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Arbuscular mycorrhizal fungi (AMF), which form an ancient and widespread mutualistic
symbiosis with plants, are a crucial but still enigmatic component of the plant micro biome.
Nutrient exchange has probably been at the heart of the success of this plant-fungus
interaction since the earliest days of plants on land. To characterize genes from the
fungal partner involved in nutrient exchange, and presumably important for the functioning
of the AM symbiosis, genome-wide transcriptomic data obtained from the AMF
Rhizophagus irregularis were exploited. A gene sequence, showing amino acid sequence
and transmembrane domains profile similar to members of the PTR2 family of fungal
oligopeptide transporters, was identified and called RiPTR2. The functional properties
of RiPTR2 were investigated by means of heterologous expression in Saccharomyces
cerevisiae mutants defective in either one or both of its di/tripeptide transporter genes
PTR2 and DAL5. These assays showed that RiPTR2 can transport dipeptides such as
Ala-Leu, Ala-Tyr or Tyr-Ala. From the gene expression analyses it seems that RiPTR2
responds to different environmental clues when the fungus grows inside the root and
in the extraradical phase.

Keywords: arbuscular mycorrhizal fungi, organic nitrogen, dipeptide transporter, Rhizophagus irregularis,

symbiosis

INTRODUCTION
Nitrogen (N) is quantitatively the most important soil nutrient
for plant growth and productivity. Plants acquire N not only as
nitrate and ammonium that are converted to amino acids in the
root or shoot tissues, but also as organic N forms (i.e., amino
acids, peptides, and proteins) from the soil (Näsholm et al., 2009).
Free amino acids generally only account for a small fraction of
organic N pool of soil solution whereas peptide- and protein-
bound amino acids may contribute to most of the soil organic
N pool (Farrell et al., 2011; Hill et al., 2012; Warren, 2014).

Although the ecological significance of organic N uptake for
plant N nutrition is still a matter of discussion, several lines of
evidence suggest that plants inhabiting ecosystems characterized
by slow N mineralization rates may, to a significant degree, rely
on organic N forms for growth (Lipson and Näsholm, 2001).

To make the picture more complex, many plant species form
intimate symbioses with mycorrhizal fungi, which constitute a
large proportion of the microbial biomass in many soils and may
play a crucial role in the N nutrition of their host plants (Girlanda
et al., 2007; Fitter et al., 2011).

Mycorrhizal fungi are also known to use different N sources,
depending on specific biochemical, physiological, and ecolog-
ical features of the fungus involved (Girlanda et al., 2007).

Acquisition of organic N has traditionally been associated with
ectomycorrhizal fungi, which are localized in the upper, organic
matter-enriched soil horizons. And, indeed, some ectomycor-
rhizal fungi have been shown to possess proteolytic capabilities
and organic N uptake systems (Wipf et al., 2002; Guidot et al.,
2005; Benjdia et al., 2006; Shah et al., 2013).

Arbuscular mycorrhizal (AM) fungi, which form relationships
with the majority of plant families in most ecosystems, improve
the mineral nutrition of their hosts via an efficient uptake of min-
eral nutrients from the soil. AM fungi could also be involved in the
acquisition of organic and inorganic N (Cappellazzo et al., 2008;
Lanfranco et al., 2011; Pérez-Tienda et al., 2012). Arbuscule-
containing cells are thought to be the main site for such a nutrient
exchange (Bonfante and Genre, 2010). Arbuscules are highly
branched fungal structures that develop inside a living cortex cell:
each fungal branch is surrounded by a proliferating plant plasma
membrane called the periarbuscular membrane.

It has been shown that organic N uptake is greatly enhanced
by AM colonization (Cliquet et al., 1997; Hawkins et al., 2000)
and that AM symbiosis could both enhance the decomposition
of N and increase N capture from organic patches (Hodge et al.,
2001). The uptake of exogenously supplied Arg has also been
observed in the extraradical mycelium (ERM) grown in in vitro

www.frontiersin.org September 2014 | Volume 5 | Article 436 | 1

http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/about
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/journal/10.3389/fpls.2014.00436/abstract
http://community.frontiersin.org/people/u/180135
http://community.frontiersin.org/people/u/176520
http://community.frontiersin.org/people/u/123521
http://community.frontiersin.org/people/u/99869
http://community.frontiersin.org/people/u/122212
mailto:luisa.lanfranco@unito.it
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Traffic_and_Transport/archive


Belmondo et al. A dipeptide transporter from an AM fungus

cultures (Govindarajulu et al., 2005; Fellbaum et al., 2012). Apart
from the capability of taking up amino acids, there is increas-
ing evidence that AM fungi could increase N capture from more
complex organic material (Hodge et al., 2001; Leigh et al., 2009;
Whiteside et al., 2013).

