontiersin.org/people/u/162043
http://community.frontiersin.org/people/u/175876
http://community.frontiersin.org/people/u/29173
http://community.frontiersin.org/people/u/175978
mailto:joerg.romeis@agroscope.admin.ch
mailto:joerg.romeis@agroscope.admin.ch
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Biotechnology/archive


Romeis et al. Lack of Bt maize effects on lacewings

Box 1 | Bt maize.

Genetically modified (GM) maize expressing the cry1Ab gene derived from the bacterium Bacillus thuringiensis (Bt) was first commercial-
ized in 1996. In 2013, maize producing Cry1Ab was cultivated on millions of hectares in the Americas, South Africa, the Philippines, and
Europe (mainly Spain) (James, 2013).

Bt maize containing Cry1Ab is protected from major lepidopteran pests such as the European corn borer (Ostrinia nubilalis; Crambidae),
the Asian corn borer (Ostrinia furnacalis; Crambidae), and the Mediterranean corn borer (Sesamia nonagrioides; Noctuidae) (Hellmich et al.,
2008).

At present, three transformation events that express cry1Ab have been developed (CERA, 2012). The most common event that is
commercialized in the countries listed above is MON810. A second event, Bt11, is grown in most of those countries but has been waiting
approval for cultivation in the European Union since 1996. The third event, Bt176, was cultivated from 1996 to 2007. In addition, stacked
events that contain MON810 and/or Bt11 are cultivated or in the approval process (CERA, 2012; EFSA, 2013).

Plants carrying any of the three events do not differ greatly in the cry1Ab expression levels in green plant tissue (leaves). The amount of
Cry1Ab in leaves of the different transformation events typically ranges from 1 to 17 µg/g fresh weight (FW) (Obrist et al., 2006a; Nguyen
and Jehle, 2007; Székács et al., 2010). In contrast, Cry1Ab levels in pollen significantly differ among events. While concentrations in pollen
from Bt176 were reported to range from 5 to 11 µg/g FW, levels in today’s Bt maize events MON810 and Bt11 are much lower, i.e., in the
ng/g range (Dutton et al., 2003b; Obrist et al., 2006c; Nguyen and Jehle, 2007; Li et al., 2008).

Box 2 | Green lacewings.

Green lacewings in the genus Chrysoperla (Neuroptera: Chrysopidae) are widespread in agricultural areas worldwide (Figures 1A,B). The
species are valued because the larvae are predators of small soft-bodied arthropods and thus contribute to the biological control of crop
pests. The adults feed predominately on pollen, nectar, and homopteran honeydew. The most common species found throughout Europe
is Chrysoperla carnea (Duelli, 2001; Meissle et al., 2012; Romeis et al., 2014). For the purpose of this paper, the name C. carnea is used for
the carnea species group that includes a complex of cryptic, sibling species that are reproductively isolated by their mating songs (Duelli,
2001; Henry et al., 2001).

FIGURE 1 | Adult (A) and Larva (B) of the green lacewing Chrysoperla carnea. Photos: Agroscope (A, Mario Waldburger; B, Gabriela Brändle).

Larvae
C. carnea larvae are generalist predators that feed on soft-bodied
arthropods but especially on aphids and other homopterans.
They have been reported to feed on >70 prey species in six
arthropod orders (Balduf, 1939; Herard, 1986).

Analyses of Bt maize-collected herbivores that are consid-
ered prey for C. carnea confirmed that they contain Cry pro-
teins (Harwood et al., 2005; Obrist et al., 2006a; Meissle and
Romeis, 2009a). Three facts are evident: (i) phloem-feeders, like
aphids, contain no or only trace amounts of Cry protein when
feeding on Cry1Ab-producing Bt maize (Romeis and Meissle,
2011) and Cry1Ab is not readily transported in the phloem of
events Bt11 and Bt176 (Raps et al., 2001); (ii) spider mites such
as Tetranychus urticae (Acarina: Tetranychidae) contain levels of
Cry1Ab generally similar to those in green maize leaves (Dutton
et al., 2002; Obrist et al., 2006b; Alvarez-Álfageme et al, 2008);

(iii) Cry protein levels are considerably lower in other arthro-
pods including tissue-feeding caterpillars and thrips than in plant
tissue. While C. carnea larvae can utilize maize pollen and likely
consume pollen during anthesis (Pilcher et al., 1997; Meissle et al.,
2014), pollen in current Bt maize events contains very low levels
of Cry1Ab (see below).

