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Although genetic transformation of clonally propagated crops has been widely studied
as a tool for crop improvement and as a vital part of the development of functional
genomics resources, there has been no report of any existing Agrobacterium-mediated
transformation of yam (Dioscorea spp.) with evidence of stable integration of T-DNA. Yam
is an important crop in the tropics and subtropics providing food security and income
to over 300 million people. However, yam production remains constrained by increasing
levels of field and storage pests and diseases. A major constraint to the development of
biotechnological approaches for yam improvement has been the lack of an efficient and
robust transformation and regeneration system. In this study, we developed an Agrobac-
terium-mediated transformation of Dioscorea rotundata using axillary buds as explants.Two
cultivars of D. rotundata were transformed using Agrobacterium tumefaciens harboring
the binary vectors containing selectable marker and reporter genes. After selection with
appropriate concentrations of antibiotic, shoots were developed on shoot induction and
elongation medium. The elongated antibiotic-resistant shoots were subsequently rooted
on medium supplemented with selection agent. Successful transformation was confirmed
by polymerase chain reaction, Southern blot analysis, and reporter genes assay. Expression
of gusA gene in transgenic plants was also verified by reverse transcription polymerase
chain reaction analysis.Transformation efficiency varied from 9.4 to 18.2% depending on the
cultivars, selectable marker genes, and the Agrobacterium strain used for transformation.
It took 3–4 months from Agro-infection to regeneration of complete transgenic plant.
Here we report an efficient, fast and reproducible protocol for Agrobacterium-mediated
transformation of D. rotundata using axillary buds as explants, which provides a useful
platform for future genetic engineering studies in this economically important crop.
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INTRODUCTION
Yam (Dioscorea spp.) is an economically important food crop in
many tropical countries especially in West Africa, South Asia, and
the Caribbean. It is the second most important root and tuber
crop in the world after cassava in terms of production (Jova et al.,
2005; Adegbite et al., 2006). Yam tubers are nutritionally rich and
a major source of dietary fiber, carbohydrates, vitamin C, and
essential minerals (Charles et al., 2005; Polycarp et al., 2012). In
addition, they are also known for their secondary metabolites
(steroidal saponins, diterpenoids, and alkaloids) which have been
exploited for pharmaceutical products (Mignouna et al., 2008).
There are 600 Dioscorea species, however, only 10 of about 90 edi-
ble species are regularly cultivated for food. Dioscorea rotundata
and D. cayenensis (both known as Guinea yam) are the most pop-
ular and economically important yams in West and Central Africa,
where they are indigenous (Mignouna et al., 2003; Adegbite et al.,
2006; Quain et al., 2011), while D. alata (referred to as water or
greater yam) is the most widely distributed species globally. The
consumer demand for yam is very high in sub-Saharan Africa,

but the yam production is declining in this region due to factors
including diseases and pests, high costs of planting material, and
decreasing soil fertility.

Diseases caused by viruses, fungi and bacteria and nematode
pests either singly or in combination are responsible for yield losses
(Nwankiti and Arene, 1978; Onwueme, 1978; Ng, 1992; Hughes
et al., 1997). Nematodes are of particular concern because, apart
from causing significant reduction in tuber yield and quality, they
facilitate fungal and bacterial attacks. A major economic pest of
yam is Scutellonema bradys, known as the yam nematode and
causal agent of dry rot. This nematode occurs mostly in West
Africa, where yam is its principal host, but is also recorded on yams
from parts of South and Central America and Asia (Bridge et al.,
2005). The nematode affects all the main cultivated yam species
and cultivars in West Africa, mainly on mature tubers and during
storage (Kwoseh, 2000; Coyne et al., 2006). Plant parasitic nema-
todes damage is also a critical factor in tuber quality reduction
and yield loss in yam both in the field and storage (Adegbite et al.,
2006). Yam nematodes reproduce and build up large populations

www.frontiersin.org September 2014 | Volume 5 | Article 463 | 1

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/about
http://www.frontiersin.org/Journal/10.3389/fpls.2014.00463/abstract
http://community.frontiersin.org/people/u/117559
http://community.frontiersin.org/people/u/180737
http://community.frontiersin.org/people/u/174590
http://community.frontiersin.org/people/u/115555
mailto:l.tripathi@cgiar.org
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Biotechnology/archive


Nyaboga et al. Agrobacterium-mediated transformation of yam

in stored tubers causing severe damage and facilitating fungal and
bacterial attacks that cause anthracnose disease, dry rot, soft rot,
and wet rot.

The most important field pathogen of yam is the foliar
anthracnose-causing fungus Colletotrichum gloeosporioides, which
is a major threat to yam cultivation, in all yam-producing areas
(Abang et al., 2002). The disease causes leaf necrosis and shoots
dieback of yams, thus reducing the photosynthetic efficiency of the
plant, which results in yield losses of over 90% in susceptible geno-
types (Egesi et al., 2007). Yam viral diseases also constitute a major
pathological problem in yam production in all growing regions of
the world. The use of infected vegetative propagules and uncon-
trolled introductions of infected germplasm by farmers through
porous land borders have resulted in the presence of yam viruses in
all yam-growing areas of West Africa (Goudou-Urbino et al., 1996;
Hughes et al., 1997). Viruses reported to infect yams in West Africa
include yam mosaic virus (YMV), yam mild mosaic virus (YMMV),
D. dumetorum virus, D. alata bacilliform virus (DaBV), cucumber
mosaic virus (CMV), D. mottle virus (DMoV), and D. sansibarensis
virus (DsBV; Seal and Muller, 2007). Yam viruses are of sub-
stantial economic importance not only because of yield losses
they cause, but also due to the high cost of preventive measures
(Degras, 1993).

Efforts have been made in the form of conventional breed-
ing toward the development of pest and disease resistant and
high yielding varieties. Transfer of desirable genes from the sec-
ondary gene pool of wild relatives to the cultivated primary gene
pool remains difficult in many crops, including yams (Spillane
and Gepts, 2001). Genetic improvement of yam through breed-
ing programs face challenges due to constraints such as the long
breeding cycle, dioecious, poor flowering nature, polyploidy,
vegetative propagation, and heterozygous genetic background
(Mignouna et al., 2008). Genetic engineering has emerged as a
valuable alternative and complementary approach to improve
crops including yam. Because of the difficulties surrounding con-
ventional breeding of yam, the use of transgenic approaches to
improve this crop is particularly compelling. However, the capac-
ity to achieve successful genetic transformation depends largely
on efficient plant regeneration systems. Regeneration systems of
D. rotundata and D. alata have been established (Adeniyi et al.,
2008; Tripathi et al., unpublished). Recently, direct shoot organo-
genesis was also reported on petiole explants of D. rotundata,
D. cayenensis, and D. alata (Anike et al., 2012). These regen-
eration systems have not been evaluated for the amenability to
transformation.