N uptake requires the activity of transporters that trans-
fer the N compounds across cellular membranes. Regarding
organic N, the only transporter so far described in AM fungi is
GmosAAP1, an amino acid permease from Funneliformis mosseae
(Cappellazzo et al., 2008) which may play a role in the first steps
of amino acid uptake from the soil. No data are so far available for
peptide transporters.

At least four distinct plasma membrane, proton-coupled pep-
tide transport systems have been described in fungi, and in other
eukaryotic organisms. Transporters belonging to PTR, DAL5 and
FOT families transport di- and tripeptides, while those belonging
to OPT family transport longer tetra- and pentapeptides (Hauser
et al., 2001; Homann et al., 2005; Reuß and Morschhäuser, 2006;
Damon et al., 2011; Hartmann et al., 2011; Dunkel et al., 2013).
In Saccharomyces cerevisiae, PTR2 is the only member of the PTR
family. Mutants lacking PTR2 were found to have lost the ability
to utilize numerous, but not all, di- and tripeptides as a source
of required amino acids (Perry et al., 1994). More recent stud-
ies showed that the allantoate/ureidosuccinate permease DAL5,
contributes to the uptake of the di- and tripeptides that a ptr2�
mutant continued to assimilate (Homann et al., 2005; Cai et al.,
2007).

Several PTR members have also been identified in plants and
exhibit various functions (Dietrich et al., 2004; Karim et al.,
2005; Komarova et al., 2008). For example, in Arabidospis thaliana
AtPTR5 facilitates peptide transport into germinating and possi-
bly maturing pollen, ovules, and seeds while AtPTR1 has a role in
uptake of peptides by roots (Komarova et al., 2008).

In this study we performed the first functional characterization
of a putative dipeptide transporter RiPTR2 from the AM fun-
gus R. irregularis which was previously shown to be differentially
expressed between mycorrhizal roots and ERM (Tisserant et al.,
2012). We further addressed its regulation pattern in intra- and
extraradical fungal structures challenged with different N sources
in order to understand its potential role in the fungal nutrition
and symbiotic interaction.

MATERIALS AND METHODS
BIOLOGICAL MATERIALS, GROWTH CONDITIONS, AND TREATMENTS
Rhizophagus irregularis (Syn. Glomus intraradices, DAOM 197198;
Krüger et al., 2012) inoculum for seedlings and root organ cul-
tures (ROCs) mycorrhization, was produced through in vitro
monoxenic cultures. These were established in bi-compartmental
Petri dishes with a watertight plastic wall separating the root com-
partment (RC) from the hyphal compartment (HC) (Fortin et al.,
2002). The RC was filled with 25 ml of solid M minimal medium
and the HC with 25 ml of solid M medium lacking sugar (M-C).
Cultures were started by placing an explant of Agrobacterium rhi-
zogenes transformed-chicory (Cichorium intybus) roots colonized
with the AM fungus in the RC. Once the mycelium of R. irreg-
ularis had grown over the plastic wall and completely filled the
HC compartment, the medium was dissolved with sterile 10 mM

citrate buffer, pH 6.0. Spores were then collected and used for
plant inoculation.

To obtain the ERM, when the fungus profusely colonized
the HC, its content was removed, and the HC was filled with
15 ml liquid M-C medium containing either 3.2 mM (100% N) or
0.8 mM (25% N) KNO−

3 . The mycelium was allowed to colonize
this medium over the subsequent 2 weeks. Petri dishes were exam-
ined regularly and roots were trimmed as required to prevent
crossing into the HC.

For the dipeptide treatments, ERM was grown for 2 weeks in
liquid M medium (100% N as KNO−

3 ). At this point, the medium
of the HC was removed and replaced by fresh liquid M-C medium
containing as nitrogen sources 3.2 mM nitrate, 3.2 mM nitrate
and 10 mM Ala-Leu, 10 mM Ala-Leu or no N. ERM was harvested
after 24 h.

In both experiments, ERM was collected with tweezers, rinsed
with sterilized water, dried with sterilized filter paper, immedi-
ately frozen in liquid N and stored at −80◦C until used.

To obtain seedlings colonized by R. irregularis, the Millipore
sandwich method (Giovannetti et al., 1993) was used. Seeds
of Medicago truncatula Gaertn cv Jemalong were first scarified
using sandpaper P180–200, sterilized with 5% commercial bleach
for 3 min and rinsed three times for 10 min with sterile dis-
tilled water. Germination was induced under sterile conditions
in 0.6% agar/water, incubated for 5 days in the dark (25◦C)
and then exposed at the light for 4 days. Plants were watered
with a modified Long-Ashton (LA) solution containing 3.2 µM
Na2HPO4·12H2O and 0.5 mM NaNO3 nitrate as P and N sources,
respectively (Hewitt, 1966) and were grown in a growth cham-
ber under 14 h light (24◦C)/10 h dark (20◦C) regime. Plants were
harvested 60 days post-inoculation (dpi).