Adults
In contrast to larvae, C. carnea adults are not predaceous and
feed mainly on pollen, nectar, and honeydew (Sheldon and
MacLeod, 1971; Principi and Canard, 1984; Villenave et al., 2006;
Hogervorst et al., 2007). Nectar and honeydew can be excluded
as exposure routes; maize does not produce nectar, and aphid
honeydew will not contain the Cry protein given that the aphids
do not ingest the protein (Romeis and Meissle, 2011). Pollen,
however, could expose adult C. carnea to Cry1Ab. Females in
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FIGURE 2 | The pathway of how Bt (Cry1Ab) maize might directly harm Chrysoperla carnea and a summary of published findings.

particular require pollen as a protein source for egg produc-
tion (Li et al., 2008, 2010). Maize produces large amounts of
pollen but pollen is available for ≤2 weeks in a maize field
and ≤4 weeks in the surrounding landscape (Sears et al., 2001).
Investigations in a flowering Swiss maize field found that all
female lacewings collected during maize anthesis contained maize
pollen (Li et al., 2010). Based on pollen counts in the female
gut and the duration of gut passage, a female lacewing was esti-
mated to consume up to 10,000 maize pollen grains per day
at peak flowering (Li et al., 2010). While pollen of Bt maize
is known to contain Cry1Ab, levels vary among events. Levels
detected in MON810 and Bt11 pollen are in the ng/g range but
levels more than 100-times greater than this occur in Bt176 pollen
(Box 1).

STEP 2. Bt PROTEIN IN PREY/FOOD IS BIOLOGICALLY ACTIVE
The Cry protein contained in the food consumed by lacewings
must be biologically active to cause harm.

Larvae
Feeding studies with sensitive caterpillars have revealed that the
Cry1Ab protein in larvae of Spodopera littoralis (Lepidoptera:
Noctuidae) or in T. urticae that consumed Bt maize (Bt 11) has
the same biological activity as the toxin in the plant (Obrist et al.,

2006b). Similarly, bioactivity of Cry proteins has been confirmed
in sensitive insect bioassays for various other combinations of Bt
plants, Cry proteins, and herbivores (Chen et al., 2008; Meissle
and Romeis, 2009b; Li et al., 2011; Liu et al., 2011; Tian et al.,
2012, 2013).

Adults
The biological activity of Cry1Ab in maize pollen from transfor-
mation events Bt176, Bt11, and MON810 has been confirmed in
assays with sensitive insects (Hellmich et al., 2001; Dively et al.,
2004; Anderson et al., 2005).

STEP 3. Bt PROTEIN IS INGESTED BY LACEWINGS
Even though the food items consumed by lacewings contain
Cry1Ab, whether the insects actually ingest the toxin when feed-
ing should be confirmed, especially in the case of lacewing larvae.
First, prey may contain Cry1Ab in their gut but the lacewing
larvae may feed on the haemolymph. Second, larvae may use
extra-oral digestion, albeit at a low level (Yazlovetsky, 2001),
that could partially degrade the Bt protein before it enters the
lacewing gut.

Larvae
Tri-trophic laboratory studies using S. littoralis larvae, T. urticae,
and Frankliniella tenuicornis (Thysanoptera: Thripidae) as prey
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confirmed a flow of Cry1Ab from Bt maize to the herbivores
and subsequently to the C. carnea larvae (Obrist et al., 2005,
2006b). The Cry1Ab concentration detected in C. carnea larvae
was related to the toxin content in the prey and to the quantity of
prey ingested. The Cry1Ab concentration detected in the preda-
tor was about half the concentration in the prey. This relatively
small drop in concentration might be explained by the short
duration of the feeding experiment and the fact that little of the
ingested Cry1Ab may have been digested in the lacewing gut. That
C. carnea larvae ingest Cry protein when feeding on Bt-containing
herbivores has been reported from other tri-trophic study sys-
tems (Wei et al., 2008; Lawo et al., 2010) and another lacewing
species, Chrysoperla rufilabris (Neuroptera: Chrysopidae) (Tian
et al., 2013).