Agrobacterium-mediated transformation is the gene delivery
system, which is most preferred by plant biotechnologists because
of its easy accessibility, tendency to transfer low copies of DNA
fragments carrying the genes of interest at higher efficiencies with
lower cost and the transfer of very large DNA fragments with
minimal rearrangement (Shibata and Liu, 2000; Gelvin, 2003).
Therefore, plant transformation through Agrobacterium-mediated
DNA transfer has become a favored approach for many crop
species (Barampuram and Zhang, 2011). To date, there are only
few reports of transient transformation of D. alata by particle
bombardment using a reporter gene. Tör et al. (1993) successfully
transformed cell suspension of D. alata by particle bombardment

and found that the foreign gene (gusA) could be stably expressed in
the transgenic cells; however, transgenic plants were not produced
from transformed cells. Tör et al. (1998) further demonstrated
that foreign genes could be delivered to protoplasts of D. alata
using a polyethylene glycol-mediated uptake method. However,
regeneration of transgenic plants was not reported. Quain et al.
(2011) also reported transient transformation of D. rotundata
using Agrobacterium; however, it cannot be applied for crop
improvement since no transgenic plant was regenerated. As effi-
cient transformation system for yam is currently not available,
therefore, the main objective of this study was to establish an
efficient Agrobacterium-mediated transformation system for D.
rotundata.

MATERIALS AND METHODS
YAM CULTIVARS AND EXPLANT PREPARATION
Yam cultivars of Tropical D. rotundata (TDr) 2579 and 2436
were obtained as plantlets from in vitro germplasm collection
at International Institute of Tropical Agriculture (IITA)-Ibadan,
Nigeria. All the cultivars were maintained in vitro and mul-
tiplied as shoot cultures on yam basic medium (YBM) con-
taining Murashige and Skoog medium (MS) salts and vitamins,
0.05 mg/l 6-Benzylaminopurine (BAP), 0.02 mg/l Naphthale-
neacetic acid (NAA), 25 mg/l Ascorbic acid, 30 g/l sucrose,
2.4 g/l gelrite. The pH of the medium was adjusted to 5.8
prior to autoclaving. The cultures were incubated in growth
room at 28◦C with 16/8 h photoperiod. The nodal explants (3–
5 mm) containing axillary buds were excised from young in vitro
shoots.

SENSITIVITY OF AXILLARY BUD EXPLANTS TO ANTIBIOTICS
Prior to transformation experiments, the sensitivity tests to
selective agents (hygromycin and kanamycin) were carried out
in order to find an effective inhibitory concentration, which
arrests the formation of shoot buds and shoots from nodal
explants. The sensitivity to antibiotics was determined by
culturing nodal explants having axillary buds on shoot bud
induction medium (SBM; MS salts and vitamins, 1 mg/l
BAP, 0.318 mg/l Copper sulfate, 20 g/l sucrose, 2.4 g/l gel-
rite) supplemented with different concentrations of hygromycin
(0–15 mg/l) or kanamycin (0–250 mg/l). The cultures were
transferred to a fresh medium containing the same level of
antibiotic every 2 weeks and then scored for the frequency
of regeneration after 8 weeks. The minimal inhibitory con-
centration of antibiotics was used in all the transformation
experiments.

Agrobacterium STRAINS AND BINARY VECTORS USED FOR
TRANSFORMATION
Agrobacterium tumefaciens strains LBA4404 and EHA105 were
used in this study. The binary vectors pCAMBIA1301, pCAM-
BIA2301 (CAMBIA Company, Australia) and pCAMBIA2300-gfp
were used for transformation (Figure 1). The pCAMBIA1301
contained hygromycin phosphotransferase (hpt) gene as selec-
tion marker, while pCAMBIA2301 and pCAMBIA2300-gfp con-
tained neomycin phosphotransferase II (nptII) as selectable
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FIGURE 1 | Schematic representation ofT-DNA of binary plasmids. (A) pCAMBIA1301; (B) pCAMBIA2301; (C) pCAMBIA2300-gfp.

marker. Plasmids pCAMBIA1301 and pCAMBIA2301 con-
tained the intron-containing gusA reporter gene, while plasmid
pCAMBIA2300-gfp contained gfp as reporter gene. The binary
vectors were transformed into A. tumefaciens strains LBA4404 and
EHA105 by electroporation. Single colonies from Luria Bertani
(LB) agar (10 g/l Tryptone, 5 g/l Yeast extract, 10 g/l Nacl,
15 g/l Agar, pH 7.5) plates containing kanamycin (50 mg/l),
rifampicin (50 mg/l) and streptomycin (100 mg/l) were used to
initiate 2 ml LB medium starter cultures. After 48 h shaking
at 150 rpm at 28◦C, this suspension was used to inoculate a
20 ml LB medium containing the same antibiotics, and grown
overnight on a shaking platform at 150 rpm to reach an OD600 of
1.0. Bacterial culture was centrifuged at 3500 rpm for 15 min
and pellet was re-suspended in liquid SBM medium supple-
mented with 200 μM acetosyringone (Sigma Chemical Co.) and

grown further for 2–3 h at 25◦C with shaking at 100 rpm. The
optical density (OD600) of culture was checked and adjusted
to 0.5. The bacterium suspension was used for transformation
experiments.

INOCULATION OF EXPLANTS WITH A. tumefaciens AND
CO-CULTIVATION
The explants of D. rotundata were immersed in bacterial suspen-
sion and vacuum infiltrated for 5 min followed by gentle shaking
at 45 rpm for 30 min at room temperature. After inoculation,
explants were blotted on sterile paper towels and co-cultivated for
3 days under dark condition at 28◦C, in petri dishes containing
SBM medium supplemented with 100 μM acetosyringone. Fifty
explants were used in each experiment and transformation effi-
ciency was compared with two Agrobacterium strains (LBA4404
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and EHA105) and plasmids with different selection marker genes
(hpt and nptII). Experiments were repeated twice.

