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Plants are continuously exposed to agents such as herbivores and environmental mechan-
ical stresses that cause wounding and open the way to the invasion by microbial
pathogens. Wounding provides nutrients to pathogens and facilitates their entry into the
tissue and subsequent infection. Plants have evolved constitutive and induced defense
mechanisms to properly respond to wounding and prevent infection. The constitutive
defenses are represented by physical barriers, i.e., the presence of cuticle or lignin,
or by metabolites that act as toxins or deterrents for herbivores. Plants are also able
to sense the injured tissue as an altered self and induce responses similar to those
activated by pathogen infection. Endogenous molecules released from wounded tissue
may act as Damage-Associated Molecular Patterns (DAMPs) that activate the plant innate
immunity. Wound-induced responses are both rapid, such as the oxidative burst and
the expression of defense-related genes, and late, such as the callose deposition, the
accumulation of proteinase inhibitors and of hydrolytic enzymes (i.e., chitinases and
gluganases). Typical examples of DAMPs involved in the response to wounding are the
peptide systemin, and the oligogalacturonides, which are oligosaccharides released from
the pectic component of the cell wall. Responses to wounding take place both at the
site of damage (local response) and systemically (systemic response) and are mediated by

hormones such as jasmonic acid, ethylene, salicylic acid, and abscisic acid.
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INTRODUCTION

The sessile condition exposes plants to any possible environmen-
tal stress. Injury, one of the most frequent stress conditions that
plants must face, may cause both loss of nutrients and entry of
microbes. Therefore, plants have evolved sophisticated mecha-
nisms to promptly respond to wounding, rapidly heal the tissue
and prevent microbe infections. Unlike animals, plants do not
have mobile cells specialized for defense, but each plant cell has the
capability to activate protective mechanisms upon injury sensing.
The capacity of cells to activate defense responses upon “danger”
sensing and recognition of non-self microbe-associated molec-
ular patterns (MAMPs) and/or endogenous damage-associated
molecular patterns (DAMPs) is characteristic of the plant innate
immunity (Akira etal., 2006). Defense responses activated by
wounding are similar and overlapping with those activated by
MAMPs and DAMPs, indicating that both injury and pathogens
are limited by plants in a similar manner. Most of our knowledge
onwounding derives from studies in which plants are mechanically
damaged. Mechanical injury activates defenses that are similar to
those induced by herbivores and insects (Reymond etal., 2000;
Arimura etal., 2005; Rehrig etal., 2014), although the damage
caused by herbivores has peculiar characteristics and mechani-
cal wounding is necessary but not sufficient to trigger the full
response activated by insects (Maffei etal., 2007). Differences
between mechanical wounding and attacks by herbivores and
insects will be discussed in other reviews of this issue (Krautz
etal., 2014).

Plants contrast wounding with both constitutive structures,
such as epicuticular films and crystals of wax, and secretory
conduits for latices or resins, that restrict the access of oppor-
tunistic microorganisms to the tissue, as well as wound-induced
responses that, unlike the constitutive defenses, are energetically
costly (Leon etal., 2001; Bonaventure and Baldwin, 2010) and
thereby regulated and triggered only when required. The pri-
mary events of the response to wounding occur at the injured
site (local response) while the undamaged tissues respond later
(systemic response), upon perception of mobile signals that com-
municate the existence of a critical condition (Farmer and Ryan,
1992). Extracellular signals such as cell wall-derived oligogalactur-
onides (OGs) and peptides, like systemin, have been characterized
as typical signals of wounding (Roberts, 1992). Genes involved in
biosynthesis of jasmonic acid (JA) and ethylene (ET) as well as
genes for general stress responses (oxidative stress, dehydration
stress, heat-shock proteins, etc.) are rapidly induced (Reymond
etal.,2000; Delessert et al., 2004). Later, events of protein turnover
and transport processes involving aquaporins, lipid transfer pro-
teins, ABC transporters, sugar, and peptide transporters occur.
Finally, the modulation of primary metabolism (carbohydrate and
lipid metabolism, nitrogen assimilation) and the expression of
genes involved in the biosynthesis of secondary metabolites with
repellent or anti-digestive activity [i.e., glucosinolates, cyanogenic
glucosides, alkaloids, phenolics, and proteinase inhibitors (PI)]
may occur. Transcriptional profiling analyses performed on 8.200
Arabidopsis genes revealed that approximately 8% of these genes
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are differential expressed after wounding and about 20% of the
wounding-regulated genes encode proteins involved in signal
transduction, such as members in the AP2, WRKY, and MYB
families (Cheong etal., 2002). A large fraction of the wound-
responsive genes are also responsive to pathogens, suggesting
that signaling pathways activated by these stimuli are shared (see
below). This clearly indicates that an important reprograming of
gene expression occurs in plants to defend the damaged tissue,
which represents an easy passage for pathogen invasion. Receptors
and signal transduction elements usually involved in pathogen
response as well as several putative disease resistance genes (R
genes) are up-regulated by wounding (Cheong etal., 2002). This
review is focused on what is currently known about the putative
signals that are released upon wounding, on the mechanism of
their perception and transduction and on plant defense responses
activated upon injury sensing.

