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Polyploidy is a widespread phenomenon among higher plants and a major factor shaping
the structure and evolution of plant genomes. The important ornamental chrysanthemum
(Chrysanthemum indicum hybrid) possesses a hexaploid genome with 54 chromosomes
and was classified based on its evolutionary origin and cytological methods as an
allopolyploid. However, it is questionable whether cytological methods are sufficient
to determine the type of ploidy, and there are more informative methods available
based on molecular marker analyses. Therefore, we collected segregation data for 406
dominant molecular marker alleles [327 amplified fragment length polymorphism (AFLPs),
65 single-strand conformation polymorphism (SSCPs) and 14 microsatellites (EST-SSRs)] in
a biparental F1 population of 160 individuals. We analyzed these data for the characteristics
that differ between allopolyploids and autopolyploids, including the segregation ratio of
each marker, the ratio of single-dose (SD) to multi-dose (MD) markers, the ratio of SD
markers in coupling to those in repulsion and the banding patterns of the SSRs. Whereas
the analysis of the segregation ratio of each polymorphic marker indicated disomic (13
markers) as well as hexasomic (eight markers) inheritance, the ratio of SD markers in
coupling to those in repulsion was 1:0, which is characteristic of autopolyploids. The
observed ratio of SD to MD markers was 0.67:0.33 which is significantly different to
the expected segregation for auto- and allohexaploids. Furthermore, the three EST-SSR
alleles were inherited in all possible combinations and were not independent of each
other, as expected for fixed heterozygosity in allopolyploids. Combining our results with
published cytological data indicates that cultivated chrysanthemums should be classified
as segmental allohexaploids.

Keywords: allopolyploidy, autopolyploidy, molecular marker, polysomic inheritance, single dose markers, linkage

in repulsion

INTRODUCTION
Chrysanthemums (Chrysanthemum indicum hybrid, C. x gran-
diflorum or C. morifolium) are among the most economically
important ornamental plants worldwide and are produced as cut
flowers and as potted or garden plants. Chrysanthemums belong
to the large plant family Asteraceae and are native to the Northern
Hemisphere, primarily Europe and Asia (Dowrick, 1952). Cul-
tivated chrysanthemums are generally believed to be the result
of natural hybridization involving several different species, such
as C. indicum L., C. morifolium, C. vestitum, and C. lavanduli-
folium (Vogelmann, 1969; Dai et al., 1998; Yang et al., 2006). These
crosses led to the formation of a hexaploid hybrid complex with
54 chromosomes (Dowrick, 1953).

Because cultivated chrysanthemums resulted from hybridiza-
tion events between different species, and because the occurrence
of bivalent chromosomes is detected in meiosis in all four inves-
tigated polyploid Chrysanthemum accessions (Watanabe, 1977;
Li et al., 2011), the cultivated forms are currently classified
as allohexaploids. However, polyploid genomes can be highly

dynamic, and Stebbins (1947) proposed that it might be difficult
to unambiguously classify the type of ploidy of an organism.
This was also indicated by Watanabe (1983) for the hexaploid
C. japonense, which is not believed to be a progenitor of the
C. indicum hybrid, reporting a very limited formation of multi-
valents (3.8%) using microscopic methods. In contrast, Watanabe
(1977) and Li et al. (2011) state a clear autopolyploid behavior
in cytological studies of Chrysanthemum species closely related
to the ornamental types. Therefore, it is necessary to com-
bine cytological and molecular methods to clarify the type of
ploidy.

Polyploids are classified into the two major categories of auto-
and allopolyploids. Allopolyploids are characterized by preferen-
tial pairing of chromosomes or fixed heterozygosity, which results
from the combination of divergent parental genomes, bivalent
chromosome formation in meiosis and disomic inheritance at each
locus. In contrast, for autopolyploids the formation of multiva-
lent chromosomes and polysomic inheritance is generally assumed
(Stebbins, 1947; Soltis and Soltis, 2000). However, in addition
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to these extremes, intermediary forms have also been described
(Stebbins, 1947; Sybenga, 1969).