SELECTION AND REGENERATION OF TRANSGENIC PLANTS
Following co-cultivation, the explants were rinsed three to four
times with liquid SBM medium supplemented with 500 mg/l car-
benicillin and blotted dry on sterile filter paper and placed onto
SBM supplemented with 250 mg/l carbenicillin for 1 week of
recovery at 28◦C 16/8 h photoperiod. After 1 week of incubation,
the explants were transferred to fresh SBM medium supple-
mented with 250 mg/l carbenicillin and 7.5 mg/l hygromycin or
100 mg/l kanamycin depending on the plasmid used and incu-
bated for 14 days at 28◦C under 16/8 h photoperiod. This step was
repeated twice with gradually increasing the antibiotic selection to
10 and 15 mg/l for hygromycin selection or 125 and 150 mg/l
for kanamycin selection. The elongated shoots were separated
and transferred to YBM containing 250 mg/l carbenicillin and
15 mg/l for hygromycin or 150 mg/l for kanamycin for 1 month
for rooting. The well rooted plantlets were transferred to peat
pellets, covered with transparent polythene bag and placed in
a glasshouse at 28◦C. After 3–4 weeks, each peat pellet is frag-
mented and plantlets transferred into pots containing sterile soil
and covered with plastic bags. When plants have reached 30–50 cm
in height the plastic bags were opened to allow further growth.
The putative transgenic plants regenerated on selective medium
were subjected to β-glucuronidase (GUS) histochemical assay or
fluorescent microscopy and molecular analysis.

HISTOCHEMICAL GUS ASSAY
Transient and stable histochemical GUS assay was carried out in
different tissues as described by Jefferson et al. (1987) with mod-
ifications. Tissues were immersed in a buffer containing 2 mM
X-Gluc, 50 mM phosphate, 50 mM potassium ferrocyanide and
5% Trition X-100 at pH 7.0 and vacuum infiltered for 10 min,
and then incubated overnight at 37◦C for 24 h. Tissues con-
taining chlorophyll were repeatedly soaked in 95% ethanol until
chlorophyll was removed. Transient expression of gusA gene was
examined in Agro-infected explants after 3 days of co-cultivation,
while stable expression of the reporter gene was analyzed in
leaves, shoots and roots isolated from putative transgenic plants
regenerated on selective medium.

VISUALIZATION OF GFP FLUORESCENCE
Transient and stable GFP expression was analyzed using a Nikon
SMZ1500 stereomicroscope with GFP-Plus fluorescence module.
The images were recorded in TIFF format using a digital camera.
All plants putatively transformed with pCAMBIA2300-gfp were
tested for GFP expression.

GENOMIC DNA ISOLATION AND PCR ANALYSIS OF TRANSGENIC LINES
Plant genomic DNA for polymerase chain reaction (PCR) was
extracted from regenerated putative transgenic young leaves using
a DNeasy kit (Qiagen, GmbH, Germany). Specific primers used for
gusA were: forward 5′-TTTAACTATGCCGGGATCCATCGC-3′
and reverse 5′-CCAGTCGAGCATCTCTTCAGCGTA-3′. Specific
primers for hpt were: forward 5′-CCACTATCGGCGAGTACTTCT
ACACAGC-3′ and 5′-GCCTGAACTCACCGCGACGTCTGTC-3′.

PCR was conducted in a total volume of 20 μl, containing 100 ng
template DNA, 2 μl 10 × buffer, 0.5 μl of 10 mM dNTP, 0.5 μl of
10 μM primers, 1 unit of Taq DNA polymerase (Qiagen, GmbH,
Germany). The PCR conditions were: initial denaturation at 94◦C
for 10 min, 35 cycles of denaturation at 94◦C for 15 s, annealing at
62◦C for 40 s for the gusA gene, 58◦C for 40 s for the hpt gene, and
extension at 72◦C for 50 s, followed by final extension at 72◦C for
7 min and holding at 4◦C. The amplified PCR products were sep-
arated by electrophoresis on 0.8% (w/v) agarose gel stained with
GelRedTM (Biotium) and visualized under a UV transilluminator
and photographs were taken by the gel documentation system.

RNA EXTRACTION AND RT-PCR ANALYSIS
Total RNA was extracted from 100 mg young leaf tissue of
10 transgenic lines and non-transgenic control plants using the
RNeasy plant mini kit (Qiagen, GmbH, Hilden, Germany) and
treated with DNase (RNeasy Plant Mini kit, Qiagen). The quantity
and quality (A260/230 and A260/280) of total RNA were deter-
mined using the Nanodrop 2000. RNA was checked with PCR
for absence of genomic DNA. Complementary DNA (cDNA)
was synthesized using 1 μg of total RNA and reverse transcrip-
tase of the Maxima H Minus First Strand cDNA synthesis kit
with oligoDT primers (Thermo scientific). For reverse transcrip-
tase polymerase chain reaction (RT-PCR), 2 μl of each cDNA
synthesized was used. PCR cycling conditions included initial
denaturation of 94◦C for 10 min, followed by 35 cycles of 94◦C
for 15 s, 62◦C for 40 s and 72◦C for 50 s and final exten-
sion for 7 min. RT-PCR was performed with primers specific
to the gusA gene as described above and housekeeping gene
actin primers forward 5′- ACCGAAGCCCCTCTTAACCC-3′ and
reverse 5′-GTATGGCTGACACCATCACC-3′. The amplified RT-
PCR products were separated and visualized as described in the
PCR section above.

DOT BLOT AND SOUTHERN BLOT ANALYSIS
The integration of the transgene into the genome of yam was
analyzed using dot blot and Southern hybridization. Genomic
DNA for dot blot analysis was extracted from twelve PCR positive
transgenic lines using a DNeasy kit (Qiagen, GmbH, Germany).
About 200 ng of genomic DNA in triplicate for each transgenic line
was denatured at 98◦C for 10 min, immediately chilled on ice for
5 min and immobilized onto a positively charged nylon membrane
(Roche Applied Sciences, Mannheim, Germany) using a BIORAD
Bio-Dot Microfiltration apparatus following the manufacturer’s
protocols and recommendations. The DNA samples were fixed
on the membrane by cross-linking in a STRATA-LINKTM UV
cross-linker. A gusA-specific probe was labeled with DIG-dUTP
using PCR DIG Probe Synthesis Kit (Roche Applied Sciences,
Mannheim, Germany). Hybridization, stringency washes and
detection was carried out using a DIG Luminescent Detection
Kit for Nucleic Acids (Roche Diagnostics, UK) according to the
manufacturer’s instructions.

For Southern blot analysis, genomic DNA was isolated from
in vitro grown plants using cetyltrimethylammonium bromide
(CTAB) method developed by Sharma et al. (2008) with mod-
ifications. The genomic DNA (20 μg) of transgenic lines and
non-transgenic control plant was digested with HindIII (New

Frontiers in Plant Science | Plant Biotechnology September 2014 | Volume 5 | Article 463 | 4

http://www.frontiersin.org/Plant_Biotechnology/
http://www.frontiersin.org/Plant_Biotechnology/archive


Nyaboga et al. Agrobacterium-mediated transformation of yam

England Biolabs, USA) for overnight at 37◦C. The plasmid DNA
digested with HindIII was used as positive control. Restricted DNA
was separated on a 0.8% (w/v) agarose gel at 40 V for 6 h and trans-
ferred to a positively charged nylon membrane (Roche Applied
Sciences, Mannheim, Germany) by capillary transfer method and
fixed by cross-linking in a STRATA-LINKTM UV cross-linker.
Hybridization and detection was performed as described above.

