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In contrast to somatic mammalian cells, which cannot alter their fate, plant cells can
dedifferentiate to form totipotent callus cells and regenerate a whole plant, following
treatment with specific phytohormones. However, the regulatory mechanisms and
key factors that control differentiation-dedifferentiation and cell totipotency have not
been completely clarified in plants. Recently, several plant transcription factors that
regulate meristem formation and dedifferentiation have been identified and include
members of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR
(TCP), WUSCHEL (WUS), and WOUND INDUCED DEDIFFERENTIATION (WIND1) fam-
ilies. WUS and WIND positively control plant cell totipotency, while TCP negatively
controls it. Interestingly, TCP is a transcriptional activator that acts as a negative regulator
of shoot meristem formation, and WUS is a transcriptional repressor that positively
maintains totipotency of the stem cells of the shoot meristem. We describe here the
functions of TCP, WUS, and WIND transcription factors in the regulation of differentiation-
dedifferentiation by positive and negative transcriptional regulators.
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INTRODUCTION
Generally, differentiated mammalian cells cannot alter their fate
or dedifferentiate to acquire pluripotency. Therefore, the technol-
ogy to produce iPS (induced Pluripotent Stem) cells by expressing
specific transcription factors represents a significant breakthrough
for animal research (Takahashi and Yamanaka, 2006). In contrast
to mammalian cells, plant cells can alter their cell fate and dif-
ferentiated somatic cells easily dedifferentiate to form masses of
totipotent cells, called callus, following treatment with the phyto-
hormones auxin and cytokinin. A single callus cell can regenerate a
whole plant, as shown by carrot somatic embryogenesis (Nomura
and Komamine, 1986).

Recent work has identified several key transcription factors
that induce cell dedifferentiation. These include members of
the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING
CELL FACTOR (TCP), WUSCHEL (WUS), and WOUND
INDUCED DEDIFFERENTIATION (WIND) families. TCP tran-
scription factors determine the region where meristem forms
during embryogenesis, and thus play a pivotal role in pat-
tern formation (Koyama et al., 2007, 2010). WUSs function in
maintenance of stem cell populations in shoot meristems (Laux
et al., 1996). WINDs are involved in repair of wound tissues in
plants by controlling cell dedifferentiation (Iwase et al., 2011).
Analyses of these transcription factors are gradually elucidat-
ing the molecular mechanisms that control differentiation and
dedifferentiation of plant cells, showing that these mechanisms
involve a fine balance of the activities of positive and negative
regulators.

In this mini review, we describe the functional roles of TCP,
WUS and WIND transcription factors in the control of plant cell
differentiation and the molecular mechanisms of differentiation-
dedifferentiation, as regulated by positive and negative transcrip-
tional regulators.

TCP TRANSCRIPTION FACTORS FUNCTION AS NEGATIVE
REGULATORS OF MERISTEM FORMATION
The TCP family transcription factors are plant-specific and con-
tain a conserved DNA binding domain, termed the TCP domain.
TCP binds the core motif GGnCC (Kosugi and Ohashi, 2002).
TCP transcription factors were identified by analysis of mutants
that affect various aspects of plant development (Luo et al., 1996;
Doebley et al., 1997; Kosugi and Ohashi, 1997; Cubas et al., 1999).
For example, the cincinnata (cin) mutant of Antirrhinum majus,
which encodes an ortholog of Arabidopsis thaliana TCP3 or
TCP4, exhibits abnormal curvature of leaves and petals (Nath
et al., 2003; Crawford et al., 2004). In Arabidopsis, the miR319
(JAW) targets TCP2, TCP3, TCP4, TCP10 and TCP24, and the
ectopic expression of miR319/JAW results in a cin-like phenotype
(Palatnik et al., 2003).

The Arabidopsis genome contains 24 genes encoding TCP
transcription factors in two subfamilies, CYC/TB and PCF
(Cubas, 2000). Analysis of knockout and knockdown mutants
has provided limited information on the biological functions of
TCP transcription factors, probably due to functional redun-
dancy. However, application of chimeric repressor gene silenc-
ing technology (CRES-T) has provided additional clarification
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of TCP functions. The CRES-T gene silencing system cre-
ates a chimeric repressor by fusing a transcriptional activator
(or other DNA-binding protein) to the plant-specific SRDX
repression domain. This chimeric repressor dominantly sup-
presses the target genes of the transcription factor, functioning
epistatically to any endogenous and functionally redundant tran-
scription factors. As a result, the transgenic plants that express
the chimeric repressor exhibit a phenotype similar to loss-
of-function mutants of the transcription factor (Hiratsu et al.,
2003).