Few studies have quantified Bt Cry proteins in field-collected
C. carnea larvae. Obrist et al. (2006a) reported levels below
0.01 µg of Cry1Ab/g dry weight (DW) in larvae collected from
a Bt maize field (Bt176) in Spain before and during pollen
shedding. Levels were higher (around 0.5 µg/g DW) after pollen
shedding, probably because of the presence of spider mite prey
that are known to contain high amounts of Cry protein (see
above). No Cry1Ab was detected in two C. carnea samples col-
lected in a Bt maize field (Bt11) (Harwood et al., 2005). In a
Cry3Bb1-producing Bt maize field, C. carnea larvae contained
1.05 ± 0.932 µg of Cry3Bb1/g DW (Meissle and Romeis, 2009a).
Overall, levels detected in field-collected C. carnea larvae were
extremely low when compared to other predatory arthropods
(Harwood et al., 2005; Obrist et al., 2006a; Meissle and Romeis,
2009a), probably because their main prey, i.e., aphids, do not
contain Cry1Ab.

Adults
Li et al. (2010) quantified the amount of Cry protein that adult
C. carnea would be exposed to when consuming only Bt maize
pollen. Considering the number of pollen grains consumed by
a female in a flowering maize field and the toxin concentration
measured in pollen from Bt176, a female would ingest 22.6 ng of
Cry1Ab per day (Li et al., 2010). The pollen grains are only partly
digested during gut passage, and up to 40% of the Cry protein
remains in the pollen grains that are excreted (Li et al., 2010).

Only one study has analyzed the Cry1Ab content in adult
C. carnea collected in a Bt maize field (Bt176). Insects collected
during anthesis contained about 0.5 µg/g DW (Obrist et al.,
2006a). For comparison, in a Cry3Bb1-expressing Bt maize field
(MON88017), adults contained 1.53 ± 0.402 µg of Cry3Bb1/g
DW (Meissle and Romeis, 2009a). This difference could be
explained by the substantially higher Cry protein concentrations
in MON88017 compared with Bt176 pollen (Obrist et al., 2006a;
Meissle and Romeis, 2009a).

STEP 4. INGESTION OF Bt PROTEIN REDUCES LACEWING FITNESS
Several studies assessed the toxicity of Cry1Ab to C. carnea larvae
or adults.

Larvae
C. carnea larvae were exposed to Cry1Ab directly through arti-
ficial diet or indirectly through the provisioning of Bt maize-fed
herbivores (tri-trophic studies).

Direct studies
Laboratory studies (Hilbeck et al., 1998a) revealed adverse effects
of Cry1Ab on C. carnea larvae. The test compound was mixed
into an artificial diet of unknown composition. When larvae were
continuously fed the artificial diet containing Cry1Ab at a nom-
inal concentration of 100 µg/ml diet, pre-imaginal mortality was
57% as compared with 30% in the untreated control. The control
mortality in these studies was unusually high (Van Emden, 1999;
Vogt et al., 2000), indicating problems in study design, artificial
diet, or test insects (Romeis et al., 2011). In two subsequent stud-
ies, which followed a different approach, C. carnea larvae were
provided with Cry1Ab dissolved in a sucrose solution only dur-
ing the first day of each of the three larval stages (Romeis et al.,
2004; Lawo and Romeis, 2008). At all other times, larvae were fed
with Ephestia kuehniella (Lepidoptera: Pyralidae) eggs to allow
their development. Consequently, larvae were not continuously
exposed to Cry1Ab. To account for this, Cry1Ab was provided in
high nominal concentrations of up to 0.1% Cry1Ab/ml sucrose
solution (w/v). Neither study observed any adverse effects of the
Cry1Ab treatment. Further evidence for a lack of effect of Cry1Ab
on C. carnea larvae was provided by Rodrigo-Simón et al. (2006),
who did not observe binding of the Cry protein to lacewing gut
membranes, a prerequisite for toxicity of Bt proteins (Schnepf
et al., 1998), in either histopathological or in vitro binding stud-
ies. Recent feeding studies with Cry1Ab containing pollen from
Bt maize (Bt176, MON810) did not reveal adverse effects on
the mortality or the development time of C. carnea larvae when
compared to pollen from non-transformed near-isolines (Meissle
et al., 2014). An artificial diet study also reported that Cry1Ab did
not affect C. sinica larvae (Li et al., 2014a).

