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Rho-like GTPase from plants (ROPs) function as signaling switches that control a wide
variety of cellular functions and behaviors including cell morphogenesis, cell division and
cell differentiation.The Arabidopsis thaliana genome encodes 11 ROPs that form a distinct
single subfamily contrarily to animal or fungal counterparts where multiple subfamilies of
Rho GTPases exist. Since Rho proteins bind to their downstream effector proteins only in
their GTP-bound “active” state, the activation of ROPs by upstream factor(s) is a critical
step in the regulation of ROP signaling. Therefore, it is critical to examine the input signals
that lead to the activation of ROPs. Recent findings showed that the plant hormone auxin
is an important signal for the activation of ROPs during pavement cell morphogenesis as
well as for other developmental processes. In contrast to auxin, another plant hormone,
abscisic acid, negatively regulates ROP signaling. Calcium is another emerging signal in
the regulation of ROP signaling. Several lines of evidence indicate that plasma membrane
localized-receptor like kinases play a critical role in the transmission of the extracellular
signals to intracellular ROP signaling pathways. This review focuses on how these signals
impinge upon various direct regulators of ROPs to modulate various plant processes.
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INTRODUCTION
The Rho family of small GTPases is conserved and plays pivotal
roles in cellular signaling in all eukaryotic kingdoms. In animals
and fungi, the Rho family is divided into Rac, Rho, and CDC42
subfamilies, each with unique functions. Plants contain a single
subfamily, named Rho-like GTPase from plants (ROPs) which
appears to have evolved prior to the divergence of fungal and
animal Rac, Rho, and CDC42. The Arabidopsis thaliana genome
encodes 11 ROPs and most of them are associated with the plasma
membrane (PM), where they transmit the signal from membrane-
localized receptors (Li et al., 2001; Fu et al., 2002; Gu et al., 2004;
Nibau et al., 2006; Yang, 2008; Craddock et al., 2012). Thus the
regulation of their membrane association is important for ROP
signaling. ROP signaling can be negatively regulated by guanine
nucleotide dissociation inhibitors (GDIs), which are responsible
for the dissociation of ROPs from the PM and by sequestering them
in the cytosol in inactive GDP-bound forms. When associated
with the PM, ROP proteins shuttle between inactive GDP-bound
form and active GTP-bound form. They bind to their down-
stream effector proteins only when they are in the GTP-bound
active status. Once the upstream signals are perceived by recep-
tors, guanine nucleotide exchange factors (GEFs) replace the GDP
bound to ROPs with GTP. RopGEFs have a conserved plant spe-
cific ROP nucleotide exchanger (PRONE) domain for GEF activity.
In contrast to RopGEFs, GTPase-activating proteins (GAPs) pro-
mote GTP hydrolysis of ROP proteins. The activation of ROPs
by upstream factor(s) is a critical step in the regulation of ROP
signaling. Several lines of evidence show that ROPs have roles
in signaling pathway mediated by some plant hormones, such

as auxin and abscisic acid (ABA). Recent findings showed that
auxin is an important signal for the activation of ROPs during
leaf epidermal pavement cell (PC) morphogenesis as well as in
other developmental processes such as root hair development. In
both cases, PM localized-receptor like kinases (RLKs) play critical
roles for transmitting an extracellular auxin signal to intracel-
lular ROP signaling. By contrast, ROPs are inactivated by ABA.
In addition to plant hormones, calcium is an emerging signal
in the regulation of ROP signaling in pollen tube growth. This
review focuses on the mechanism underlying upstream regulation
of ROP signaling and on how these signals impinge upon various
direct regulators of ROPs to modulate various plant developmental
processes.