STATISTICAL ANALYSIS
Data were subjected to significance by analysis of variance
(ANOVA) and mean separation by Duncan’s multiple range tests
(DMRTs; p < 0.05) using SPSS 11.09 software for Windows.

RESULTS AND DISCUSSION
SELECTION OF SELECTABLE MARKER SUITABLE FOR YAM
TRANSFORMATION
An effective selection strategy is very important for developing an
efficient genetic transformation procedure. This can be achieved
by the use of a selective agent which prevents non-transformed
tissues from regenerating, while permitting the development of
transformed cells into shoots without any lethality of the explant
tissues (Song et al., 2012). The choice of selection agent depends
on the plant nature and each plant species responds differently
to the selection agent. The bacterial nptII and hpt are the most
frequently used selectable marker gene used for generating trans-
genic plants. These enzymes detoxify aminoglycoside antibiotics
by phosphorylation, thereby permitting cell growth and devel-
opment of transformed plant cells into shoots in the presence
of antibiotics. Therefore, optimization of the dose of selection
pressure using hygromycin or kanamycin is important, as a sub-
optimal dose results in high frequency of escapes (Datta et al.,
1990). On the other hand unnecessary high antibiotic doses not
only kill untransformed tissues, but also inhibit growth of trans-
formed cells, leading to delay in the regeneration process (Wilmink
and Dons, 1993). Therefore, optimization of the aminoglycoside
concentration was based on the minimal antibiotic concentration
sufficient to prevent regeneration of untransformed tissues. The
effective antibiotic concentration is another important factor for
selection and regeneration of transgenic plant cells. Antibiotics
decay in the plant tissue media due to various factors such as light,
pH, temperature (Padilla and Burgos,2010) as well as the antibiotic
degradation in the vicinity of transgenic cells able to inactivate the
antibiotic (Rosellini et al., 2007). Regular subculturing on fresh
selection media as described in our study increases the effective
inhibitory action of the antibiotic used.

It has been reported that monocotyledonous plants are sen-
sitive to hygromycin, but not to kanamycin (Hauptmann et al.,
1988; Eady and Lister, 1998; Chin et al., 2007). Tör et al. (1993)
also reported that the suspension cells of the D. alata showed
a high tolerance to kanamycin and no growth inhibition even
at a concentration of 500 ug/ml. However, our results indi-
cated that shoot induction of D. rotundata is sensitive to both
hygromycin and kanamycin (Table 1, Figure 2). Shoot bud induc-
tion and plant regeneration from axillary buds of nodal explants
were completely inhibited on a medium containing 10 mg/l of
hygromycin or 150 mg/l kanamycin. No study has been performed
so far on the hygromycin-based selection for the transformation

Table 1 | Effects of different concentrations of hygromycin and

kanamycin on shoot bud induction and plant regeneration of D.

rotundata using nodal explants.

Antibiotic Concentration

(mg/l)

Explant

development/regeneration

response

Hygromycin 0 Green shoots regenerated

5 Green shoots regenerated

7.5 Axillary bud induced but no

shoot production

10 No shoots regenerated

15 No shoots regenerated and

explants were bleached

Kanamycin 0 Green shoots regenerated

50 Green shoots regenerated

75 Green shoots regenerated with

pale patches

100 Shoots regenerated and turned

completely white

125 Albino shoots regenerated,

arrested development

150 No shoots regenerated

200 No shoots regenerated

250 No shoots regenerated

of yam. The effective inhibitory concentration of hygromycin
and kanamycin determined through this study will assist with
the design of selection conditions for both hpt and nptII gene-
based plasmids in the future for effective transformation of yam
and will also be useful to engineer yam with multiple T-DNA
insertion.

Efficient selection of transformed tissues was accomplished
by increasing the selection pressure in a step wise manner
from 7.5 to 15 mg/l and 100 to 150 mg/l for hygromycin
and kanamycin, respectively. This process allows transformed
explants to express effectively the antibiotic-resistance gene
and initiate cell division, thus improving regeneration of
explants to produce plants (Bull et al., 2009). Final selection
on higher concentration of antibiotics also eliminates genera-
tion of false positive or escape plants. The use of low antibiotic
concentrations in regeneration medium at early stages pro-
motes transformed cell recovery, while a subsequent gradual
increase of antibiotic concentration effectively eliminates non-
transformed cells (Burgos and Alburquerque, 2003). Such pattern
of selection was previously reported to be effective for cas-
sava (Zhang and Puonti-Kaerlas, 2000), castor (Sujatha and
Sailaja, 2005), dendrobium (Suwanaketchanatit et al., 2007),
Lotus corniculatus (Nikolicć et al., 2007), grapevine (Fan et al.,
2008), rapeseed (Liu et al., 2011), and spinach (Milojevicć
et al., 2012) and also for jute, under kanamycin selection
(Sarker et al., 2008).
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FIGURE 2 | Effect of hygromycin and kanamycin concentrations on

regeneration of nodal explants of D. rotundata. (A) h0–h15 represent
culture conditions with different hygromycin concentrations where h refers to
hygromycin and the number after h refers to different concentrations;

(B) k0–k200 represent culture conditions with different kanamycin
concentrations, where k refers to kanamycin and the number after k refers to
different concentrations. The pictures were taken 30 days after culture in
shoot elongation medium supplemented with antibiotics.