For the dipeptide treatment, in a first experiment, M. truncat-
ula mycorrhizal roots were obtained in pot cultures watered with
a LA solution containing 1 mM nitrate. Two months after inoc-
ulation, mycorrhizal roots were treated for 24 h in hydroponic
conditions with a LA solution containing 10 mM Ala-Leu or
1 mM nitrate or no N. In a second experiment M. truncatula myc-
orrhizal roots were grown in the sandwich system as described
above for 60 days with a modified LA solution containing 2.5 mM
Ala-Leu and 0.25 mM nitrate as N sources.

For mycorrhizal plants, only portions of the root system show-
ing extraradical fungal structures were collected under a stere-
omicroscope. The colonization level was assessed according to
Trouvelot et al. (1986). For the molecular analyses, roots were
immediately frozen in liquid nitrogen and stored at −80◦C.

SEQUENCE ANALYSES
Fungal protein sequences homologous to PTR2
transporters were identified by BLASTp searches
within the Mycocosm database (Grigoriev et al., 2014).
Prediction of trans-membrane domains was performed
using TMHMM (http://www.cbs.dtu.dk/services/TMHMM-2.0/),
SOSUI (http://harrier.nagahama-i-bio.ac.jp/sosui/), HMMTOP
(http://www.enzim.hu/hmmtop/) and TMpred (http://www.ch.
embnet.org/software/TMPRED_form.html) programs.

Amino acid sequences were aligned using MUSCLE (Edgar,
2004) and their phylogenetic links inferred by using the
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Maximum Likelihood method based on the JTT matrix-based
model (Jones et al., 1992) as implemented in MEGA5 (Tamura
et al., 2011).

YEAST COMPLEMENTATION ASSAYS
The coding region of RiPTR2 was amplified from R. irreg-
ularis cDNAs by PCR using Phusion DNA-Polymerase
(Finnzymes, Espoo, Finland) and the two following oligonu-
cleotides containing a NotI restriction site: forward primer,
5′-TGACATTGCGGCCGCATAATGGAAGGACACATTCAA-3′;
reverse primer, 5′-ACTTCGAGCGGCCGCTGTGACTATTC
TTCGGATTTA-3′. The PCR product was cloned into NotI sites
downstream of the S. cerevisiae constitutive PGK1 promoter
in the pFL61 E. coli-yeast shuttle vector (Minet et al., 1992).
Recombinant (pRiPTR2) and empty vector (EV) were used to
transform W303 (MATa ura3 can1–100) yeast mutants deleted of
only one or of its two known dipeptide transporter genes, PTR2
and DAL5 (Homann et al., 2005).

Yeast transformation was performed using standard proto-
cols (Rose et al., 1990) and yeast transformants propagating
either the EV or the pRiPTR2 recombinant vector were initially
selected on a yeast nitrogen base minimal medium lacking uracil.
Single colonies of transformants were grown over night in 5 ml of
NH+

4 -containing yeast carbon base (YCB) liquid medium. Once
the OD600 nm reached 0.9, serial dilutions (1:10–1:100–1:1000–
1:10,000) in sterile water were prepared and 5 ml plated on YCB
solid medium containing H20 (negative control), NH+

4 (positive
control), Ala-Tyr, Tyr-Ala or Ala-Leu (0.25 mM each). Plates were
incubated at 30◦C for 4 days and photographed.

NUCLEIC ACID EXTRACTION AND RT-qPCR ASSAYS
Total genomic DNA was extracted from R. irregularis extraradi-
cal structures and M. truncatula and C. intybus roots using the
DNeasy Plant Mini Kit (Qiagen), according to the manufacturer’s
instructions.

Total RNA was isolated from about 100 mg of seedling roots
and 20 mg ERM using the RNeasy Plant Mini Kit (Qiagen).
Samples were treated with TURBO™ DNase (Ambion) according
to the manufacturer’s instructions. The RNA samples were
routinely checked for DNA contamination by RT-PCR analysis,
using primers MtTefF 5′-AAGCTAGGAGGTATTGACAAG-3′
and MtTefR 5′-ACTGTGCAGTAGTACTTGGTG-3′ for MtTEF
or RiTef-f 5′-GCTATTTTGATCATTGCCGCC-3′ and RiTef-r
5′-TCATTAAAACGTTCTTCCGACC-3′ for RiTEF (Gonzàlez-
Guerrero et al., 2010) and the One-Step RT-PCR kit (Qiagen).
The MtPT4 phosphate transporter gene was amplified with
MtPT4F (5′-TCGCGCGCCATGTTTGTTGT-3′) and MtPT4R
(5′-CGCAAGAAGAATGTTAGCCC-3′) primers (Zocco et al.,
2011) and the RiPTR2 peptide transporter with RiPTR2F
(5′-GGCTATATTCTTAACGATGTCG-3′) and RiPTR2R (5′-
CGACCTGTTCTTCTTCCTCTT-3′) primers. Conventional PCR
assays on plant genomic DNA excluded any cross-hybridization
of RiPTR2 specific primers.