EXTRACELLULAR AUXIN SIGNAL ACTIVATES ROP SIGNALING
Leaf epidermal PC is a well-established model system for the
study of ROP signaling in Arabidopsis (Fu et al., 2002, 2005; Yang,
2008; Figures 1 and 2A). These cells form a puzzle piece shape
with interdigitated lobes and indentations, and their developmen-
tal processes are involved in the establishment of multi-polarity
within each cell and the coordination of the multi-polarity
between adjacent cells. ROP signaling plays a critical role in
regulating the formation of both lobes and indentations during
PC patterning. ROP2 and ROP4, two functionally overlapping
ROPs, promote the lobe growth by activating the ROP-interactive
CRIB motif containing protein 4 (RIC4)-mediated accumulation
of fine cortical actin microfilaments (MFs). On the other hand,
ROP2 and ROP4 inactivate ROP-interactive CRIB motif contain-
ing protein 1 (RIC1)-mediated microtubule (MT) bundling by
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FIGURE 1 |Two antagonistic Rho-like GTPase from plant (ROP)

pathways regulate pavement cell (PC) interdigitation. (A) Lobes and
indentations in Arabidopsis PC. Red arrowheads indicate lobes. Green
arrows show indentations. (B) Auxin activates two antagonistic ROP
pathways in PC interdigitation (1) Apoplastic auxin localizes to the lobes by
PIN1-mediated positive feedback loop. Accumulation of extracellular auxin is
generated by the auxin->ROP2->PIN1->auxin feedback loop. (2) Auxin

controls ROP2 and ROP6 pathways in an ABP1/TMK-dependent manner.
(3) ROP2 activates RIC4 and promotes assembly of fine cortical actin
microfilaments in lobe regions. (4) ROP6 activates ROP-interactive CRIB
motif containing protein 1 (RIC1) and promotes cortical microtubule (MT)
ordering in indenting regions. (5) ROP2-mediated pathway inactivates
RIC1-mediated MT bundling. (6) RIC1-mediated MT organization inhibits
ROP2/RIC4 interaction.

disrupting its RIC1-association with cortical MTs (Fu et al., 2002,
2005). In contrast, ROP6 promotes cortical MT ordering through
RIC1 to restrict radial cell expansion in indenting regions. Both
RIC1 overexpression and cortical MT polymerization inhibited
ROP2–RIC4 interaction, indicating that RIC1-mediated MT orga-
nization antagonized the ROP2/RIC4 pathway (Fu et al., 2005,
2009).

Auxin promotes the interdigitation of PCs in Arabidopsis (Xu
et al., 2010). Xu et al. (2010) demonstrated that abnormal PC phe-
notypes of mutants lacking four auxin biosynthetic enzyme genes,
YUCCA,were suppressed by auxin treatment. They further showed
that two antagonistic ROPs, ROP2, and ROP6, are activated
in an auxin-dependent manner. The application of exogenous
auxin rapidly activates both ROP2 and ROP6 within minutes,
suggesting that auxin activates PC interdigitation independent

of the well-studied auxin receptors, TRANSPORT INHIBITOR
RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFBs), which
regulate auxin-mediated gene expression in the nucleus. Instead,
it was shown that activation of ROP2 and ROP6 by auxin requires
AUXIN BINDING PROTEIN1 (ABP1). ABP1 is a 22-kDa gly-
coprotein, carrying the endoplasmic reticulum (ER) retention
signal KDEL sequence and was implicated as an extracellular auxin
receptor for the regulation of rapid auxin responses such as auxin
promotion of cell expansion (Napier et al., 2002; Braun et al., 2008;
Tromas et al., 2009; Robert et al., 2010). A portion of ABP1 is local-
ized to the cell surface, although the majority of it remains in ER
(Jones and Herman, 1993; Diekmann et al., 1995; Henderson et al.,
1997; Napier et al., 2002). The cell surface action of ABP1 is con-
sistent with a role for ABP1 in the activation of ROPs in PCs. The
defects in PC interdigitation in either the abp1–5, containing a
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FIGURE 2 | Roles of auxin for PC interdigitation in leaves and

clathrin-dependent endocytosis in roots. (A) Schematic view for the
promoting effects of auxin on two antagonistic ROP pathways and
PIN1-mediated positive feedback loop in PC interdigitation. (B) Schematic
view for an inhibitory effect of auxin on clathrin-dependent endocytosis in
roots. Left; In the absence of auxin, ABP1 promotes clathrin-dependent
endocytosis. Right; Apoplastic auxin binds to ABP1 and activates
SPK1/ROP6/RIC1 pathway, resulting in the inhibition of clathrin-dependent
endocytosis.