TRANSFORMATION, SELECTION, AND REGENERATION OF TRANSGENIC
PLANTS
After co-cultivation, the explants were subjected to a resting
period of 5–7 days in carbenicillin supplemented medium lack-
ing selection agent to improve the regeneration of Agro-infected
explants. It is reported that direct transfer to selective medium
after co-cultivation could result in tissue necrosis of the explants
(Khanna et al., 2007). Agro-infected nodal explants began to form
axillary buds after 7 days on selective medium (Figure 3). The

induced buds started producing shoots 4–6 weeks after Agro-
infection on selective regeneration medium supplemented with
gradual increase of antibiotics every 2 weeks (Figure 3). In 8–
10 weeks some of the shoots elongated and turned green and other
shoots turn white or chimeric. In this study, a clear difference
was observed during kanamycin selection process of transformed
(green) and non-transformed (bleached) developing shoot buds.
In order to eliminate possible chimeric plants, the shoots produced
were sub-cultured several times with the same level of selection
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FIGURE 3 | Regeneration and transformation of D. rotundata cv.TDr

2436. (A) Axillary bud induction from nodal explants after 1 week of culture
on SBM; (B) shoot induction from nodal explants after 2 weeks culture on

SBM; (C) proliferation of shoots within 8 weeks of culture on SBM;
(D) rooting of elongated transformed shoot; (E) acclimatized transgenic plant
maintained in glasshouse; (F) non-transgenic plant in soil in the glasshouse.

pressure (15 mg/l or 150 mg/l kanamycin). After three subcul-
tures, the chimeric shoots completely bleached and died while the
transgenic shoots continued to survive and grow normally. All
the shoots generated on selective medium produced roots when
transferred onto YBM containing 15 mg/l hygromycin or 150 mg/l
of kanamycin. In this rooting assay, only transformed shoots sur-
vived to rooting, whereas the escaping shoots did not produce
roots. The putative transgenic plants generated were validated by
PCR and proved to be transgenic by GUS assay and GFP fluo-
rescence. A generalized scheme for stable genetic transformation
protocol is shown in Figure 4.

The effect of cultivars, Agrobacterium strains and selection
marker genes was examined on transformation efficiency using
axillary buds as explants. Significant variation in transforma-
tion efficiency was observed among different cultivars based
on Agrobacterium strains and antibiotic selection marker used
(Table 2). We observed transformation efficiency of 9.4–18.2%
depending on different transformation factors including the yam
cultivars, Agrobacterium strains and antibiotic selection marker.
Differences are known to exist between transformation efficien-
cies of different genotypes, expression vectors, selection marker

genes, and the strain of Agrobacterium as well as the tissue culture
conditions (Cheng et al., 2004). Among these factors, the culti-
var of the explants is considered as a crucial one that can hardly
be overcome or complemented through optimizing other exter-
nal factors, for example by manipulating highly virulent strains
(Hansen et al., 1994) or by optimizing plant culture conditions
(Zuo et al., 2002).

In the initial experiment we compared the effect of two
Agrobacterium strains (EHA105 and LBA4404) harboring plasmid
pCAMBIA1301 on the transformation efficiency of two cultivars
of D. rotundata. No significant difference was observed in trans-
formation efficiency due to various Agrobacterium strains used
in the transformation (Table 2). However, there was a signifi-
cant difference (p < 0.05) in transformation efficiency among
the two cultivars transformed. The transformation efficiency was
higher (16–18%) for cultivar TDr 2436 in comparison to cultivar
2579 (12–14%). As there is no significant effect of Agrobacterium
strain used on transformation efficiencies, only one strain EHA105
was used for further studies. Our results suggest that different
cultivars of the same species may differ remarkably in their sus-
ceptibility to Agrobacterium infection. The biochemical basis of
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FIGURE 4 | Schematic diagram showing various steps of stable genetic transformation of D. rotundata using nodal explants.
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Table 2 | Effect of Agrobacterium strains, cultivars, selectable marker, and reporter genes on transformation efficiency of D. rotundata.

Plasmid construct Cultivar Agrobacterium strain No. of regenerated plants

on selective media

Transformation efficiency (%)

pCAMBIA1301 TDr2436 EHA105 9.4 ± 0.50a 18.2 ± 0.37a

LBA4404 8.4 ± 0.24ab 16.2 ± 0.37ab

TDr2579 EHA105 6.2 ± 0.37cde 12.8 ± 0.37cd

LBA4404 7.6 ± 0.50bc 14.4 ± 0.24c

pCAMBIA2301 TDr2436 EHA105 7.4 ± 0.40bc 14.8 ± 0.37c

TDr2579 4.8 ± 0.37e 10.2 ± 0.37e

pCAMBI2300-gfp TDr2436 EHA105 7.2 ± 0.80bcd 14 ± 0.31c

TDr2579 5.8 ± 0.37de 9.4 ± 0.24e

The transformation experiments were repeated twice and 50 nodal explants were used for each transformation. Each value represents mean ± S.E. of two independent
transformation experiments. Mean values followed by same letters within a column are not significantly different according to Duncan’s multiple range test (DMRT)
at 5% level.

Transformation efficiency (%) = Number of transgenic plants regenerated on selective medium
Total number of explants transformed

×100%

these variations involves more complex mechanisms, as has been
extensively reviewed by many authors (McCullen and Binns, 2006;
Citovsky et al., 2007; Gelvin, 2010), that the transfer of DNA from
A. tumefaciens to plant genome is a complex process involving a
number of discrete, essential steps. The difference in the suscepti-
bility of cultivars to Agrobacterium could be due to the presence of
inhibitory metabolites to Agrobacterium sensory machinery (Liu
and Nester, 2006; Maresh et al., 2006). Plant host defense response
stimulated by Agrobacterium infection may be another factor influ-
encing the susceptibility of plant cells to Agrobacterium (Ditt et al.,
2005; Zipfel et al., 2006; Anand et al., 2008).

Selectable marker genes are required for establishment of effi-
cient transformation in plants. In most cases, selection is based
on antibiotic (kanamycin or hygromycin) or herbicide (phos-
phinothricin) resistance (Miki and McHugh, 2004). Selectable
marker genes allow the plant cells that carry them to regener-
ate in media containing selective agents, while non-transformed
cells die. The choice of a selectable marker gene depends on its
efficiency, applicability to a wide range of plants, availability for
researchers and its market acceptance (Kraus, 2010). In this study,
we compared two selection marker genes (hpt and nptII) for trans-
formation efficiency of two cultivars of D. rotundata. There was
significant difference (p < 0.05) in transformation efficiency using
hpt and nptII as selectable marker genes (Table 2). Although there
was a significant difference between hpt and nptII selectable mark-
ers, our study demonstrates that hygromycin as well as kanamycin
selection are efficient and can be used for the recovery of trans-
genic yam tissues and plants. No escape plants were obtained with
any of the selection agents used. The hpt-hygromycin system has
been reported to be more efficient than the nptII-kanamycin and
the phosphinothricin acetyl transferase (PAT)-phosphinothricin
systems (Song et al., 2012). However, the availability of multiple
resistance gene/antibiotic selection systems that allow for effi-
cient selection of transgenic yam is essential to generate multiple
improved traits from independent T-DNA cassettes. From a regu-
latory perspective, nptII is particularly interesting since it is present
in a large proportion of commercialized genetically modified crops

(Miki and McHugh, 2004) and several independent studies have
demonstrated its safe use in transgenic crops (Fuchs et al., 1993;
Ramessar et al., 2007).