For single-strand cDNA synthesis about 500 ng of total RNA
were denatured at 65◦C for 5 min and then reverse-transcribed at
25◦C for 10 min, 42◦C for 50 min and 70◦ for 15 min in a final
volume of 20 µl containing 10 µM random hexamers, 0.5 mM

dNTPs, 4 µl 5× buffer, 2 µl 0.1 M DTT, and 1 µl Super-ScriptII
(Invitrogen).

qRT-PCR experiments were carried out in a final volume
of 20 µl containing 10 µl of iTaq™ Universal SYBR® Green
Supermix (Bio-Rad), 1 µl of 3 µM specific primers, and about
20 ng of cDNA. Samples were run in the iCycler iQ apparatus
(Bio-Rad) using the following program: 10 min pre-incubation
at 95◦C, followed by 40 cycles of 15 s at 95◦C, and 1 min at
60◦C. Each amplification was followed by melting curve analy-
sis (60–94◦C) with a heating rate of 0.5◦C every 15 s. All reactions
were performed with three technical replicates and only Ct values
with a standard deviation that did not exceed 0.3 were consid-
ered. The comparative threshold cycle method (Rasmussen, 2001)
was used to calculate relative expression levels using the plant
MtTEF or the fungal RiTEF as reference genes for plant and fun-
gal genes, respectively. The analyses were performed on three
independent biological replicates. Statistical tests were carried out
through one-way analysis of variance (One-Way ANOVA) and
Tukey’s post-hoc test, using a probability level of p < 0.05. All sta-
tistical analyses were performed using the PAST statistical package
(version 2.16; Hammer et al., 2001).

SEMI-QUANTITATIVE RT-PCR ON LASER MICRODISSECTED CELLS
M. truncatula roots colonized by R. irregularis obtained with the
millipore sandwich system, as described above, were cut into
5–10 mm-long pieces, treated with ethanol and glacial acetic acid
(3:1) under vacuum for 30 min and then placed at 4◦C overnight.
Roots were subsequently dehydrated in a graded series of ethanol
(50%–70%–90% in sterilized water and 100% twice) followed by
Neoclear (twice) with each step on ice for 30 min. Neoclear was
gradually replaced with paraffin (Paraplast Plus; Sigma-Aldrich,
St. Louis) according to Pérez-Tienda et al. (2011). A Leica AS
LMD system (Leica Microsystem, Inc.) was used to collect col-
onized cortical cells from paraffin root sections as described by
Balestrini et al. (2007).

RNA was extracted from dissected cells using the PicoPure kit
protocol (Arcturus Engineering). A DNAse treatment was per-
formed using an RNA-free DNase Set (Qiagen) in a Pico Pure
column, according to the manufacturer’s instructions and RNAs
were eluted in 21 µl of sterile water.

All RT-PCR assays were carried out using the One Step RT-
PCR kit (Qiagen). DNA contaminations were assessed using
the MtTEF primers described above. Reactions with RiPTR2 or
MtPT4 specific primers were carried out in a final volume of 10 µl
containing 2 µl of 5× buffer, 0.4 µl of 10 mM dNTPs, 1 µl of each
primer 10 mM, 0.2 µl of One Step RT-PCR enzyme mix, and 1 µl
of a total RNA diluted 1:1. The samples were incubated for 30 min
at 50◦C, followed by 15 min incubation at 95◦C. Amplification
reactions were run for 40 cycles of 94◦C for 30 s, 60◦C for 30 s,
and 72◦C for 40 s. RT-PCR experiments were conducted on two
different biological replicates of 1500–2000 microdissected cells
each.

RESULTS
With the aim to characterize fungal genes involved in fun-
gal/plant nutrient exchange and, possibly, in the functioning
of arbuscules, the key structures of the AM symbiosis, we
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exploited transcriptomics data (Tisserant et al., 2012) generated
for the AM fungus R. irregularis (Syn. G. intraradices; Krüger
et al., 2012). We focused our attention on an EST (contig
step3_c3279 of MIRA v2 assembly) that, from the microar-
ray data, showed a 33 fold up-regulation in the intraradi-
cal mycelium (IRM) compared to the ERM (Tisserant et al.,
2012). The sequence, containing a full length ORF of 547
amino acids, had been annotated as an oligopeptide transporter.
BLAST searches indicated a similarity to fungal Major Facilitator
Superfamily (MFS) di/tripeptide transporters. In particular, the
sequence possesses the PTR2[pfam00854] conserved domain
that characterizes the proton-dependent oligopeptide trans-
porters (PTR, T.C.2.A.17) family. For this reason, it was called
RiPTR2.