point mutation (His94->Tyr) in the auxin binding-pocket, or an
inducible ABP1 antisense line were not rescued by auxin, suggest-
ing that ROP2 and ROP6 signaling is regulated downstream of
ABP1 (Xu et al., 2010). ROP2 is required for the targeting of the
auxin efflux transporter, PINFORMED 1 (PIN1), to the lobing
regions by inhibiting PIN1 endocytosis, suggesting that the local
high levels of auxin, induced by auxin efflux, contribute to the
promotion of lobe growth (Xu et al., 2010; Nagawa et al., 2012).

Although ABP1 lacks a transmembrane domain, the require-
ment of ABP1 for the rapid activation of ROP signaling by
auxin suggests that ABP1 directly regulates ROP signaling at the
PM. It was proposed that apoplastic ABP1 must interact with a
transmembrane docking protein to transmit auxin signals to the
cytoplasm (Shi and Yang, 2011). A possible docking protein candi-
date is CBP1, a GPI-anchored protein that binds to the C-terminus
of ABP1 and masks the KDEL ER retention signal (Shimomura,
2006). However, CBP1 lacks any motifs to induce downstream sig-
naling, and thus the presence of other proteins that associate with
ABP1 or form a protein complex with ABP1 is expected. Recently,
(Xu et al., 2014) demonstrated that the transmembrane kinases
(TMKs), which belong to the family of receptor like kinase, inter-
act with ABP1 on the cell surface in an auxin-dependent manner to
regulate ROP signaling. The four members of the TMK subfam-
ily possess common features; an extracellular domain carrying
multiple leucine-rich repeats (LRRs), a transmembrane domain,
and an intracellular kinase domain. TMKs have critical roles in cell
expansion and cell division downstream of auxin (Dai et al., 2013).
The quadruple mutant of tmk1234 exhibited embryonic lethality
with less severity than those phenotypes in abp1 null mutants.

The defects of PC interdigitation of tmk1234 were not rescued by
auxin. Mutations in four TMKs caused a decrease in active ROP2
and ROP6 in the presence of exogenous auxin as well as reduced
RIC4 localization at the PM and RIC1 interaction with cortical
MTs in PC. These results suggested that TMKs are required for
both ROP2 and ROP6 activation in PC patterning. Furthermore,
biochemical approaches revealed that the extracellular domain
of TMK1 physically interacts with ABP1 in an auxin-dependent
manner. Thus, TMK1 is a long-sought docking protein, which
is required to transmit the ABP1-mediated auxin signal to the
downstream ROP signaling pathways. These findings also con-
firmed that ABP1 is indeed an extracellular auxin receptor and
provide the first example of an extracellular signal that activates
ROP signaling at the PM.

The regulation of ROP signaling by extracellular auxin appears
to be a common signaling mechanism in plants. Apoplastic
ABP1 promotes clathrin-dependent endocytosis, which leads to
PIN internalization in roots. Auxin binding to ABP1 inhibits
the positive action of ABP1 in endocytosis (Robert et al., 2010;
Figure 2B). Genetic analysis further revealed that ROP6/RIC1 act
downstream of ABP1 to regulate clathrin-dependent endocytosis
(Chen et al., 2012). SPIKE1 (SPK1), a ROP guanine nucleotide
exchange factor, is required for ROP6 activation by auxin (Lin
et al., 2012; Figure 2B). The SPK1-ROP6-RIC1 signaling path-
way was demonstrated to regulate PIN2 distribution through the
regulation of clathrin-dependent endocytosis in roots. It will be
interesting to determine whether TMKs are also involved in ROP
signaling downstream of auxin that inhibits PIN endocytosis in
roots.