SENSING THE WOUNDING THROUGH THE CELL WALL
INTEGRITY

The cuticle, composed of cutin and cuticular waxes, covers the out-
ermost epidermal cell wall in the aerial portions of plants (Riederer
and Schreiber, 2001; Nawrath, 2006). The integrity of cuticle and
cell wall (CWI) is affected by wounding and may be sensed by
the plant cells. Studies on Arabidopsis plants expressing cutinase
(Sieber etal., 2000) and on mutants impaired in cuticle biosyn-
thesis have indicated that a more permeable cuticle allows the
passage of diffusates with growth-inhibiting activity against phy-
topathogenic fungi (Bessire etal., 2007; Chassot etal., 2007). A
breach in the cuticle caused by wounding also favors the diffusion
of elicitors that, therefore, have an easier access to the cell surface,
while an intact cuticle may prevent their passage from the surface.
An early recognition of elicitors may lead to a prompt and effi-
cient activation of the immune responses (L'Haridon etal., 2011;
Benikhlef etal., 2013).

The cell wall is a dynamic structure that play a critical role
in growth and development as well as in preventing wounding
and pathogen attack (Bellincampi etal., 2014). The perception
of an altered CWI is a key event during wounding (Nuhse,
2012; Wolf etal., 2012). Subtle modifications caused by phys-
ical perturbations such as light touch, soft mechanical stress,
wind or contact with insects may be sensed at the level of the
plasma membrane through stretch-activated mechano-sensitive
channels that increase the intracellular Ca?™ concentration and
trigger further signal transduction events (Nakagawa etal., 2007;
Haswell etal., 2008; Benikhlef etal., 2013). Expression of the
Arabidopsis calcium channels MATING INDUCED DEATH 1
(MID1)-COMPLEMENTING ACTIVITY 1 (MCA1) and MCA2
in yeast complements the lethal effect of loss-of-function muta-
tions in the MIDI and MID2 genes encoding stretch-activated
calcium channels (Kanzaki etal., 1999; Ketela etal., 1999) and
promote calcium influx upon mechanical stimulation (Naka-
gawa etal., 2007; Yamanaka etal., 2010). Putative cation channels
belonging to the GLUTAMATE RECEPTOR-LIKE (GLR) fam-
ily, which mediate calcium influxes in response to MAMPs
(Kwaaitaal etal., 2011), are also required for the expression
of several JA-inducible genes upon wounding in Arabidopsis
(Mousavi etal., 2013).

Several Arabidopsis receptor like kinases (RLKs), among which
those belonging to the Catharanthus roseus receptor-like kinase 1
family that includes THESEUS 1 (THE1), HERCULES 1, and FER-
ONIA, have been proposed as possible sensors of CWI (Hematy
etal., 2007; Guo etal., 2009). Loss of THE1 function attenuates
the growth defects and ectopic lignification phenotype caused
by a mutation in the CELLULOSE SYNTHASE 6 (Hematy etal.,
2007). Moreover, THEI is involved in the accumulation of reactive
oxygen species (ROS) and lignin deposition induced by isox-
aben, an inhibitor of cellulose synthesis (Denness etal., 2011).
This evidence clearly shows that defects in the cell wall caused
by a disturbance of cellulose biosynthesis are sensed through
THEI.