Recent releases of the complete genome sequence of R. irreg-
ularis (Tisserant et al., 2013; Lin et al., 2014) allowed us to assess
that RiPTR2 is a single copy gene containing four introns (Figure
S1). Twelve transmembrane domains were predicted for RiPTR2
amino acid sequence (Figures S1,S2) using HMMTOP, TMHMM,
SOSUI, and TMPRED programs. This structure is similar to that

of the well characterized PTR2 sequence from S. cerevisiae which
shows 40.8% identity at the amino acid level to RiPTR2.

Two putative homologs were found within an extensive tran-
scripts dataset of another AM fungus, Gigaspora margarita
(Salvioli et al., in preparation), which is phylogenetically dis-
tant from R. irregularis. The two deduced amino acid sequences,
named GmarPTR2A and GmarPTR2B show 56.2 and 51.7%
identity to RiPTR2, respectively.

A phylogenetic analysis was carried out by Maximum
Likelihood method using PTR2 sequences from a number
of fungi representative of distinct taxonomic groups retrieved
from the MycoCosm (Grigoriev et al., 2014) genomic database
(Figure 1; Table S1). RiPTR2 grouped with the two G. mar-
garita sequences to form a well-supported sequence cluster clearly
separated from sequences from Ascomycota, Basidiomycota and
Zygomycota species.

RiPTR2 ENCODES A FUNCTIONAL DIPEPTIDE TRANSPORTER
To verify whether RiPTR2 encodes a functional peptide
transporter, it was expressed in S. cerevisiae W303 mutant strains

FIGURE 1 | Phylogenetic position of RiPTR2 protein sequence in

comparison with homologous sequences from selected species

representative of the major fungal phyla (Table S1). The evolutionary
history was inferred by using the Maximum Likelihood method based on the

JTT matrix-based model as implemented in MEGA5. The percentage of trees
higher than 75% in which the associated taxa clustered together is shown
next to the branches. The tree is drawn to scale, with branch lengths
measured in the number of substitutions per site.
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deleted of either one or both of its two endogenous di/tripeptide
transporter genes, PTR2 and DAL5. Both single (ptr2� or dal5�
or double (ptr2� dal5�) mutant strains are unable to use many
dipeptides as N sources (Homann et al., 2005).

RiPTR2-expressing yeast transformants were plated onto selec-
tive media, containing one of three different dipeptides as N
sources; Ala-Tyr, Tyr-Ala or Ala-Leu. Tyr-Ala is known to be a
substrate for the yeast Ptr2p but not for Dal5p, while Ala-Leu is
used by Dal5p but not by Ptr2p, and Ala-Tyr is neither used by
Ptr2p nor by Dal5p in the W303 background (Homann et al.,
2005). In addition, H20 and NH+

4 were used as negative and
positive control, respectively.

All transformants (empty or recombinant vector) were unable
to grow in N-free medium (H2O) although a background growth
could be observed probably due to residual traces of N com-
pounds present in the agar. As expected, all transformants were
able to grow in the NH+

4 -containing medium, Interestingly,
ptr2� dal5� cells expressing RiPTR2 grew on Ala-Leu, Ala-Tyr
and also Tyr-Ala, whereas no growth was observed for ptr2�
dal5� cells transformed with the EV, indicating that RiPTR2 is
able to transport these three dipeptides (Figure 2).

Ala-Leu and Ala-Tyr transport in the dal5� single mutant
expressing RiPTR2 was also evident (Figure 2). Results obtained
with ptr2� single mutant were difficult to interpret since this
mutant, transformed with the EV, showed a high background
growth on all three dipeptides. However, RiPTR2 transformants
clearly diplayed an increased growth on all three dipeptides.

Taken as a whole these results demonstrated that RiPTR2 codes
for a functional dipeptide transporter.

RiPTR2 EXPRESSION PROFILES
We first compared the expression profile of RiPTR2 in intraradical
(IRM) and extraradical (ERM) mycelia by quantitative RT-PCR
from M. truncatula plants colonized by R. irregularis grown in
0.5 mM nitrate in the sandwich system. RNA extractions were
performed on ERM and on roots fragments from which the ERM
was carefully removed to produce the IRM sample. Samples were
normalized with the RiTEF housekeeping gene. A strong RiPTR2
expression was observed in the IRM while RiPTR2 transcripts
were less abundant, and almost barely detected, in the ERM
(Figure 3A). A similar result was obtained considering mycor-
rhizal roots of C. intybus devoided of ERM, grown in the root

compartment and ERM developed in the hyphal compartment
of the same ROC (Figure 3B). These results thus confirmed the
strong expression in the IRM as observed in the microarray data
(Tisserant et al., 2012).