Auxin can also regulate root hair elongation through ROP sig-
naling. Root hair derives from a single epidermal hair-forming cell,
followed by tip-growth at apex of the cell as observed in pollen tube
growth. Immunolocalization of the ROP4 protein and the localiza-
tion of GFP-ROP2 revealed that these ROPs are localized to the tip
of elongating root hair cells. The constitutively-active (CA) form
of ROP2, ROP4, and ROP6 induced isotropic growth and elonga-
tion of root hair cells, whereas the dominant-negative (DN) form
of ROP2 inhibited the tip growth of root hair (Molendijk et al.,
2001; Jones et al., 2002; Yang, 2002; Duan et al., 2010) identified
the receptor-like kinase FERONIA (FER), as an upstream regulator
of ROP signaling by using RopGEF1 as the bait in a yeast two-
hybrid screen. Several lines of evidence suggest that the complex
formed by FER and RopGEF1 recruits an inactive form of ROP2
and converts it to an active form. Auxin was reported to stimu-
late root hair elongation (Pitts et al., 1998; Rahman et al., 2002).
Root hairs of fer mutants are insensitive to exogenous application
of auxin, whereas GFP-ROP2 overexpression restored root hair
elongation of a fer mutant. The fer mutants showed decreased
accumulation of active ROPs, and the pull-down assay revealed
that the inactive (GDP) form of ROP2 preferentially binds to FER.
These data suggest that FER is an upstream receptor of ROP signal-
ing in the auxin-dependent root hair development. FER activates
NADPH oxidase-dependent production of reactive oxygen species
(ROS), which is a second messenger for polar growth (Duan et al.,
2010). It would be interesting to investigate whether ABP1-TMKs
signaling is involved in the FER-dependent root hair elongation
activated by auxin and if so, what the relationship between TMKs
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and FER is. Recently, Haruta et al. (2014) have reported that a
secreted peptide RALF (rapid alkalinization factor) directly inter-
acts with FER to suppress root cell elongation, and RALF acts
through FER to inactivate the PM H+-ATPase. Auxin promotes
H+ extrusion through H+-ATPase that causes the lower apoplastic
pH, followed by the extension of cell wall. Another recent report
showed that auxin induces phosphorylation of the H+-ATPase as
well as hypocotyl elongation in a TIR1/AFB-independent manner
(Takahashi et al., 2012). Both auxin-induced cell elongation and
H+ extrusion depend on K+ uptake through inward-rectifying
K+ channels (Claussen et al., 1997; Philippar et al., 2006). Since
it has been reported that the C-terminal region of maize ABP1
modulates K+ channels coupling to cytoplasmic pH (pHi; Thiel
et al., 1993), ABP1-TMK signaling may control pH through H+-
ATPase. Thus it will be intriguing to determine whether RALF-FER
signaling regulates ROP, and to elucidate the crosstalk between
RALF-FER signaling and ABP1-TMK signaling. The molecular
mechanism underlying FER-mediated pathway may shed light on
how multiple signals are integrated in a specific developmental
phase.

ROP SIGNALING IS REGULATED BY RECEPTOR LIKE KINASES IN
POLLEN TUBE GROWTH
Arabidopsis ROP1, a pollen-specific member of ROPs, is the cen-
tral regulator of pollen tube tip growth. The active ROP1 protein
is localized in the apical cap of the PM of pollen tubes as an
apical cap, corresponding to the expanding region (Lin et al.,
1996; Hwang et al., 2005). Inhibition of ROP1 signaling by DN-
ROP1 or microinjection of anti-ROP1 caused pollen tube growth
arrest, whereas overexpression of ROP1 and CA-ROP1 induced
depolarized pollen tube growth (Lin and Yang, 1997; Li et al.,
1999; Gu et al., 2003). ROP1 activates two counteracting path-
ways; the RIC4-dependent F-actin assembly pathway controls the
vesicle accumulation required for tip growth, whilst the RIC3-
dependent calcium accumulation leads to F-actin disassembly that
promotes exocytosis at the tip. (Gu et al., 2005; Lee et al., 2008).
Mathematical models and experimental evidence suggest that the
RIC4-F-actin pathway contributes to a positive feedback regula-
tion of ROP1 signaling, whereas the RIC3-calcium pathway has
a role in a negative feedback regulation of ROP1 signaling (Yan
et al., 2009). REN1 (ROP1 enhancer 1) encodes a Rho GTPase-
activating protein (RhoGAP), which confines ROP1 activity to
the tip of pollen tube. REN1 localizes in vesicles that accumu-
late in the apex of pollen tubes and at the PM of pollen tube
tip, where ROP1 is activated. It was reported that ROP1 function
is required for both the localization and the function of REN1,
indicating that both spatial distribution and function of REN1
are downstream of ROP1 signaling (Hwang et al., 2008). Thus
REN1 appears to participate in the negative feedback regulation
of ROP1 signaling. It will be interesting to determine whether
REN1 function in the negative feedback is linked to calcium
signaling.