The monitoring of the status of pectin contributes to the
sensing of CWI alterations (De Lorenzo etal., 2011). Plants car-
rying mutations that significantly alter pectin integrity, such
as quasimodo 2 or tumorous shoot development 2, exhibit con-
stitutive induction of defense responses (Krupkova etal., 2007;
Mouille etal., 2007). However, minor modifications in the methy-
lation status, which occur in transgenic plants overexpressing the
inhibitors of pectin methylesterases or in KO mutants of PECTIN
METHYLESTERASE 3, do not influence the expression of defense
genes (Lionetti etal., 2007, 2010, 2012; Raiola etal., 2011). Possi-
ble indicator of an altered pectin integrity is the presence of OGs,
a well-known class of DAMPs that, similarly to MAMPs, act as
danger signals for the activation of the immune responses (Boller
and Felix, 2009; De Lorenzo etal., 2011). OGs are released from
the plant cell walls upon partial degradation of homogalacturo-
nan, the main component of pectin, by wound-induced hydrolytic
enzymes or, during infections, by microbial hydrolytic enzymes.
The size of OGs is critical for their elicitor activity, being OGs
with a degree of polymerization (DP) between 10 and 15 most
active while shorter oligomers are inactive. OGs induce in sev-
eral plant species a wide range of defense responses, including
production of ROS, nitric oxide, phytoalexins, glucanase, chiti-
nase, and callose (Bellincampi etal., 2000; Galletti etal., 2008;
Rasul etal.,, 2012; Ferrari etal., 2013). In tomato, OGs, proba-
bly generated by the action of a wound-inducible plant-derived
polygalacturonase (PG; Bergey etal.,, 1999), induce the accu-
mulation of PI (Ryan and Jagendorf, 1995). OGs may act only
locally, because their oligoanionic nature confers them a limited
mobility in the tissues (Baydoun and Fry, 1985). In Arabidop-
sis, both wounding and OG treatment induce a strong local
resistance against the necrotrophic fungus Botrytis cinerea that
is independent of salicylic acid (SA)- and JA-mediated signaling
(Chassot etal., 2007; Ferrari etal., 2007). OGs also antagonize
auxin responses (Branca etal., 1988; Bellincampi etal., 1996;
Ferrari etal., 2008; Savatin et al., 2011), but the auxin-OG antago-
nism is uncoupled from their activity as defense elicitors. Indeed,
the Arabidopsis mitogen-activated protein (MAP) kinase kinase
kinases ANPs have been identified as elements in the OG-mediated
induction of defenses, but do not play a major role in the
inhibition of the auxin-induced gene expression (Savatin etal.,
2014).

OG sensing in Arabidopsis may involve wall-associated kinases
(WAKSs; Brutus et al., 2010; Kohorn and Kohorn, 2012). WAKs are
RLKSs consisting of an extracellular domain, containing epidermal

Frontiers in Plant Science | Plant-Microbe Interaction

September 2014 | Volume 5 | Article 470 | 2


http://www.frontiersin.org/Plant-Microbe_Interaction/
http://www.frontiersin.org/Plant-Microbe_Interaction/archive

Savatin etal.

Wouonding in plants

growth factor repeats, a transmembrane domain and a cytoplas-
mic Ser/Thr kinase domain. The extracellular domain of WAK1
and WAK?2 also contains an N-terminal portion that binds pectin
in vitro (Decreux and Messiaen, 2005; Kohorn etal., 2009). OGs
with a DP > 9 bind reversibly WAK1 and the binding increases
when OGs are present as dimers in a calcium-mediated “egg box”
conformation (Decreux and Messiaen, 2005; Cabrera et al., 2008).
Five WAK genes are clustered on chromosome 1 and additional
21 WAK-like genes (WAKL) are present in Arabidopsis (Verica
etal., 2003). WAKI, WAK2, WAKL5, and WAKL7 are induced
by wounding (Wagner and Kohorn, 2001; Verica etal., 2003). In
rice, OsWAKT1 is also induced by mechanical wounding as well as
by SA and methyl-JA (MeJA) but not by abscisic acid (ABA; Li
etal., 2008). A role of WAK2 in the wound response was suggested
by the analysis of gene expression in plants overexpressing WAK2
fused to a TAP epitope (Kohorn etal., 2012).