We also performed a time course experiment in the sand-
wich system to determine RiPTR2 transcript abundance at dif-
ferent times (7, 14, 28, and 60 days) post-inoculation (dpi) of

FIGURE 3 | Relative expression of RiPTR2 assessed by qRT-PCR in

intraradical mycelium (IRM) and extraradical mycelium (ERM) from

mycorrhizal roots of M. truncatula grown in the sandwich system (A)

and mycorrhizal roots of C. intybus grown in monoaxenic culture (B).

Data for each condition are presented as mean ± standard deviation.
Different letters indicate statistically significant difference (p < 0.05,
ANOVA).

FIGURE 2 | RiPTR2 complements growth defects of ptr2�, dal5� or

ptr2� dal5� yeast transporter mutants on dipeptides. Serial dilutions
(1:10–1:100–1:1,000–1:10,000 from left to right) of cultured strains

transformed with RiPTR2 or the empty vector (EV) were plated on YCB solid
medium containing H20 (negative control), NH+

4 (positive control), 0.25 mM
Ala-Tyr, Tyr-Ala or Ala-Leu. Plates were incubated at 30◦C for 4 days.
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M. truncatula plants. Morphological analyses of roots showed
almost no fungal structures at 7 or 14 dpi, while mycorrhization
frequency increased from 28 to 60 dpi. Arbuscules were visible
starting from 28 dpi and were slightly less abundant at 60 dpi than
at 28 dpi (Figure S3). Since in the ERM RiPTR2 is expressed at
negligible levels, gene expression was evaluated in whole myc-
orrhizal roots, without making a distinction between IRM and
ERM. RiPTR2 mRNA abundance increased in parallel to the
development of the intraradical phase as demonstrated by mor-
phological data and the parallel mRNA accumulation of MtPT4,
the M. truncatula phosphate transporter-encoding gene which
is considered a molecular marker of arbuscule-containing cells
(Harrison et al., 2002; Figures 4A,B).

The laser microdissection technique was used to specifi-
cally obtain RNA from M. truncatula arbusculated cells. The

FIGURE 4 | Relative expression of MtPT4 (A) and RiPTR2 (B) assessed by

qRT-PCR in a time course experiment of root colonization at 7, 14, 28 and

60 days post-inoculation (dpi). Data for each condition are presented as
mean ± standard deviation. Different letters indicate statistically significant
difference (p < 0.05, ANOVA). (C) Gel electrophoresis of RT-PCR products
obtained from two independent samples (1, 2) of RNA from
laser-microdissected arbuscule-containing cells using primers specific for
MtPT4 or RiPTR2. No RNA sample (-); M: 100 bp (Invitrogen).

authenticity of the samples was verified using MtPT4 specific
primers. RiPTR2 mRNA was detected in the two independent
samples analyzed, indicating that, under these conditions, in
planta RiPTR2 expression occurred in arbuscules (Figure 4C).

We then investigated whether the presence of a dipeptide (Ala-
Leu), a candidate substrate of RiPTR2 as indicated by the yeast
heterologous expression, could modulate RiPTR2 expression lev-
els. This was tested in both a short- and in a long-term exposure
experiments where we evaluated the RiPTR2 expression in whole
mycorrhizal roots, without making a distinction between IRM
and ERM.

In the first experiment (short term exposure), M. truncat-
ula mycorrhizal plants were obtained in pot cultures watered
with a Long Ashton (LA) nutrient solution containing 1 mM
nitrate. After 2 months mycorrhizal roots were treated for 24 h
in hydroponic conditions with a LA solution containing 10 mM
Ala-Leu or 1 mM nitrate or no N. No significant difference was
observed in RiPTR2 expression levels among the different treat-
ments (Figure 5A). Plants showed rather similar mycorrhization
degrees as revealed by the MtPT4 expression levels; although no
N samples had higher values, they were not statistically different
from those of the other two treatments (Figure 5B).

We also investigated whether the RiPTR2 expression in the
ERM developed in the ROC system was responsive to 24 h
exposure to 10 mM Ala-Leu. As previously observed RiPTR2

FIGURE 5 | Relative expression of RiPTR2 (A) assessed by qRT-PCR in

mycorrhizal roots exposed for 24 h to 10 mM Ala-Leu, 1 mM nitrate or

no N. MtPT4 expression was used as marker of mycorrhization (B). Data
for each condition are presented as mean ± standard deviation. Different
letters indicate statistically significant difference (p < 0.05, ANOVA).
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expression in the ERM was extremely low (Figure 3) and this
treatment led to an apparent decrease of RiPTR2 mRNA abun-
dance compared to the ERM kept for 24 h in a medium containing
3.2 mM nitrate or no nitrogen (Figure 6).