Another outstanding question about the regulation of ROP
signaling involves the nature of the initial signal that activates
ROP1 to promote pollen tube growth. It appears that the sig-
nal may also be extracellular, as another subfamily of RLK has
been implicated in the activation of ROP1 signaling in pollen

tubes. The two pollen-specific RLKs, LePRK1 and LePRK2 (for
Lycopersicon esculentum pollen receptor kinase 1 and 2) were
discovered (Muschietti et al., 1998). LePRK1 and LePRK2 are
both localized at the surface of elongating pollen tubes. LePRK1
and LePRK2 are coimmunoprecipitated in pollen that suggest-
ing that these two receptors interact with each other (Wengier
et al., 2003). The down-regulation of LePRK2 by antisense of
LePRK2 expression caused reduced pollen germination and defects
in pollen tube growth (Zhang et al., 2008). A kinase partner protein
(LeKPP), the pollen specific homolog of RopGEF from tomato,
associates with the cytoplasmic region of LePRK2 in pollen. Pollen
specific promoter-driven LeKPP resulted in depolarization of
pollen tube with abnormal actin assembly (Kaothien et al., 2005).
AtRopGEF12, an Arabidopsis homolog of LeKPP, interacts with
an Arabidopsis pollen receptor kinase AtPRK2a. The C-terminally
truncated form of AtRopGEF12 disturbed pollen tube morphol-
ogy, whereas full-length AtRopGEF12 caused slightly wider pollen
tubes, indicating that the C terminus has an inhibitory function
for GEF activity. A phospho-mimicking mutation at a con-
served serine residue in the C terminus of AtRopGEF12 caused
the loss of inhibitory effects. Coexpression of AtRopGEF12 and
AtPRK2a resulted in isotropic growth of pollen tubes as seen
in CA-ROP overepressing lines. Since coexpression of AtPRK2a
and an N-terminally truncated form of AtRopGEF12 did not
cause the isotropic pollen tube growth, the N terminal region of
AtRopGEF12 appears to play a positive role for the activation of
ROP signaling in the pollen tube growth (Zhang and McCormick,
2007). These data suggest that AtPRK2a binds to the C-terminal
region of AtRopGEF12, and the self-inhibitory function of GEF
activity is lost by phosphorylation at an invariant serine residue,
and then the N terminal region of AtRopGEF12 activates down-
stream ROP signaling. AtPRK2a possesses a kinase activity (Chang
et al., 2013). A recent report showed that not only the C-terminal
region but also the juxtamembrane (JM) domain of AtPRK2a is
critical for its interaction with AtRopGEF12 and the subcellular
distribution of AtPRK2a at the PM, suggesting that AtPRK2a can
interact with AtRopGEF12 without phosphorylation (Zhao et al.,
2013).