A lectin receptor kinase-1.9 (DORN1), which plays a role in
the perception of extracellular ATP, is also involved in the wound
responses. Indeed, ectopic expression of DORN1 enhances expres-
sion of genes co-regulated by wounding and ATP (Choi etal,
2014). A maize wound-induced gene encoding a leucine-rich
RLK (WPK1) is involved in JA- and phytochrome-mediated sig-
naling (He etal., 2005). In tobacco, a leucine-rich repeat RLK
(WRK) is involved in the JA-dependent wound signaling and acts
upstream of the SA- and wound-induced protein kinases SIPK and
WIPK, respectively (Seo etal., 1995; Zhang and Klessig, 1998a,b;
Takabatake etal., 2006). WRK expression increases 15 min after
wounding (Ito etal., 2002). WRK orthologs are present in dicots
(Arabidopsis and tomato) but not in monocots (rice and wheat;
Takabatake et al., 2006).

WOUND-ASSOCIATED DAMPs

Peptides that function as DAMPs have been isolated in wounded
tissues. Systemin, a 18-aminoacid peptide, was identified in
tomato after wounding or insect attack as a cleavage product
released into the apoplast from prosystemin, i.e., a larger cyto-
plasmic precursor protein that accumulates in the cytosol of
phloem parenchyma cells (Jacinto etal., 1997; Narvaez-Vasquez
and Ryan, 2004; Schilmiller and Howe, 2005). Sensing of sys-
temin activates the biosynthesis of JA, which, in turn, activates
defenses responses in neighboring cells (Orozco-Cardenas etal.,
1993). The systemin receptor was identified as the tomato homolog
of the brassinosteroid receptor BRI1, SR160 (Scheer and Ryan,
1999), but more recent findings argued against this evidence
(Hind etal., 2010). Hydroxyproline-rich systemins (HypSys) that
trigger plant immunity during herbivore or pathogen attack (Heil-
ing etal.,, 2010; Bhattacharya etal., 2013) have been identified
in Solanaceae (Pearce etal., 2001, 2007, 2009; Pearce and Ryan,
2003; Bhattacharya etal., 2013) and in sweet potato (Chen etal.,
2008). HypSys peptides, as systemin, are processed from precursor
proteins which are induced by wounding (Narvaez-Vasquez et al.,
2005).

A peptide, Pepl, was identified in Arabidopsis for its capa-
bility of inducing alkalinization in suspension-cultured cells.
Pepl is a 23-amino acid peptide released from the C-terminus
of a 92 amino acid precursor protein, PROPEP1, which is
induced by wounding, MeJA and ET. PROPEPI belongs to a

gene family of eight members. The family members PROPEP2
and PROPEP3, and, to a lesser extent, PROPEPI are strongly
induced by microbial pathogens such as B. cinerea, Phytoph-
thora infestans, and Pseudomonas syringae as well as by various
MAMPs and DAMPs elicitors, including NPP1, HrpZ, flg22, and
OGs (Craigon etal., 2004; Toufighi etal., 2005; Denoux etal.,
2008). PROPEPs are localized in the cytosol and the tonoplast
and may function in the amplification/modulation of elicitor-
triggered responses rather than being signals responsible for
the initiation of the defense responses (Huffaker etal., 2006;
Bartels etal., 2013). Homologues of AtPeps have been identified
in maize. ZmPepl regulates disease responses whereas ZmPep3
triggers the biosynthesis of JA and ET and induces the pro-
duction of anti-herbivore volatiles (Huffaker etal., 2011, 2013).
AtPeps are perceived by two RLKs (PEPRI and PEPR2), which
share structural and functional similarity to the MAMP recep-
tors FLS2 and EFR (Yamaguchi etal., 2006; Krol etal., 2010).
PEPR1 and PEPR2 are induced by wounding and MeJA but not
by SA and 1-aminocyclopropane-1-carboxylic acid (ACC) syn-
thase (Yamaguchi et al., 2010). They are also differentially induced
by DAMPs (AtPeps and OGs) and MAMP (flg22 and elf18;
Zipfel etal., 2004, 2006; Denoux etal., 2008; Yamaguchi etal.,
2010).

Cutin monomers, that are formed as a breakdown of the cuti-
cle, have been proposed as signal molecules for the induction of
disease resistance in cereals, i.e., barley and rice (Schweizer etal.,
1994). Fungal pathogens such as Erysiphe graminis and Magna-
porthe grisea are able to produce and secrete cutinases that facilitate
the formation of cutin monomers in the infection site. Pretreated
barley leaves with cutin monomers display acquired protection
against E. graminis (Schweizer etal., 1996b) and evidences that
free cutin monomers can be recognized by plant cells as endoge-
nous stress-related signals were obtained in cultured potato cells
(Schweizer etal., 1996a).