Tri-trophic studies
In these studies, Bt maize-fed arthropods were used to expose
the lacewing larvae to Cry1Ab. Adverse effects on larval survival
and development occurred when Cry1Ab-sensitive O. nubilalis or
S. littoralis caterpillars were used as prey (Hilbeck et al., 1998a,
1999; Dutton et al., 2002). In contrast, C. carnea larvae were
not affected when non-sensitive spider mites, T. urticae, were
used as prey even though they contained about 3.5-times higher
Cry1Ab concentrations than S. littoralis larvae (2.5 vs. 0.72 µg of
Cry1Ab/g FW) (Dutton et al., 2002). Because the Cry1Ab con-
tained in T. urticae and S. littoralis larvae is biologically active
(see above), the effects observed when using Cry1Ab-sensitive
caterpillars as prey were likely caused by reduced nutritional
quality of sublethally affected caterpillars. Two studies provide
further evidence. First, the same negative effects on C. carnea
larvae were observed when the caterpillar prey had fed on non-
transgenic plants that had been treated with a Bt spray product
(Dutton et al., 2003a). Second, Lawo et al. (2010) observed
adverse effects when the C. carnea larvae were fed with Cry1Ac-
sensitive Helicoverpa armigera (Lepidoptera: Noctuidae) caterpil-
lars that had consumed Bt (Cry1Ac) cotton. The predator larvae
remained unaffected, however, when provided with Bt cotton-fed
caterpillars from a Cry1Ac-resistant strain of H. armigera even
though C. carnea larvae ingested 3.5-times more Cry1Ac when
consuming resistant caterpillars than susceptible ones. These
examples demonstrate that objectives must be clearly formulated
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and experiments carefully designed. Prey quality-mediated effects
have been observed in numerous tri-trophic feeding studies with
Bt-transgenic crops and a range of natural enemies (Romeis et al.,
2006; Naranjo, 2009).

In summary, while early studies suggested direct toxic effects
of Cry1Ab on C. carnea larvae, these effects were not confirmed
in follow-up studies. Adverse effects in tri-trophic studies appear
to be due to changes in prey quality rather than to Cry1Ab toxi-
city. The potential ecological relevance of such indirect Cry1Ab-
related effects are discussed below.

Adults
Adult survival, pre-oviposition period, fecundity, fertility, and dry
weight were similar when adults were fed a pure artificial diet
or an artificial diet containing Cry1Ab at a nominal concentra-
tion of 120 µg/g DW (measured concentration: 47–55 µg/g DW),
or when fed non-Bt maize pollen or Bt maize (Bt176) pollen
containing Cry1Ab at 10 µg/g DW (Li et al., 2008). For com-
parison, pollen of today’s Bt maize events MON810 and Bt11
contains Cry1Ab at levels that are at least 50-times lower (see
above). These findings strongly suggest that C. carnea adults
are not affected when feeding on Bt maize pollen. Similarly,
Mason et al. (2008) provided no evidence for adverse effects
of Cry1Ab-containing Bt maize pollen on longevity, fecun-
dity, or fertility of adult Chrysoperla plorabunda (Neuroptera:
Chrysopidae).

STEP 5. INGESTION OF REALISTIC DOSES UNDER FIELD CONDITIONS
HARMS LACEWINGS
While Steps 1–4 addressed the potential of C. carnea larvae and
adults to be exposed to biologically active Cry1Ab in a Bt maize
field and the potential sensitivity (hazard) to Cry1Ab, Step 5
assesses whether C. carnea larvae or adults are affected by Cry1Ab
at concentrations encountered under field conditions.

Larvae
Under worst-case exposure conditions, only one study has sug-
gested a direct toxic effect of Cry1Ab on C. carnea larvae, an effect
that could not be confirmed in subsequent studies (see Step 4
above). Together with the fact that exposure of larvae is likely to
be negligible through their preferred aphid prey (see Step 1), this
indicates that larvae are unlikely to be affected by realistic field
concentrations of Cry1Ab.

Adults
For adults, no sensitivity to Cry1Ab under worst-case exposure
conditions has been observed (see Step 4 above). This together
with the fact that the pollen from today’s Bt maize events contains
only low levels of Cry1Ab and that maize pollen is only available
for a limited time suggests that adults are unlikely to be affected
by realistic concentrations of Cry1Ab.