There are fourteen members of the RopGEFs family in Ara-
bidopsis. Transient expression of five AtRopGEFs causes swollen
phenotypes in tobacco pollen, as seen in ROP1- or CA-ROP1-
overexpressed pollen (Lin and Yang, 1997; Li et al., 1999; Gu et al.,
2003). AtRopGEF1 overexpression induced the severe swollen phe-
notypes in a ROP1-dependent manner. The PRONE domain of
AtRopGEF1 exhibited GEF activity on ROP1. These data sug-
gest that RopGEF1 directly activates ROP1 (Gu et al., 2006).
Chang et al. (2013) showed that AtPRK2 (also referred to as
AtPRK2a) induces ROP1 activity and pull-down assay revealed
that AtPRK2 physically interacts with AtRopGEF1 and ROP1.
AtPRK2 directly phosphorylates AtRopGEF1 in the C-terminal
region, which is critical for AtRopGEF1 function (Gu et al.,
2006; Chang et al., 2013). Furthermore, CA-AtRopGEF1 (PRONE
domain of AtRopGEF1) rescued pollen germination defects in
the DN-AtPRK2 (a kinase domain-deleted form of AtPRK2)
overexpressing line (Chang et al., 2013). These data suggest that
the AtPRK2-AtRopGEF1-ROP1 signaling pathway controls pollen
tube growth.
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A fascinating outstanding question remains the nature of the
extracellular signal that regulates RLKs in pollen tube growth.
LAT52, a cysteine-rich extracellular protein from pollen, inter-
acts with LePRK2 (Muschietti et al., 1994; Tang et al., 2002).
LeSHY, a leucine-rich repeat protein from pollen, and LeSTIG1, a
small cysteine-rich protein from pistil, can bind the extracellular
domains of LePRK1 and LePRK2, and exogenous application of
LeSTIG1 promotes pollen tube growth (Tang et al., 2004; Huang
et al., 2014). It remains unknown whether these signals regulate
ROP signaling in tomato. It may be intriguing to identify the signal
that binds to AtPRK2 and to examine whether the signal regulates
AtPRK2-AtRopGEF1/AtRopGEF12-ROP1 pathway in Arabidopsis
pollen tube growth.

PAN1 RLK AND ROP SIGNALING REGULATE ASYMMETRIC CELL
DIVISION IN MAIZE
The development of stomatal complex in maize (Zea mays) is
tightly associated with the coordination of asymmetric cell divi-
sion. Stomatal complexes consist of a pair of guard cells flanked by
a pair of subsidiary cells that regulate the function of guard cells.
At first, guard mother cell (GMC), which eventually produces the
guard cell pair, is formed by asymmetric cell division. Before for-
mation of a guard cell pair, the nuclei of subsidiary mother cells
(SMCs), which are lateral neighbors of GMC, are polarized toward
GMC as well as forming a cortical F-actin patch at the boundaries
between GMC and SMCs. And then the subsequent asymmetric
cell division produces the subsidiary cells.

PANGLOSS1 (PAN1), a leucine-rich repeat receptor-like pro-
tein with inactive kinase domain, is localized in SMCs and newly
formed subsidiary cells at sites of contact with GMCs. PAN1
and actin patches appeared after GMC formation and before
nuclear polarization, and PAN1 patches were detectable before
actin patches. Thus, PAN1 promotes the premitotic polariza-
tion of SMCs by receiving the cue from the GMC rather than
intrinsic cues (Cartwright et al., 2009). Given the roles of ROPs
in cell polarization and their association with RLKs, ROP sig-
naling was expected to contribute to the polarization of SMCs.
Nine ROPs were identified in maize. Two closely related ROPs,
ROP2, and ROP9, play the roles in promoting the polarization of
SMCs with PAN1. Although mutations in ROP2 or ROP9 alone
caused no significant defects in the subsidiary cells, the double
mutants rop2/rop2rop9/+ exhibited a slightly higher frequency of
abnormal subsidiary cells. These mutations significantly enhanced
the pan1 phenotype of SMC division. In SMCs, ROP proteins
localize at sites of contact with GMC, which is similar to the
PAN1 localization. ROP patches are formed after the formation
of PAN1 patches. The accumulation of ROP in SMCs was altered
in pan1 mutant, whereas the localization of PAN1 was not dis-
turbed in rop2/rop2rop9/+ mutants. Furthermore, biochemical
approaches revealed that PAN1 and ROPs are physically associ-
ated in maize leaf extracts (Humphries et al., 2011). These data
suggest that ROP2 and ROP9 function downstream of PAN1 to
promote the premitotic polarization of SMCs and the activity of
these ROPs can be spatially regulated. PAN1 lacks a functional
kinase domain, and thus is expected to act with other proteins
in signal transduction, but currently there is no knowledge of
signaling protein(s) that form a complex with PAN1. Upstream