In the second experiment (long term exposure), M. truncat-
ula mycorrhizal and non-inoculated plants were grown in the
sandwich system for 60 days with a nutrient solution containing
2.5 mM Ala-Leu and 0.25 mM nitrate as N sources. Mycorrhizal
plants grown in standard nutrient solution, that is 0.5 mM nitrate,
were used as controls. Independently from the AM colonization,
plants grown in the presence of Ala-Leu + nitrate have total
(shoot + root) biomasses lower than plants grown in only nitrate
(Figure 7A). Interestingly, when shoot to root ratio is consid-
ered, it appears that the mycorrhization has a positive effect on
the plant in the presence of Ala-Leu + nitrate, in particular in
resource allocation into shoots (Figure 7B). This result suggests
that the AM fungal colonization contributes to the more efficient
use of N, including dipeptides. This result may also be due to
the higher colonization level as revealed by the MtPT4 expression
(Figure 8B). No difference in RiPTR2 transcript abundance was
observed in the two conditions (Figure 8A).

DISCUSSION
Organic N dominates the N pool of the majority of soils (Schimel
and Bennet, 2004). A key concept under revision is that soil
microbes have a greater ability to use organic N than plants:
indeed there is evidence that plants not only take up organic N
(Komarova et al., 2008) but may also compete with microbes
for it, although it remains debated how competitive plants are
(Kuzyakov and Xu, 2013).

Recent works have shown that, in soils, short peptides repre-
sent a greater proportion of N than free amino acids, although
there is no detailed information on the availability of individ-
ual peptides due to their multiplicity and the lack of a suitable
detection system (Hill et al., 2012). Among the peptide uptake
systems, the PTR family comprises proton driven symporters
which are present in bacteria, fungi, plants and animals. Human
PTR transporters have been extensively studied as they are the

FIGURE 6 | Relative expression of RiPTR2 assessed by qRT-PCR in the

extraradical mycelium developed in ROC exposed for 24 h to 10 mM

Ala-Leu or 3.2 mM nitrate or no N. Data for each condition are presented
as mean ± standard deviation. Different letters indicate statistically
significant difference (p < 0.05, ANOVA).

main route through which the body absorbs and retain dietary
protein (Newstead, 2014). Despite their potential importance in
the N cycle (Schmidt et al., 2014), still very little is known on PTR
from plants or soil fungi.

In this work we have characterized RiPTR2, a PTR transporter
from the fungus R. irregularis, a model species for the ecologi-
cally and agriculturally important group of the Glomeromycota.
Searches within the two complete genome sequences of R. irregu-
laris so far available (Tisserant et al., 2013; Lin et al., 2014) showed
that RiPTR2 is a single copy gene. Interestingly, two putative
homologs have been identified within a transcriptome of another
AM fungus, G. margarita, which belongs to a distinct family of
Glomeromycota. PTR2 gene redundancy has also been found in
the genomes of several filamentous fungi (Vizcaíno et al., 2006),
including the ectomycorrhizal fungus Hebeloma cylindrosporum
which is, to our knowledge, the only mycorrhizal fungus with
characterized PTR2 genes (Benjdia et al., 2006).

The RiPTR2 sequence was able to complement the growth
defects of yeast mutants defective of the two well studied dipep-
tide transporters. At least in the heterologous system, RiPTR2 was
able to transport Ala-Leu, Ala-Tyr and Tyr-Ala but it is likely
that other dipeptides can be transported. Substrate promiscuity
is in fact a common feature shared by all peptide uptake systems
although the molecular basis of this phenomenon is still an open
question (Newstead, 2014). On the other hand, this low substrate
specificity has the advantage to avoid restricting uptake to only a
subset of the available peptides.

FIGURE 7 | Total fresh weight (A) and shoot to root ratio (B) of

M. truncatula plants grown in the sandwich system inoculated (Myc)

or not (C) and watered with either 2.5 mM Ala-Leu and 0.25 mM nitrate

(Ala-Leu + nitrate) or 0.5 mM nitrate (LA). Data for each condition are
presented as mean ± standard deviation. Different letters indicate
statistically significant difference (p < 0.05, ANOVA).
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FIGURE 8 | Relative expression of RiPTR2 (A) assessed by qRT-PCR

in mycorrhizal roots grown in the presence of 0.5 mM nitrate (LA)

or 2.5 mM Ala-Leu and 0.25 mM nitrate (Ala-Leu + nitrate). MtPT4
expression was used as marker of mycorrhization (B). Data for each
condition are presented as mean ± standard deviation. Different letters
indicate statistically significant difference (p < 0.05, ANOVA).