Other selection strategies that are free of antibiotic and/or
herbicide-resistance genes can also be used to select transgenic
plants. One of these strategies is the use of visual markers such as
GUS (Jefferson et al., 1987) and green fluorescent protein (GFP;
Prasher et al., 1992). In this study, we also compared two reporter
genes (gusA and gfp) for the transformation efficiency of two
cultivars of D. rotundata. There was no significant difference in
transformation efficiency using gusA and gfp reporter genes for
both cultivars (Table 2). Our results demonstrate that both gusA
and gfp can be used as reporter genes for developing transgenic
yam. The use of the gusA gene as a marker for transformation is
effective and is widely applied in many species, including mono-
cots such as rice (Wakasa et al., 2012) and orchard grass (Lee et al.,
2006), and dicots such as common bean (Mukeshimana et al.,
2013) and alfalfa (Duque et al., 2007). The presence of an intron
in the gusA gene guards against false positives that may result from
expression of the gene in A. tumefaciens (http://www.cambia.org).
However, the GUS assay involves destruction of the tested tis-
sues of transgenic explants; therefore, it should be performed at
a later stage of the transformation study and presents a bottle-
neck for verification strategies in large-scale plant transformation
protocols. GFP fluorescence visualization is also a useful tool for
selecting transgenic yam plants. It has been widely used in the
transformation of many plant species such as pepper (Jung et al.,
2011), Petunia hybrida (Muβmann et al., 2011), and alfalfa (Duque
et al., 2007). The fluorescent marker GFP is a highly versatile
reporter gene, because the gfp gene expression can be monitored
any time in living cells under a fluorescence microscope in a non-
destructive manner (Chalfie et al., 1994). The same tissues may
then be used for regeneration of stable transformants, which is
not possible with other marker genes requiring destructive or toxic
enzyme assays. Visual marker genes like gfp can even be used for
yam transformation without using antibiotics or herbicides as the
selection agents.
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Complete transgenic plantlets ready for transfer to the green-
house were produced within 3–4 months after Agro-infection.
The rooted plants grew normally after transplanting to soil in
the glasshouse (Figure 3) confirming that selection marker (hpt
or nptII) or/and the reporter genes (gusA or gfp) does not have
any apparent adverse effect on the normal development and
morphology of the transgenic yam plants.

GUS EXPRESSION AND VISUALIZATION OF GFP FLUORESCENCE IN
TRANSGENIC PLANTS
The use of both gfp and gusA genes as visual markers provides a
useful method for confirming putative transformed plants (Padilla
et al., 2006; Duque et al., 2007). The putative transgenic lines were
verified by GUS histochemical assay or GFP fluorescence at differ-
ent levels of plant development. The GUS staining was observed
in nodal explants and emerging axillary buds indicating successful
Agro-infection and transient expression of gusA gene (Figure 5).
Transgenic plants displayed intense blue coloration in the leaf,
stem, root, in contrast with non-transformed plant tissues, indi-
cating the stable integration of the gusA gene into the genome and
its expression (Figure 5).

In this study, we examined explants for GFP fluorescence at dif-
ferent stages, including axillary bud induction and in vitro plantlet
(Figure 5). GFP expression was observed in both the axillary buds
and leaves of transgenic plantlets (Figure 5). An advantage of
visualizing GFP expression in our system was to enable us to select

transformation events at an early stage thus avoiding the transfer
of non-transgenic shoot that survived the kanamycin selection,
saving both time and labor.

MOLECULAR ANALYSIS OF TRANSGENIC PLANTS
To confirm the presence of foreign genes into the genome of trans-
genic plants, antibiotic-resistant plants were analyzed by PCR and
RT-PCR (Figure 6). PCR analysis was performed with genomic
DNA of putative transgenic and control non-transgenic plants
in order to confirm the presence of transgene. The amplified
product of about 500 base pairs corresponding to the internal
fragment of gusA gene was observed from genomic DNA of all
the transgenic plants tested using gusA gene-specific primers con-
firming the presence gusA transgene in transgenic plants. An
amplified fragment of 958 base pairs was also observed from
all tested transgenic plants using hpt specific primers confirm-
ing the presence of hpt gene. The amplified products were
observed in all the plants tested, confirming the presence of
both transgenes gusA and hpt, without any escape plant. No
amplified product was observed in case of non-transgenic control
plants.

The transgenic lines were analyzed using RT-PCR in order to
verify the expression of gusA gene. The gusA transcript amplifica-
tion of the expected fragment size (∼500 base pair) was observed
from samples of all the transgenic lines tested (Figure 6). Specific
Actin transcript amplification was detected from all plants as an

FIGURE 5 | Expression of reporter genes in tissues of putative transgenic

plants of D. rotundata. (A) Transient expression of gusA gene in emerging
axillary buds 1 week after Agro-infection; (B) control non-transgenic plantlets;
(C) stable expression of the gusA gene in transgenic plantlets; (D) transient

expression of gfp gene in emerging axillary buds 3 days after Agro-infection;
(E) gene expression in transgenic buds produced ∼1–2 weeks after
Agro-infection; (F) leaf of transgenic plantlets viewed under UV light using
GFP filter.
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FIGURE 6 | Molecular analysis of transgenic plants. PCR analysis of
genomic DNA of putative transgenic and non-transgenic control plants using
primers specific for (A) hpt gene; (B) gusA gene; RT-PCR analysis using

primers specific to (C) Actin gene; (D) gusA gene. M- 1 kb plus molecular
marker (Fermentas); P- pCAMBIA1301 plasmid DNA; 1–10- transgenic plants;
NT- control non-transgenic plant.

internal control for cDNA synthesis. A gDNA control was included
in the assay with actin primers and showed the larger unspliced
fragments, indicating that DNA contamination was below PCR
detection levels in RNA samples. The results indicated that target
genes were successfully incorporated into plant genome and were
expressed in transgenic plants.

Polymerase chain reaction positive transgenic lines were further
analyzed by dot blot and Southern blot hybridization using gusA
probe to confirm integration of the transgene into the genome
of yam. Genomic DNA of all the 12 transgenic lines tested by dot
blot analysis were confirmed to contain the gusA gene (Figure 7A).
Three transgenic lines were further tested with Southern blot

FIGURE 7 | Analysis of transgenic lines to confirm integration of

transgene. (A) Dot blot analysis of transgenic lines. 1–12-
transgenic lines in triplicates; P- pCAMBIA1301 plasmid DNA as
positive control. (B) Southern blot analysis of genomic DNA of

transgenic lines and non-transgenic control plant digested with
Hind III. M- DIG-labeled molecular weight marker; 1–3- transgenic
lines; NT- non-transgenic plant; and P- pCAMBIA1301 plasmid DNA
as positive control.
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hybridization. Their unique hybridization patterns indicated that
each transgenic line resulted from an independent transformation
event (Figure 7B). No hybridization signal was detected in the
non-transgenic control plant.