SIGNAL TRANSDUCTION UPON WOUNDING
Many events triggered by wounding have been uncovered and are
discussed here.

ELECTRIC SIGNALS

The involvement of electrical signals in the local and systemic alert
in plants was postulated in 1992, when it was found that mechan-
ical wounding in tomato cotyledons causes the transmission of
a potential action to the first unwounded leaf concomitantly
with the induction of PI proteins at the site of injury (Wildon
etal.,, 1992). More recently, it has been shown that mechanical
wounding at the tips of Arabidopsis leaves generates, within a
few seconds, wound-activated surface potential (WASP) changes
that are consequent to a plasma membrane depolarization. The
WASP signal first moves from tips toward the center of the
rosette leaves and then to a restricted and selected number of
distal leaves. For example, wounding at the tip of leaf no. 8
causes WASP changes of the same amplitude and duration in
leaves no. 5, 11, 13, and 16 but not in other leaves. Both JA
and JA-responsive gene expression increases with a total of 313
genes up-regulated both locally and systemically. GLR proteins,
putative cation channels, are required for WASP propagation
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leading to defense gene expression (Mousavi etal., 2013). Simi-
lar WASP effects on JA levels and defense gene expression have
been reported in tomato plants upon wounding (Herde etal.,
1996). Electric signals that propagate over distances of 100 cm
from the wounded site are generated in avocado trees (Oyarce and
Gurovich, 2011).

10N FLUXES

One of the earliest responses (0.5-2 min) activated by the elici-
tors of plant defenses is the membrane depolarization following
the influx of H* and Ca?* and a concomitant efflux of K+ and
nitrate across the membrane (Nurnberger etal., 2004; Mithofer
etal., 2005). Injury-induced ion fluxes occur in both dicots such
as Vicia faba and monocots such as Hordeum vulgare (Zimmer-
mann etal., 2009). Calcium spikes are critical for downstream
signaling, since the physiological concentration of cytosolic cal-
cium very rapidly increases after “danger” sensing (Lecourieux
etal., 2006; Kudla etal., 2010; Reddy etal., 2011). In plants, as
in animals, calcium is a well-known second messenger. Plants
discriminate among the various stimuli by generating “calcium
signatures” that are characteristic in terms of sub-cellular local-
ization, amplitude, duration and frequency (Sanders etal., 2002).
Intracellular peaks of calcium are detected in both epidermis and
vascular cells proximal to the injury within 6 s (Beneloujaepha-
jri etal., 2013). Signatures are decoded by three major types of
sensor proteins: calmodulins (CAMs) and CAM-like proteins, cal-
cineurin B-like proteins (CBL) and calcium-dependent protein
kinases (CDPKs), a class of calcium sensors bearing both protein
kinase and CAM-like domains in a single polypeptide (Luan etal.,
2002; Harper and Harmon, 2005; Luan, 2009). Different studies
highlight the role of calcium sensors in plant immunity. For exam-
ple, the Arabidopsis CAM binding protein (CBP) 60 g contributes
to flg22-induced accumulation of SA and is involved in resistance
against P. syringae (Wang etal., 2009); the rice CBL-interacting
protein kinases (CIPKs) 14 and 15 are involved in various MAMP-
induced immune responses (Kurusu etal., 2010); the potato and
tobacco CDPKs participate in the activation of the oxidative burst
(Ludwig etal., 2005; Kobayashi etal., 2007, 2012). In Arabidop-
sis, CALCIUM-DEPENDENT PROTEIN KINASE 3 (CPK3) and
CPK13 are required for defense gene induction upon feeding by
the generalist herbivore Spodoptera littoralis (Kanchiswamy etal.,
2010). CPK3 is also activated by flg22 in Arabidopsis protoplasts
suggesting that it is involved in MAMP signaling as well (Boudsocq
etal., 2010). In tomato, LeCDPK2 contributes to wound-triggered
ET production by phosphorylating and activating the ET biosyn-
thesis enzyme ACC SYNTHASE 2 (Kamiyoshihara etal., 2010).
In Nicotiana attenuata, CDPK4 and CDPK5 are negative regula-
tors of JA synthesis; plants with silenced expression of these two
CDPKs are more resistant to larvae of Manduca sexta and exhibit
enhanced responses to mechanical wounding (Yang etal., 2012).
MeJA, touching and mechanical wounding enhance a calcium-
activated CDPK activity that induces systemic wound responses
also in maize (Szczegielniak etal., 2012).