signaling molecules that regulate the PAN1-ROP2/ROP9 pathway
are unknown. Recently, auxin signaling is shown to be involved
in stomatal patterning in Arabidopsis (Le et al., 2014). Since the
polar localization of maize PIN1 (ZmPIN1a) in subsidiary cells
has been reported (Sutimantanapi et al., 2014), it is tempting to
speculate that auxin might be an upstream molecule for PAN1-
ROP2/ROP9 pathway, similar to the TMK-ROP pathways in
Arabidopsis.

ROPs NEGATIVELY REGULATE ABSCISIC ACID SIGNALING
The phytohormone ABA is a pivotal hormone that is involved in
seed germination, plant development, and abiotic stress responses.
Several putative ABA receptors including those localized to the PM
have been proposed, and biochemical studies have also implied
the existence of both cell surface and intracellular ABA recep-
tors. However, only the pyrabactin resistance1 (PYR)/PYR1-like
(PYL)/regulatory component of ABA receptor (RCAR) family
ABA receptors, which are localized to the cytoplasm or nucleus,
have been widely accepted (Fujii et al., 2009; Ma et al., 2009;
Nishimura et al., 2009; Park et al., 2009). The ABA-mediated inter-
action of these receptors with A-type protein phosphatase 2Cs
(PP2Cs) results in the inhibition of PP2Cs, which are negative
regulators of ABA signaling. The SNF1-related protein kinase
2 (SnRK2)-type protein kinases can then activate downstream
signaling.

Evidence suggests that ROP GTPases also participate in the
regulation of ABA signaling mediated by the PYR/PYL/RCAR
family ABA receptors. Expression of a dominant-positive mutant
of ROP6/AtRac1 inhibited ABA-mediated stomatal closure and
cytoskeletal reorganization, whereas expression of a DNform of
ROP6 caused ABA response in an ABA-independent manner, indi-
cating that ROP6 signaling negatively regulates ABA signaling
(Lemichez et al., 2001). ROP10 loss of function mutants exhibit
hypersensitivity to ABA in root elongation response, and stom-
atal closure. These mutants also displayed the enhanced seed
dormancy, which is regulated by ABA and enhanced responses
to ABA inhibition of seed germination. CA-ROP10 and DN-
ROP10 mutants exhibited the insensitivity and hypersensitivity
to ABA, respectively. The promoter-GUS analysis revealed that
the ROP10 promoter activity in root tips is down-regulated by
ABA (Zheng et al., 2002). These results suggest that a mutual
inhibition between ROP10 signaling and ABA signaling. The
ROP10-mediated pathway negatively regulates ABA signaling,
while ROP10 transcripts are down-regulated by ABA. ROP11,
which belongs to the same subfamily of ROP10, has been shown
to be another negative regulator of ABA signaling in multiple
ABA responses. The loss of function mutants of ROP11 exhib-
ited hypersensitivity to ABA similarly to ROP10 mutants. Several
lines of evidence show that ROP11 and CA-ROP11 directly inter-
act with ABI1 and ABI2, which are members of the PP2Cs
family (Li et al., 2012a,b; Yu et al., 2012). In vitro phosphatase
activity assay showed that inhibition of ABI1 by RCAR1 was
alleviated by CA-ROP11, and ROP11 enhanced the ABI2 activ-
ity (Li et al., 2012b; Yu et al., 2012). RopGEF1 and RopGEF4
have been reported to be upstream regulators of ROP11 in
ABA-mediated stomatal closure (Li and Liu, 2012). These data
suggest that ROP signaling protects the hub of ABA signaling.
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Table 1 | A list of known and putative RLK–RopGEF–ROP combinations and their roles in various plant development.