FUTURE PROSPECTS OF GENETIC ENGINEERING FOR YAM
IMPROVEMENT
Pests and diseases are among the most important of the many fac-
tors that have deleterious effects on yam tuber yield and quality
and over time these constraints have become more severe (Amusa
et al., 2003; Baimey et al., 2006; Aidoo et al., 2011). The progress
made in this study in establishing an efficient genetic transfor-
mation system of D. rotundata could open up many avenues to
produce disease resistant yams, through pathogen-derived resis-
tance strategies, that would not be possible using conventional
breeding approaches. Host plant resistance to anthracnose has
been proposed as a viable alternative to the use of chemical fungi-
cides in controlling the disease. However, studies have shown
that there are no genotypes tolerant or resistant to the disease
(Abang et al., 2002). Therefore, the most attractive strategy for
anthracnose control in yam is probably the production of dis-
ease resistant plants through the transgenic approach. These
approaches could include the expression of genes encoding plant,
fungal or bacterial hydrolytic enzymes (Lorito et al., 1998), genes
encoding elicitors of defense response (Keller et al., 1999) and
antimicrobial peptides (AMPs; Broekaert et al., 1997). AMPs have
a broad-spectrum antimicrobial activity against fungi as well
as bacteria and most are non-toxic to plant and mammalian
cells.

Use of resistant varieties can be an effective strategy in con-
trolling yam nematodes, but there are no varieties known to be
tolerant to nematodes. The use of transgenic plants will be an
alternative approach to improve the nematode resistance of yam.
Several transgenes confer plant resistance to both tropical and tem-
perate plant parasitic nematodes (Atkinson et al., 2003). Cystatins
inhibit nematode digestive cysteine proteinase activity, suppress-
ing the growth and multiplication of these pests (Urwin et al.,
1997) and is one of the transgenes that has been successfully used
to control plant nematodes. It has been found that the cystatins
confers the improved resistance to a range of nematodes in dif-
ferent crops like potato, sweet potato, rice, tomato, and plantain
(Atkinson et al., 1996; Vain et al., 1998; Urwin et al., 2001; Chan
et al., 2010; Gao et al., 2011; Roderick et al., 2012) and have proven
efficacy under field conditions (Urwin et al., 2001, 2003). Such an
approach could also be used to enhance resistance of yam against
nematodes in the near future.

CONCLUSION
We have established a highly efficient and simple Agrobacterium-
mediated transformation protocol for D. rotundata using axillary
buds as explants. Stable transgenic plantlets which showed pres-
ence, integration, and expression of transgenes were successfully
regenerated within 3–4 months from axillary bud explants. To the
best of our knowledge, this is the first report of Agrobacterium-
mediated transformation of yam with experimental evidence of
stable integration of T-DNA in D. rotundata genotypes. This pro-
tocol opens up an avenue for future genetic improvement of D.

rotundata with candidate genes of proven agronomic importance
to attain sustainable production.
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transformation of Lotus corniculatus L. using a direct shoot regeneration protocol,
stepwise hygromycin B selection, and a super-binary Agrobacterium tumefaciens
vector. Arch. Biol. Sci. 59, 311–317. doi: 10.2298/ABS0704311N

www.frontiersin.org September 2014 | Volume 5 | Article 463 | 13

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Biotechnology/archive


Nyaboga et al. Agrobacterium-mediated transformation of yam

Nwankiti, A. O., and Arene, O. B. (1978). Disease of yam in Nigeria. PANS 24,
468–496.

Onwueme, I. C. (1978). The Tropical Tuber Crops: Yams, Cassava, Sweet Potato and
Cocoyams. Chichester: Wiley.

Padilla, I. M., and Burgos, L. (2010). Aminoglycoside antibiotics: structure, func-
tions and effects on in vitro plant culture and genetic transformation protocols.
Plant Cell Rep. 29, 1203–1213. doi: 10.1007/s00299-010-0900-2

Padilla, I. M. G., Golis, A., Gentile, A., Damiano, C., and Scorza, R. (2006). Evalua-
tion of transformation in peach Prunus persica explants using green fluorescent
protein (GFP) and beta-glucuronidase (GUS) reporter genes. Plant Cell Tissue
Organ Cult. 84, 309–314. doi: 10.1007/s11240-005-9039-1

Polycarp, D., Afoakwa, E. O., Budu, A. S., and Otoo, E. (2012). Characterization
of chemical composition and anti-nutrition factors in seven species within the
Ghanaian yam (Dioscorea) germplasm. Int. Food Res. J. 19, 985–992.

Prasher, D., Eckenrode, V., Ward, W., Prendergast, F., and Cormier, M. (1992).
Primary structure of the Aequorea victoria green fluorescent protein. Gene 111,
229–233. doi: 10.1016/0378-1119(92)90691-H

Quain, M. D., Egnin, M., Bey, B., Thompson, R., and Bonsi, C. (2011). Trans-
genic potential of Dioscorea rotundata, using Agrobacterium-mediated genetic
transformation. Asp. Appl. Biol. 110, 71–79.

Ramessar, K., Peremarti, A., Gomez-Galera, S., Naqvi, S., Moralejo, M., Munoz,
P., et al. (2007). Biosafety and risk assessment framework for selectable marker
genes in transgenic crop plants: a case of the science not supporting the politics.
Transgenic Res. 16, 261–280. doi: 10.1007/s11248-007-9083-1

Roderick, H., Tripathi, L., Babirye, A., Wang, D., Tripathi, J. N., Urwin, P. E.,
et al. (2012). Generation of transgenic plantain (Musa spp.) with resistance to
plant pathogenic nematodes. Mol. Plant Pathol. 13, 842–851. doi: 10.1111/j.1364-
3703.2012.00792.x

Rosellini, D., Capomaccio, S., Ferradini, N., Sardaro, M. L. S., Nicolia, A.,
and Veronesi, F. (2007). Non-antibiotic, efficient selection for alfalfa genetic
engineering. Plant Cell Rep. 26, 1035–1044. doi: 10.1007/s00299-007-0321-z

Sarker, R. H., Al-Amin, G. M., Hassan, F., and Hoque, M. I. (2008). Agrobacterium-
mediated genetic transformation of two varieties of jute (Corchorus capsularis L.).
Plant Tissue Cult. Biotechnol. 18, 7–16.