STEPS 6. LACEWING POPULATIONS DECLINE
Lacewing populations (Chrysoperla spp. or Chrysopidae incl.
Chrysoperla spp.) in Bt (Cry1Ab) and non-Bt maize have been
compared in 13 field studies. We subjected the data to a meta-
analysis to determine whether lacewing abundance differs in

untreated Bt maize and non-Bt maize that was treated with insec-
ticide or left untreated (Box 3). Chrysopidae abundance did not
significantly differ between Bt maize, and non-Bt maize without
or with insecticide. Chrysoperla spp. abundance did not differ
between Bt and non-Bt maize without insecticides, but was sig-
nificantly higher in Bt maize without insecticides than in non-Bt
maize with insecticide. Overall, the meta-analysis indicates that
lacewing abundance is not reduced in Bt-maize fields. A recent
meta-analysis with data from experiments with Lepidoptera-
resistant Bt maize conducted in Spain has confirmed this lack
of effects (Comas et al., 2014). Similar observations have been
made for many other natural enemies (Wolfenbarger et al., 2008;
Naranjo, 2009).

STEP 7. BIOLOGICAL CONTROL BY LACEWINGS IS DISTURBED
Biological control by C. carnea or other lacewings has not been
directly studied in Bt maize fields. Given a lack of population-
level effects, disturbance of biological control is not expected.
This is supported by evidence from Bt (Cry1Ac) cotton (Naranjo,
2005). Predation of Bemisia tabaci (Hemiptera: Aleyrodidae)
nymphs was unchanged in Bt cotton where Chrysoperla spp. is
an important predator (Naranjo and Ellsworth, 2005).

In addition, even if green lacewing abundance was reduced,
this may not necessarily decrease biological control. For cotton,
Naranjo (2005) showed that an average change of about 20% in
a small number of predatory species was not ecologically mean-
ingful in terms of the biological control potential of the natural
enemy community. Furthermore, functional theory suggests that
the activity of any one species in the complex can be offset by
other members of the community (Walker, 1992; Naranjo, 2005).

INDIRECT EFFECTS DUE TO Cry1Ab
As discussed above, the ingestion of Cry1Ab by sensitive lepi-
dopteran larvae (but not in the case of other non-sensitive her-
bivores) can reduce their nutritional quality as prey for C. carnea
larvae and thus potentially impose adverse effects. For C. carnea
inhabiting Bt maize fields, we regard this risk as negligible for
two main reasons. First, caterpillars are generally a rare prey for
lacewing larvae in Bt or non-Bt maize fields. The most common
species in maize are the stem-borers (Crambidae or Noctuidae)
that are the targets of Bt maize (Meissle et al., 2012; Romeis et al.,
2014) and are thus virtually absent. In addition, stem-borer lar-
vae are concealed with the stem for most of their development
time and thus unavailable to predators like C. carnea. Larvae of
other Lepidoptera species that feed on the plant surface are also
relatively rare when compared to other prey and are not a pre-
ferred food source. Choice experiments have demonstrated a clear
preference of C. carnea for aphids over S. littoralis larvae (Meier
and Hilbeck, 2001) and behavioral observations have revealed
that more than 70% of S. littoralis larvae that were encountered
by C. carnea on maize plants escaped predation (Dutton et al.,
2003b). In addition, C. carnea larvae preferred non-Bt maize-
fed S. littoralis compared with Bt (Cry1Ab) maize-fed S. littoralis
when given a choice (Meier and Hilbeck, 2001). Thus, exposure
of C. carnea to sublethally affected caterpillar prey is likely to
be very low. Second, available data from field experiments pro-
vide no indication that the lacewing populations decline in Bt
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Box 3 | Evidence from field studies.

Meta-analyses were conducted with data from field studies to compare the abundance of Chrysoperla spp. or Chrysopidae (incl.
Chrysoperla spp.) in Bt (Cry1Ab) maize, and non-Bt maize that was untreated with insecticides (Figure 3A) or treated with insecticides
(primarily pyrethroids) for control of the target pest (Figure 3B). The meta-analysis methodology followed the approach of Wolfenbarger
et al. (2008) and Naranjo (2009). The analysis used Hedges’ d, a weighted mean effect size estimator that is calculated as the difference in
abundance between an experimental (Bt) and control (non-Bt) mean response divided by a pooled standard deviation and multiplied by a
small sample size bias correction term. A positive effect size would indicate higher abundance in the Bt crop. In comparisons of Bt maize
vs. non-Bt maize without insecticides, effect sizes were positive but they were small and did not differ from zero based on bootstrap, bias-
corrected 95% confidence intervals (Figure 3A) (Rosenberg et al., 2000). In comparisons of unsprayed Bt maize vs. non-Bt maize treated
with insecticides, the abundance of Chrysoperla spp. was significantly higher in Bt fields. The effect size for all Chrysopidae combined did
not differ from zero (Figure 3B). The values above the bars denote the total number of observations. Data used for these meta-analyses
are provided in Supplemental Table S1.