Signal Receptor RopGEF ROP Function Plants Reference

Auxin ABP1/TMK Unknown ROP2, ROP4,

ROP6

PC interdigitation Arabidopsis

thaliana

Xu et al. (2010, 2014)

Auxin? FER RopGEF 1 ROP2 Root hair

development

Arabidopsis

thaliana

Duan et al. (2010)

LAT52?,

LeSTIG1,

LeSHY

LePRK1/

LePRK2

LeKPP Unknown Pollen tube

elongation

Lycopersicon

esculentum

Muschietti et al. (1994, 1998), Tang et al. (2002,

2004), Kaothien et al. (2005)

Unknown AtPRK2a RopGEF 1

RopGEF 12

ROP1 Pollen tube

elongation

Arabidopsis

thaliana

Gu et al. (2006), Zhang and McCormick (2007),

Chang et al. (2013)

Unknown PAN1 Unknown ROP2, ROP9 Stomatal complex

development

Zea mays Cartwright et al. (2009), Humphries et al. (2011)

Unknown FER RopGEF 1 ROP 10,

ROP 11

ABA signaling Arabidopsis

thaliana

Zheng et al. (2002), Li and Liu (2012), Yu et al.

(2012), Li et al. (2012a,b)

Furthermore, mutations in FER caused hypersensitivity to ABA
in root elongation responses and stomatal closure, as well as
higher level of ROS accumulation in guard cells (Yu et al., 2012).
Since RopGEF1 has been reported to interact with FER (Duan
et al., 2010), FER-mediated signaling may regulate ABA responses
through ROPs. Although ABA itself may be a regulator of ROP
signaling in a negative feedback loop, the signals that activate
specific ROPs in ABA signaling remain unknown. Given the occur-
rence of FER-RopGEF-ROP signaling at the PM, these results
raise the possibility that ROPs may regulate ABA signaling at the
PM too.

CONCLUDING REMARKS
Rho-like GTPase from plants signaling acts downstream of diverse
signaling pathways such as auxin, ABA, and cytosolic calcium.
Increasing evidence reveals that several ROPs are involved in
RLK-mediated signaling. Given the diverse roles of ROP signal-
ing in cellular processes such as actin accumulation, ordering
of MTs, calcium concentration, H2O2 production, gene expres-
sion, all of which lead to symmetry breaking (Yang, 2002; Yang
and Lavagi, 2012), multiple environmental and developmental
signals that perceived by RLKs may be regulated by RLK-ROP
modules. One of aspect yet to be examined remains the estab-
lishment of RLK-ROP modules as common features in plants.
Thus far, FER, TMK, and AtPRK2a in Arabidopsis, LePRK1 and
LePRK2 in tomato, and PAN1 in maize have been shown to
be involved in ROP signaling, suggesting that the framework of
RLK (or receptor like protein)-ROP is conserved among higher
plants for acquisition of cell polarity (Table 1). The identifica-
tion of RLKs or receptor-like proteins that interact with upstream
regulators of ROPs like RopGEFs will be critical to further our
understanding of ROP-mediated signaling. Another critical facet
of RLK-ROP modules regards the roles of the interaction between
RLKs and upstream regulators of ROP. Binding of the C termi-
nal region of AtRopGEF12 with AtPRK2a results in the loss of
C terminal inhibition of AtRopGEF12 activity and contributes to

the activation of downstream ROP signaling in the tip growth of
pollen tube (Zhang and McCormick, 2007; Chang et al., 2013).
In root hair development, the inactive form of ROP2 preferen-
tially binds to the complex of FER and AtRopGEF1, as compared
with the active form of ROP2. The conversion of GDP-bound
to GTP-bound ROP2 may be facilitated in an upstream signal-
dependent manner, and then the activated ROP2 may be released
for downstream pathway (Duan et al., 2010). In PC interdig-
itation, auxin binding to ABP1 is shown to be required for
the formation of the ABP1–TMK complex, as well as for the
subsequent activation of ROP signaling (Xu et al., 2014). Under-
standing the complexity of RLK-ROP pathways will provide
new insights into how a variety of signals can regulate ROP
signaling.
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