Expression of the TCP3 chimeric repressor (P35S:TCP3SRDX)
induced abnormal curvature of leaves similar to P35S:JAW plants,
indicating that the phenotype of P35S:TCP3SRDX plants reflects
that of loss of function of TCPs (Koyama et al., 2007). The
P35S:TCP3SRDX lines with strong phenotypes exhibit ectopic
formation of meristems on cotyledons, while the ectopic expres-
sion of a mutated TCP3, which lacks the target site for miR319,
suppresses meristem formation, indicating that TCP3 negatively
regulates meristem formation (Koyama et al., 2007). One of
the targets of TCPs is CUP-SHAPED COTYLEDON1, which
is the key factor that determines the boundary region where
the meristem forms (Aida et al., 1997). P35S:TCP3SRDX plants
ectopically express CUC1, showed that TCP transcription factors
suppress the formation of meristem via the negative regula-
tion of the expression of CUC genes (Koyama et al., 2007).
However, TCP3 acts as a transcriptional activator; therefore,
TCP3 might activate the expression of the genes for regulators
that suppress the expression of CUCs. Several target genes of
TCP3 have been identified (Koyama et al., 2010), and include
miR164, ASYMMETRIC LEAVES1 (AS1), INDOLE-3-ACETIC
ACID3/SHORT HYPOCOTYL2 (IAA3/SHY2) and SMALL AUXIN
UP RNA (SAUR). AS1 and IAA encode regulators of leaf develop-
ment and auxin signaling, respectively (Byrne et al., 2000; Weijers
et al., 2005). SAUR is an auxin-inducible gene (Hagen and Guil-
foyle,2002) but its function has not been identified. miR164 targets
CUC1, CUC2, and neighboring NAC genes (Nikovics et al., 2006;
Larue et al., 2009).

The TCP genes are ubiquitously expressed, except in the meris-
tem, and suppress meristem formation. In the region where the
shoot apical meristem is formed, miR319 suppresses TCP expres-
sion, and TCPs activate some suppressor genes including miR164;
this results in meristem formation by induction of the expres-
sion of CUCs (Figure 1). Therefore, TCPs play an important
role in pattern formation by suppressing the formation of ectopic
meristem.

WUS MAINTAINS STEM CELL POPULATIONS
WUSCHEL, a HOMEOBOX family transcription factor, plays a
central role in the maintenance of stem cell populations in shoot
meristems (Laux et al., 1996; Mayer et al., 1998; Veit, 2004). In
loss-of-function WUS (wus-1) mutants, new stem cells do not
form in the shoot meristem and the meristem of wus-1 plants
stops growing after forming several leaves (Laux et al., 1996). By
contrast, ectopic expression of WUS increases the size of shoot
meristems and induces ectopic cell dedifferentiation, with resul-
tant formation of adventitious shoots and somatic embryos in root
tissues (Zuo et al., 2002; Gallois et al., 2004). These results indicate

that WUS positively regulates the size of the shoot meristem by
maintaining the appropriate number of pluripotent stem cells.
WUS acts as a positive regulator of the expression of CLV3, which
encodes a small peptide ligand that negatively regulates meristem
size by suppressing the expression of WUS (Schoof et al., 2000;
Reddy, 2008). Therefore, feedback regulation between WUS and
CLVs finely tunes the size of the meristem (Figure 1). WUS func-
tions as a transcriptional repressor (Ikeda et al., 2009), and thus
appears to suppress the expression of a negative regulator of CLV3.

The Arabidopsis WUS family consists of 15 members, WUS and
the WUSCHEL-RELATED HOMEOBOX (WOX) genes (Haecker
et al., 2004). The WUS family transcription factors contain a
conserved WUS-box domain in addition to the homeodomain
(Haecker et al., 2004). The WUS-boxes of WUS and 7 WOXs also
contain a TLXLFP motif, which functions in repression of tran-
scription (Ikeda et al., 2009). WUS proteins with a mutation in the
TLXLFP motif lost activity for maintenance of stem cell popula-
tion and induction of cell dedifferentiation, and SRDX repression
domain is able to complement loss of TLXLFP motif activity in
the mutated WUS protein, indicating that the maintenance of stem
cell population and induction of cell dedifferentiation require the
repressive activity of WUS.

ARABIDOPSIS RESPONSE REGULATOR7 (ARR7), a type A
response regulator, negatively regulates cytokinin signaling and
suppresses the size of the meristem (Leibfried et al., 2005; Zhao
et al., 2010). WUS directly binds to the 5′ region upstream of
the ARR7 gene to suppress its expression (Figure 1). Because
ARR7 negatively regulates the size of the meristem, suppression
of ARR7 by WUS might be important to maintain stem cell popu-
lations. The expression of ARR7 and ARR15 is regulated by auxin
via activation of AUXIN RESPONSE FACTOR5/MONOPTEROS
(Leibfried et al., 2005; Zhao et al., 2010). The expression of ARRs
and WUS is positively regulated by cytokinin (Figure 1) (Holt et al.,
2014). These observations suggest that type A response regulators
regulate differentiation–dedifferentiation of plant cells mediated
by WUS, auxin and cytokinin. In addition to ARRs, TOP-
LESS, CLV1, KANADI1, KANADI2, ASYMMETRIC LEAVES2, and
YABBY, which are involved in cell differentiation and leaf devel-
opment, are also direct targets of WUS (Busch et al., 2010; Yadav
et al., 2013). WUS may maintain meristematic pluripotent stem
cells by suppressing the expression of these genes related to cell
differentiation.