REACTIVE OXYGEN SPECIES
The production of ROS is a highly conserved process among
aerobic organisms and is involved in defense and development

processes of plants. ROS are emerging as signal molecules in plant
immunity activation in response to both pathogens and wounding
(Mittler etal., 2011; Suzuki and Mittler, 2012). In tomato, hydro-
gen peroxide is detected within 1 h after wounding and increases
at 4-6 h both locally and in the upper unwounded leaves. OGs
generated by a plant PG probably act as mediators of this process.
A tomato mutant unable to properly respond to wounding neither
induce PG nor generates hydrogen peroxide and is more sus-
ceptible to larvae of Manduca sexta (Orozco-Cardenas and Ryan,
1999). Given its toxicity, hydrogen peroxide must be tightly regu-
lated to work as a signal molecule, and this is achieved through a
complex mechanism involving calcium, protein phosphorylation,
and production of ROS-scavenging enzymes that determine its
steady-state levels in the cell. Wound-induced apoplastic hydro-
gen peroxide is produced by transmembrane NADPH oxidases
(RBOHs) and by peroxidases, which also have a role in detoxifica-
tion of other ROS (Minibayeva et al.,2014). The C-terminal region
of plant RBOHs contains cytosolic FAD- and NADPH-binding
domains and six conserved transmembrane domains while the
cytosolic N-terminal region contains two EF-hand motifs which
bind calcium (Kobayashi etal., 2007; Oda etal., 2010; Proels
etal., 2010; Kimura etal., 2012; Drerup etal., 2013). Indeed, the
wound-induced oxidative burst is dependent on calcium spikes
and occurs also in the absence of the stimulus through arti-
ficially increasing the calcium levels in the cells (Monshausen
etal., 2007; Takeda etal.,, 2008; Kimura etal., 2012). On the
other hand, wound-related production of hydrogen peroxide is
abolished by pretreatments with the calcium channel blocker ver-
apamil or calcium chelators EGTA and oxalate (Beneloujaephajri
etal, 2013). A calcium-dependent protein kinase CPK5 phos-
phorylates RBOHD and, probably, represents the link between
calcium accumulation and ROS production. CPK5 phosphory-
lates in vitro and in vivo the N-terminal serine residues S39, 5148,
S$163, and S347 of AtRBOHD (Dubiella etal., 2013) while, in
a contradicting report, ROS production triggered by pathogen
infection is reduced in cpkl cpk2 double mutant plants (Gao
etal.,, 2013). RBOHD forms complexes with EFR and FLS2 as
well as with the plasma membrane-associated kinase BOTRYTIS-
INDUCED KINASE 1 (BIK1), which is also required for the
protection conferred by wounding against pathogens (Laluk et al.,
2011). BIK1 directly interacts with and phosphorylates different
residues of RBOHD in response to elicitors (Kadota etal., 2014).
In addition, RBOHF activity is regulated both through direct
binding of Ca?" to EF-hands and through calcium-dependent
phosphorylation by CBL1/9-CIPK26 complexes (Drerup etal.,
2013).

MITOGEN-ACTIVATED PROTEIN KINASES (MAPKs)

Mitogen-activated protein kinase cascades amplify several abi-
otic and biotic stimuli leading to appropriate physiological
responses (Rodriguez etal., 2010). They consist of a core module
of three kinases that perform sequential phosphorylation reac-
tions: a MAP kinase kinase kinase (MAP3K) activates a MAP
kinase kinase (MAP2K), which activates a MAPK. Involvement
of MAPKs in wounding has been widely described in various
plant species (Nakagami etal., 2005). In Arabidopsis, wounding
activates MEKK1, MPK3, MPK19 and, consequently, MEKK1
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phosphorylates MKK1 (Hadiarto etal., 2006). Wounding also
activates MPK4 and MPK6 and plants overexpressing the PP2C-
type phosphatase AP2C1, which dephosphorylates and inactivates
MPK4 and MPKG6, do not respond to wounding (Ichimura etal.,
2000). On the contrary, ap2cl mutants display enhanced responses
to wounding and are more resistant to phytophagous mites
(Tetranychus urticae; Schweighofer et al.,2007). On the other hand,
MPKS, which is activated through direct binding of CAMs in a
Ca’*-dependent manner and through a MKK3-mediated phos-
phorylation, negatively regulate the expression of RBOHD and
ROS homeostasis triggered by wounding (Nemoto etal., 2011). In
tobacco, the SA-induced protein kinase kinase SIPKK and MPK4,
which are orthologs of Arabidopsis MKK1/MKK2 and MPK4,
respectively, are required for wound-induced expression of JA-
responsive genes, being MPK4 activated by SIPKK (Gomi etal.,
2005). Moreover, WIPK and SIPK, which are orthologs of the
Arabidopsis MPK3 and MPKe, respectively, are also involved in
wounding signaling (Seo etal., 2007).