FIGURE 3 | Meta-analyses of field studies examining the abundance of lacewings in Bt maize, and non-Bt maize that was untreated with

insecticide (A) or treated with insecticides (B).

maize fields compared with conventional maize (see Steps 6 and
7 above).

TRANSFORMATION RELATED EFFECTS
Since the development of the first GM plants, concerns have
been expressed that harm to the environment as well as harm
to animal and human health could occur as a consequence
of unpredictable, unintended changes that are caused by the
process of transgene insertion. This process could lead to
sequence changes, production of new proteins, formation of
new metabolites or altered levels of existing metabolites, thus
compromising safety (Cellini et al., 2004; Herman and Price,
2013).

Consequently, any new GM plant is compared to con-
ventional counterparts, which have a history of safe use
(Garcia-Alonso, 2010). The comparative assessment is based on
a molecular characterization, compositional analyses, and an
agronomic/phenotypic comparison. The aim of this assessment
is to identify possible differences in plant characteristics (in addi-
tion to the “intended changes”) that fall outside the range of
natural variation of the crop and could lead to harm. If poten-
tially harmful unintended changes are detected, this would trigger
a more detailed assessment (Romeis et al., 2008). Thus, the
comparative assessment serves as a starting point to focus the
environmental risk assessment process on identified stressors of
concern.
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All Bt maize plants that are grown today have undergone such
comparative assessments. The experience with GM plants to date
has shown that the transformation process is not more likely to
result in significant unintended effects compared to conventional
breeding techniques. There are no known cases where plants
unexpectedly produce novel toxins either after genetic transfor-
mation or as a consequence of conventional breeding. In addition,
each breeding process includes several screening and selection
steps that identify and eliminate plants with irregular pheno-
types and composition that could cause an impact on non-target
organisms (Weber et al., 2012; Herman and Price, 2013).

Surprisingly, some authors have reported an increase in aphid
abundance in Bt (Cry1Ab) maize in Spain (Lumbierres et al.,
2004; Pons et al., 2005). The factors that caused this phenomenon
have not been elucidated but could be due to some unintended,
transformation related effects. An increase in aphid abundance,
however, is not expected to adversely affect lacewing abundance
given that aphids are the preferred prey for lacewing larvae.

In summary, it is unlikely that unintended, transformation
related effects could result in adverse effects on lacewings. This
is supported by the fact that no adverse effects of Bt maize on the
abundance of lacewings and biological control have been reported
from the field (see Steps 6 and 7 above).

CONCLUSIONS
Because putative adverse non-target effects of Cry1Ab Bt maize
on the green lacewing C. carnea were reported shortly after the
commercial release of this GM plant, the results have received
considerable attention. In this comprehensive review, we show
that there is sufficient information available today to conclude
that Bt maize containing Cry1Ab does not harm C. carnea.
Similarly, there is no evidence that other Lepidoptera-active Cry1
and Cry2 proteins produced by GM maize and other plants cause
direct toxic effects to Chrysoperla species (OECD, 2007; Mason
et al., 2008; Tian et al., 2013; Li et al., 2013, 2014a,b). Despite this,
the myth that Bt maize harms green lacewings continues to be
used by opponents of GM plants, who selectively cite only those
initial studies that indicated direct adverse effects (Hilbeck et al.,
2008, 2012; Dolezel et al., 2009; Then, 2010; Meyer, 2011).

We believe that lessons learned from the lacewing case can
improve the quality and predictability of non-target risk assess-
ment of future insecticidal GM crops. First, scientific studies
can sometimes lead to unexpected results, which should be ver-
ified by other independent research groups. As was the case
with C. carnea, harmful effects of Cry1Ab on a few other non-
Lepidoptera species have been observed (Romeis et al., 2013).
However, in none of the cases have the results been confirmed
in follow-up studies.

Second, effects observed under laboratory conditions cannot
automatically be translated into environmental harm. The devel-
opment of conceptual models on how a particular GM plant
could harm a valued non-target species or its ecological function
assists in this process and also helps in formulating testable risk
hypotheses. If studies provide convincing evidence that one of the
steps in the conceptual model is unlikely, the pathway to harm is
interrupted, and a negligible risk can be inferred. This requires,
however, that the studies conducted are properly designed and

reproducible to minimize the probability of false positives and
negatives.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fpls.2014.00391/
abstract
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