WINDs REGULATE CELL DEDIFFERENTIATION DURING THE
WOUNDING RESPONSE
Similar to other multicellular organisms, plants regenerate new
organs to repair wounded tissues. In wound repair, somatic
cells of wound tissues first dedifferentiate to form a mass of
pluripotent cells called callus. Then the callus cells re-differentiate
and regenerate the organ. Wound-induced cell dedifferentiation
is commonly observed in various multicellular organisms and
several key factors that induce meristem formation have been
identified (Stappenbeck and Miyoshi, 2009), but the molecular
mechanisms that induce the wounded cells into dedifferenti-
ated status during wound repair have not been clarified in
plants.
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FIGURE 1 | Regulation of plant cell fate byTCPs,WUS, and WINDs.

TCPs negatively regulate meristem formation via direct activation of
miRNA164 and AS1, which repress CUCs. miR319 negatively regulates
expression of TCPs. WUS encodes a transcriptional repressor, but
positively regulates cytokinin signaling by suppressing the expression of
ARRs to maintain the stem cell population in the shoot meristem. Feedback
regulation between WUS and CLVs fine-tunes the maintenance of stem cell
populations and meristem size. WINDs are induced by wounding, activate
cytokinin signaling, and positively regulate de-differentiation to promote
callus formation in wounded tissues. Red arrows indicate positive
regulation and blue lines indicate negative regulation. Solid lines indicate
direct regulation and dotted lines indicate indirect regulation.

Recent work showed that AP2/ERF transcription factors
WIND1, WIND2, WIND3, and WIND4 function as master regu-
lators that control dedifferentiation in plants (Iwase et al., 2011).
Comparison of gene expression between Arabidopsis callus and
seedlings revealed that WIND1 is specifically expressed in callus.
WIND1 is also rapidly induced after wounding and specifically
expressed in the wound site. Remarkably, Arabidopsis plants that
ectopically express WIND1 (P35S:WIND1) form callus after ger-
mination. The P35S:WIND1 callus has similar expression profile
to the callus induced by auxin and cytokinin. The expression
of WIND1 alone is sufficient to induce cell dedifferentiation to
form callus and to maintain callus without auxin or cytokinin;
therefore, WIND1 functions as a master regulator of cell dediffer-
entiation in Arabidopsis. Interestingly, P35S:WIND1 callus does
not show increased auxin content or increased activity of the
auxin reporter DR5. By contrast, the P35S:WIND1 callus does
show increased cytokinin content. P35S:WIND1 enhances cal-
lus formation at low cytokinin concentrations, concentrations
that do not induce callus production in wild-type Arabidopsis
plants. Also, arr1 arr2 mutants, which are defective for type-B
ARR-mediated cytokinin signaling, suppress callus formation by
P35S:WIND1. These observations suggest that WIND1 induces

callus formation by activating cytokinin signaling, but not auxin
signaling (Figure 1).

CONCLUSIONS AND FUTURE PROSPECTS
Recent work has identified factors that regulate differentiation-
dedifferentiation of plant cells. TCP, WUS, and WIND transcrip-
tion factors are involved in the regulation of differentiation of
plant cells, but each of these transcription factor families has dif-
ferent molecular functions and different roles in controlling cell
fate. The TCP genes are highly conserved among plant genomes
and form a multigene family with pivotal roles in plant devel-
opment. TCPs are transcriptional activators, but act as negative
regulators of cell dedifferentiation and suppress meristem forma-
tion via activation of miRNA164 and AS1 to repress the expression
of the CUC genes. TCPs are also negatively regulated by miR319.
By contrast, WUS is a transcriptional repressor, but acts as a
positive regulator promoting cell dedifferentiation. One of the
direct targets of WUS is a type A response regulator, ARR7, which
acts as a suppressor of cytokinin signaling. WUS positively regu-
lates cytokinin signaling by suppressing the expression of ARR7.
Maintenance of stem cell populations and meristem size are fine-
tuned by feedback regulation between WUS and CLVs. WINDs
are transcriptional activators and promote dedifferentiation simi-
lar to WUS. WINDs appear to activate cytokinin signaling. Thus,
positive regulators and various types of negative regulators con-
trol cell differentiation and dedifferentiation. In addition, it is
typical in plants that transcriptional repressors (WUS) positively
regulate dedifferentiation, and transcriptional activators (TCP)
negatively regulate dedifferentiation. Fine tuning systems via sup-
pression of a negative regulator by another negative regulator,
thus resulting in positive regulation, appears to be employed
in the regulation of cell differentiation-dedifferentiation in
plants.

As a future step, it will be necessary to identify all the fac-
tors that positively and negatively regulate cell differentiation
and the signaling networks that are regulated by those fac-
tors. Because the molecular mechanisms of dedifferentiation by
auxin and cytokinin have not been fully identified, further work
will also involve detailed analysis of WIND, WUS, and TCP
functions. Control of totipotency of plant cells is also impor-
tant for breeding, production of new cultivars, and genetic
engineering.
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