HORMONES

Wounding induces de novo synthesis of JA, ABA, and ET, which
are known to activate a network of interconnected pathways that
coordinate host defense responses (Pefia-Cortés et al., 1995; Bergey
etal., 1996; Bouquin etal., 1997). JA accumulates in wounded
plants and activates expression of various defense genes such as
those encoding PI, thionin, and enzymes involved in secondary
metabolism (Creelman and Mullet, 1997). Jasmonates, includ-
ing the active form jasmonoyl-isoleucine (JA-Ile), derive from
plastidial fatty acids through at least 10 intermediates and the
involvement of three cellular compartments (Staswick and Tiryaki,
2004; Browse, 2009; Fonseca etal., 2009; Schaller and Stintzi,
2009). In Arabidopsis, wounding at leaf no. 8 promptly (90 s)
induces an increase of JA amount in leaf no. 13, which shares a
connected vasculature with leaf no. 8 (Dengler and Kang, 2001).
Plant 13-lipoxygenases (13-LOXs) catalyze the first event in JA
synthesis, i.e., the dioxygenation of fatty acids (Andreou and
Feussner, 2009). In Arabidopsis, LOX2 is required for the JA syn-
thesis proximal to the wound (Glauser etal., 2009) while LOX6
is required for JA and JA-Ile accumulation in the wounded as
well as in the distal unwounded leaves. The conversion of JA to
JA-Ile takes 50 s in the wounded leaf and about 100 s in the distal
connected leaf no. 13 (Chauvin etal., 2013). JA and JA-Ile accu-
mulation in response to wounding have been demonstrated to be
dependent on WASPs (see above, Mousavi etal., 2013). Another
important step in JA synthesis is the accumulation of the JA precur-
sor 12-oxo-phytodienoic acid (OPDA) catalyzed by allene oxidase
(AOS), which is induced by tissue injury (Leon etal., 2001). In
potato, two putative AOS genes, StAOS1 and StAOS2, are dif-
ferentially induced upon wounding and are required for OPDA
and JA accumulation both in wounded and in unchallenged tis-
sues (Taurino etal., 2014). A possible link between JA signaling
and CWI alterations is suggested by the analysis of the Arabidopsis
cevl and cob mutants, which have defects in cellulose synthesis
and deposition and produce higher amount of JAs (Ellis etal.,
2002; Ko etal., 2006). On the other hand, plants with a reduced
expression of StAOS1 and StAOS2, and, consequently, a lower
amount of OPDA, display reduced PME activity, increased methyl

esterification level of pectins and an increased susceptibility to
an hypovirulent strain of Dickeya dadantii (Taurino etal., 2014).
In tomato, JA is preferentially generated in vascular bundles and
accumulates in the midrib of leaves (Stenzel et al., 2003). AOS and
lipoxygenases are located in the companion-cell-sieve-element
complex of the vascular bundle (Hause etal., 2003). Since sys-
temin accumulates in phloem parenchyma cells (Narvaez-Vasquez
and Ryan, 2004) and activates the octadecanoid pathway for JA
biosynthesis, it may be hypothesized that perception of systemin
on the surface of companion cells initiates the synthesis of JA that
is rapidly transported along the phloem (Schilmiller and Howe,
2005).

Abscisic acid is a stress hormone that mediates plant responses
to drought and salinity (Finkelstein, 2013) as well as the expres-
sion of wound-induced PROTEINASE INHIBITOR II (PIN2) gene
in tomato and potato (Pena-Cortés etal., 1995). Moreover, ABA
positively regulates programmed death in Arabidopsis leaf cells
surrounding the wounding site to confine injury and/or pathogen
infections (Bostock and Stermer, 1989). Spreading of programmed
cell death from wounded sites is repressed by the transcription fac-
tor MYB108 or BOTRYTIS SENSITIVEL (BOS1; Mengiste etal.,
2003), and plants lacking this element exhibit mis-regulated cell
death after wounding (Cui etal., 2013).