Gene expression data clearly indicated that RiPTR2 is
expressed in the ERM, though at a low level, suggesting a poten-
tial role in the uptake of dipeptides from the soil solution.
However, at least in the analyzed conditions, mRNA abun-
dance was higher in the intraradical phase. The time course
experiment clearly showed an up-regulation of RiPTR2 dur-
ing the colonization process and the establishment of mature
mycorrhizas. The analysis of laser-microdissected arbuscule-
containing cells confirmed that RiPTR2 is consistently expressed
in arbuscules. Since RiPTR2 mRNA abundance does not per-
fectly match MtPT4 mRNA accumulation (at 28 or 60 dpi)
we suggest that RiPTR2 may be expressed not only in arbus-
cules but also in intercellular hyphae. Evidence that nutrient
exchange goes beyond the interface of arbusculated cells and
could involve intercellular hyphae as well has been obtained from
the expression profile of a fungal monosaccharide transporter
(Helber et al., 2011).

A high expression level in the intraradical phase, including
arbuscules, where the flux is commonly expected to be directed
toward the host plant cells, is puzzling. However, it is worth notic-
ing that additional transporters, a phosphate one (Balestrini et al.,

2007; Tisserant et al., 2012; Fiorilli et al., 2013) and an ammo-
nium one (Pérez-Tienda et al., 2011) from the fungal symbiont
were found to be consistently expressed in arbuscules. Dealing
with organic N, R. irregularis transcriptomic data also showed
the up-regulation of a putative amino acid transporter (contig
Glomus_c20826) in the IRM vs. the ERM (Tisserant et al., 2012).
These findings suggest that the fungus may reabsorb nutrients
released in the periarbuscular space and thus exerts a control
over the amount of nutrients delivered to the host. The interface
compartment that surrounds the arbuscules is considered acidic
(Guttenberger, 2000) and provides a gradient in the electrochem-
ical potential used for the energization of uptake processes. It
could be an ideal environment for PTR2 proteins, since they
work as proton-coupled transporters and usually show the high-
est transport activity at acidic pH (Benjdia et al., 2006; Komarova
et al., 2008). Interestingly, two M. truncatula PTR genes were also
described as mycorrhiza-responsive and their transcripts detected
in arbusculated cells (Gomez et al., 2009). We confirmed the up-
regulation of these two M. truncatula genes in mycorrhizal roots
compared to control roots in the long term experiment (data not
shown).

RiPTR2 gene expression is responsive to the Ala-Leu dipep-
tide, a possible substrate. We observed a down-regulation of
RiPTR2 in the ERM grown in ROC after 24 h exposure to 10 mM
Ala-Leu. A down-regulation was also found for a dipeptide trans-
porter of the ectomycorrhizal fungus H. cylindrosporum after
exposure to millimolar dipeptide concentrations (Benjdia et al.,
2006). By contrast, RiPTR2 expression in whole mycorrhizal
roots did not change after 24 h exposure to 10 mM Ala-Leu.
Since these expression values are likely to be mainly represen-
tative of the intraradical phase, we can argue that 24 h are not
sufficient to perceive the dipeptide, and that the intraradical
RiPTR2 expression is probably also regulated by the plant endo-
geneous N status which may not be affected by the short term
exposure.

Interestingly, our data from the long term experiment suggest
that the AM fungal colonization contributes to the more efficient
use of N when nitrate is present in limiting condition and together
with a dipeptide.

A part from yeasts (S. cerevisiae, Schizosaccharomyces pombe)
where PTR2 expression is induced by either the presence of
amino acids or dipeptides (Kitamura et al., 2012; Ljungdahl
and Daignan-Fornier, 2012), very little is known on the regu-
lation of PTR genes in filamentous fungi, with the exception
of H. cylindrosporum (Benjdia et al., 2006). A sequence show-
ing high similarity to PTR genes was recently found to be
expressed during growth on protein-containing substrates in
the ectomycorrhizal fungus P. involutus (Shah et al., 2013). A
PTR2 gene from the biocontrol agent Trichoderma harzianum
was up-regulated when the fungus interacted with the plant
pathogen Botrytis cinerea (Vizcaíno et al., 2006) and during
growth on cell wall of Fusarium solani (Vieira et al., 2013) indi-
cating that PTR genes are involved in the mycoparasitic process.
Furthermore, since Glomeromycota are very distantly related to
commonly studied fungal species, we may anticipate that regula-
tion of their PTR genes can respond to different environmental
clues.
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In their whole our results show that RiPTR2 is expressed in the
ERM, the fungus-soil interface, suggesting a role in the uptake of
organic N from soil; however, a stronger expression is consistently
observed in the in planta phase, including arbuscules, pointing
to a function in the mobilization of organic N in mycorrhizal
roots. Further investigations, not only on the fungal but also on
the plant side, will help to obtain a more comprehensive view of
the dipeptide metabolism in the AM symbiosis.
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