Seal, S., and Muller, E. (2007). Molecular analysis of a full-length sequence of a
new yam badnavirus from Dioscorea sansibarensis. Arch. Virol. 152, 819–825. doi:
10.1007/s00705-006-0888-7

Sharma, K., Mishra, A. K., and Misra, R. S. (2008). A simple and efficient method
for extraction of genomic DNA from tropical tuber crops. Afr. J. Biotechnol. 7,
1018–1022.

Shibata, D., and Liu, Y. G. (2000). Agrobacterium-mediated plant transformation
with large DNA fragments. Trends Plant Sci. 5, 354–357. doi: 10.1016/S1360-
1385(00)01689-7

Song, G. Q., Walworth, A., and Hancock, J. F. (2012). Factors influencing Agrobac-
terium-mediated transformation of switchgrass cultivars. Plant Cell Tissue Organ
Cult. 108, 445–453. doi: 10.1007/s11240-011-0056-y

Spillane, C., and Gepts, P. (2001). “Evolutionary and genetic perspectives on the
dynamics of crop genepools,” in Broadening the Genetic Base of Crop Production,
eds D. Cooper, C. Spillane, and T. Hodgkin (Wallingford: CABI), 25–70. doi:
10.1079/9780851994116.0025

Sujatha, M., and Sailaja, M. (2005). Stable genetic transformation of castor
(Ricinus communis L.) via Agrobacterium tumefaciens-mediated gene transfer
using embryo axes from mature seeds. Plant Cell Rep. 23, 803–810. doi:
10.1007/s00299-004-0898-4

Suwanaketchanatit, C., Piluek, J., Peyachoknagu, S., and Huehne, P. S. (2007). High
efficiency of stable genetic transformation in Dendrobium via microprojectile
bombardment. Biol. Plant. 51, 720–727. doi: 10.1007/s10535-007-0148-z

Tör, M., Ainsworth, C. C., and Mantell, S. H. (1993). Stable transformation of
the food yam (Dioscorea alata L.) by particle bombardment. Plant Cell Rep. 12,
468–473. doi: 10.1007/BF00234714

Tör, M., Twyford, C. T., Funes, I., Boccon-Gibod, J., Ainsworth, C. C., and Mantell, S.
H. (1998). Isolation and culture of protoplasts from immature leaves and embryo-
genic cell suspensions of Dioscorea yams: tools for transient gene expression
studies. Plant Cell Tissue Organ Cult. 53, 113–125. doi: 10.1023/A:1006028406641

Urwin, P. E., Green, J., and Atkinson, H. J. (2003). Expression of a plant
cystatin confers partial resistance to Globodera, full resistance is achieved by
pyramiding a cystatin with natural resistance. Mol. Breed. 12, 263–269. doi:
10.1023/A:1026352620308

Urwin, P. E., Lilley, C. J., McPherson, M. J., and Atkinson, H. J. (1997).
Resistance to both cyst and root-knot nematodes conferred by transgenic
Arabidopsis expressing a modified plant cystatin. Plant J. 12, 455–461. doi:
10.1046/j.1365-313X.1997.12020455.x

Urwin, P. E., Troth, K. M., Zubko, E. I., and Atkinson, H. J. (2001). Effective
transgenic resistance to Globodera pallida in potato field trials. Mol. Breed. 8,
95–101. doi: 10.1023/A:1011942003994

Vain, P., Worland, B., Clarke, M. C., Richard, G., Beavis, M., Liu, H., et al. (1998).
Expression of an engineered cysteine proteinase inhibitor (oryzacystatin-I_D86)
for nematode resistance in transgenic rice plants. Theor. Appl. Genet. 96, 266–271.
doi: 10.1007/s001220050735

Wakasa, Y., Ozawa, K., and Takaiwa, F. (2012). Agrobacterium-mediated co-
transformation of rice using two selectable marker genes derived from rice
genome components. Plant Cell Rep. 31, 2075–2084. doi: 10.1007/s00299-012-
1318-9

Wilmink, A., and Dons, J. J. M. (1993). Selective agents and marker genes for use in
transformation of monocotyledonous plant. Plant Mol. Biol. Rep. 11, 165–185.
doi: 10.1007/BF02670474

Zhang, P., and Puonti-Kaerlas, J. (2000). PIG-mediated cassava transformation
using positive and negative selection. Plant Cell Rep. 19, 1041–1048. doi:
10.1007/s002990000245

Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J. D. G., Boller,
T., et al. (2006). Perception of the bacterial PAMP EF-Tu by the receptor
EFR restricts Agrobacterium-mediated transformation. Cell 125, 749–760. doi:
10.1016/j.cell.2006.03.037

Zuo, J. R., Niu, Q. W., Ikeda, Y., and Chua, N. H. (2002). Marker-free transformation:
increasing transformation frequency by the use of regeneration-promoting genes.
Curr. Opin. Biotechnol. 13, 173–180. doi: 10.1016/S0958-1669(02)00301-4

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 09 July 2014; accepted: 26 August 2014; published online: 15 September 2014.
Citation: Nyaboga E, Tripathi JN, Manoharan R and Tripathi L (2014) Agrobacterium-
mediated genetic transformation of yam (Dioscorea rotundata): an important tool
for functional study of genes and crop improvement. Front. Plant Sci. 5:463. doi:
10.3389/fpls.2014.00463
This article was submitted to Plant Biotechnology, a section of the journal Frontiers in
Plant Science.
Copyright © 2014 Nyaboga, Tripathi, Manoharan and Tripathi. This is an open-
access article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | Plant Biotechnology September 2014 | Volume 5 | Article 463 | 14

http://dx.doi.org/10.3389/fpls.2014.00463
http://dx.doi.org/10.3389/fpls.2014.00463
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Biotechnology/
http://www.frontiersin.org/Plant_Biotechnology/archive

	agrobacterium-mediated genetic transformation of yam (dioscorea rotundata): an important tool for functional study of genes and crop improvement
	Introduction
	Materials and methods
	Yam cultivars and explant preparation
	Sensitivity of axillary bud explants to antibiotics
	agrobacterium strains and binary vectors used for transformation
	Inoculation of explants with a. tumefaciens and co-cultivation
	Selection and regeneration of transgenic plants
	Histochemical gus assay
	Visualization of gfp fluorescence
	Genomic dna isolation and pcr analysis of transgenic lines
	Rna extraction and rt-pcr analysis
	Dot blot and southern blot analysis
	Statistical analysis

	Results and discussion
	Selection of selectable marker suitable for yam transformation
	Transformation, selection, and regeneration of transgenic plants
	Gus expression and visualization of gfp fluorescence in transgenic plants
	Molecular analysis of transgenic plants
	Future prospects of genetic engineering for yam improvement

	Conclusion
	Acknowledgments
	References