Ethylene production upon wounding has been documented
(O’Donnell etal., 1996; Bouquin etal., 1997; Liu etal., 1997).
Among the early wound-induced genes there are several ACC
synthase genes and many of ET response transcription factors,
i.e., EREBPs (Cheong etal., 2002). In tomato, ET and wound
signaling, mediated by systemin and JA, have been reported to
independently act on resistance against B. cinerea (Diaz etal,
2002). ET and JA, besides mediating inducible defenses in response
to wounding, have been also proposed to function in the trade-
off between growth and defense and the associated changes in
resource allocations (Onkokesung etal., 2010).

LATE RESPONSES

Early intra- and inter-cellular events activated around the
wounded site are required for late responses such as deposition
of callose, suberin, lignin, and synthesis of various phenolics that
may function both as a physical barrier and as antimicrobial sub-
stances. An Arabidopsis callose synthase, PMR4, is required for
wound-induced callose formation (Jacobs etal., 2003). Callose is
a (1—>3)-B-D-glucan synthetized in all types of plant tissues in
response to wounding (Chen and Kim, 2009). Its accumulation is
dependent on the oxidative burst (Daudi et al., 2012; O’Brien et al.,
2012) and occurs at the level of the cell wall either at wounded pen-
etration sites or during attempted infections of fungi (Bellincampi
etal, 2014). Callose may also prevent the spread of viruses
through plasmodesmata (Benitez-Alfonso etal., 2011). Activity of
both copper amine oxidases (CuAQO) and flavin-containing amine
oxidases (PAO), hydrogen peroxide-producing enzymes respon-
sible for the oxidative de-amination of polyamines, appears to
be important in wound healing in tobacco plants (Tisi etal.,
2008). CuAO mediates also the enhanced accumulation of cell
wall phenolics, observed on wound surface in tobacco plants
over-expressing a fungal endopolygalacturonase, which show
constitutively activated defenses. This observation suggests an
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FIGURE 1 | Local and systemic responses induced by wounding in
Arabidopsis. \Wounding of Arabidopsis leaves (1) is sensed through
mechano-sensitive elements or by recognition of damage-associate
molecular patterns, such as OGs or PEPs, which are perceived at the
plasma membrane level. (2) Elements involved in wound signaling include
calcium channels, MAPK cascades, CDPKs, and other kinases. Cell-to-cell
communication is achieved by H, O, waves produced by the
trans-membrane NADPH oxidase RBOHD. Alert messages are generated
and systemically propagated to undamage tissues through WASPs (red
dashed lines) and other signals, such as JA. (3) Dashed lines indicate still
partially uncharacterized roles of MAPKs or hypothetical cascades. WRGI:
wound-regulated gene induction.

important role of polyamine catabolism-derived hydrogen per-
oxide in the response activated by a compromised pectin integrity
(Cona etal., 2014). Reconstruction of damaged tissues often takes
place upon wounding and involves vascular and/or other cells that
may divide and differentiate to reunite the existing tissues. More-
over, active biosynthesis and accumulation of pectic substances has
been described in the cell wall of the reunion region in the cortex in
cucumber and tomato hypocotyls (Asahina etal., 2002). The tran-
scription factors RAP2.6L and ANACO071 are induced by ET and

JA, differentially expressed around the injury site and are essen-
tial for tissue reunion of Arabidopsis wounded flowering stems
(Asahina etal., 2011).

CONCLUSION

Pathogens often utilize wounded tissues for their entry into
the plant. Wounding is rapidly perceived through an efficient
surveillance mechanism of tissue integrity followed by cell-to-cell
communication and long-distance signaling. Every cell is able to
rapidly produce and propagate different alert messages, such as
WASPs and ROS waves (Figure 1), which rapidly prime the rest
of the plant to set up defenses against the potential danger. Prop-
agation occurs over long distances, between different parts of the
same plant and even between different individuals through volatile
molecules production (Komarova etal., 2014). In the recent years
several elements involved in sensing and signaling of wounding
have been identified showing that the defense-related responses
activated by wounding are comparable and almost overlapping
with those activated after elicitor sensing. Thus, injury triggers a
similar level of alert as a pathogen does, indicating that a breach in
the physical barriers of the plant needs to be efficiently defended.
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