In addition to cytological methods, Wu et al. (1992) described
the usefulness of single-dose (SD) molecular markers to dis-
tinguish allopolyploidy from autopolyploidy. SD markers are
characterized by only one dominant marker allele at a single
locus and can be distinguished from MD markers by determin-
ing the means of the corresponding recombination frequencies
(Mather, 1957). Silva et al. (1993) determined the theoretical
ratios of SD to MD markers for allo- and autopolyploids, which
might indicate the ploidy type of an organism. A SD marker
present in only one parent (uniparental marker) has a theoreti-
cal segregation ratio of 1:1 (presence: absence) in an F1 progeny
of both autopolyploids and allopolyploids. Likewise, biparental
markers will segregate in a 3:1 (presence:absence) ratio in both
auto- and allopolyploids. In contrast, MD markers have more
complex segregation ratios that differ between autopolyploids
and allopolyploids. The expected ratios for SD to MD markers
is 0.625:0.375 in allopolyploids and 0.75:0.25 in autopolyploids
(Silva and Sorrells, 1996) so that the type of ploidy can be
inferred if a larger number of markers is tested for SD versus MD
segregation.

Furthermore, Wu et al. (1992) used SD markers for 75 individ-
uals and showed a linkage in the coupling phase for allo- and
autopolyploids, whereas a linkage in the repulsion phase can
be detected only in allopolyploids. By calculating the ratio of
markers in coupling to those in repulsion, it is possible to dis-
tinguish allopolyploidy (ratio of 1:1) from autopolyploidy (ratio
of 1:0 for polyploids above tetraploidy). Additionally, the banding
patterns of sequence specific markers, such as SSRs, reflect the
distributions of the homologous and homeologous chromosomes
within the progeny. Thus, this type of marker is informative in
determining the pairing of the chromosomes, as it indicates the
occurrence of fixed heterozygosity and therefore also the type of
ploidy.

By using molecular markers, we sought to determine whether
the classification of chrysanthemum as allo-hexaploid, based on
cytological methods, is conclusive. Knowledge about the type of
ploidy is of interest from an exploratory and a breeder’s point of
view because desirable alleles cannot be freely combined in allo-
hexaploid genotypes. Therefore, we describe the use of amplified
fragment length (AFLP), single-strand conformation polymor-
phism (SSCP) and microsatellite (SSR) markers in a segregating
biparental F1 population to investigate the type of ploidy of culti-
vated chrysanthemums. Additionally, we compare our results with
previously published cytological data.

MATERIALS AND METHODS
PLANT MATERIAL
We established a segregating biparental F1 population (MK11/3)
of 160 individuals by crossing the female parent C. indicum
hybrid “Kitam” (541) with the paternal parent “Relinda” (VZR),
which is a registered C. indicum hybrid variety. Three cuttings of
each genotype were cultivated with 48 plants per m2 in plots of
12.5 cm × 12.5 cm. The plants were grown in a fertilized substrate
(a mixture of peat moss and chalked compost soil) in a greenhouse
under a 16 h light/8 h dark cycle at a constant temperature of 22◦C.

DNA EXTRACTION
For the DNA extraction, 70 mg of unfolded, young leaves was
used. The plant material was dried overnight at 37◦C, frozen in
liquid nitrogen and ground using a bead mill. The extraction
was performed using the NucleoSpin Plant II Kit from Macherey
and Nagel (Düren, D) following the manufacturer’s instructions,
with minor modifications. The concentration of genomic DNA
was assessed spectrophotometrically at 260 nm and was evaluated
for purity by determining the OD 260 nm/280 nm and the OD
260 nm/230 nm ratios. The DNA quality was assessed by agarose
gel electrophoresis.

MARKER ANALYSIS
AFLP analysis
The AFLP analysis was performed as described previously
(Vos et al., 1995), with minor modifications according to
Klie et al. (2013). For each sample, 100 ng of DNA was
digested with 9 U HindIII (Fisher Scientific – Germany GmbH,
Schwerte, D) and 3.5 U MseI (Fisher Scientific - Germany
GmbH, Schwerte, D). The preamplification reactions were per-
formed with specific primers that had an A as a selective
base at the 3′ end [HindIII (5′-AGACTGCGTACCAGCTT-A-
3′) and MseI (5′-GACGATGAGTCCTGAGTAA-A-3′)]. HindIII
(5′-AGACTGCGTACCAGCTT-ANN-3′) primers with two extra
selective bases and MseI (5′-GACGATGAGTCCTGAGTAA-
ANNN-3′) primers with three extra selective bases were used for
the final amplification. The HindIII primers were end-labeled with
an infrared dye (either IRD 700 or IRD 800; Eurofins MWG, Ebers-
berg, D). In a single PCR reaction, labeled primers were used either
as single primers or in combinations of two differently labeled
primers (IRD 700 and IRD 800). In total, 21 selective primer com-
binations were analyzed (Table 1). The fragments were separated
on 6 % polyacrylamide gels (Sequagel XR, Hessle, UK) using a
DNA analyzer (LI-COR, Lincoln, Nebraska, USA) and automati-
cally processed using the e-Seq-Software (V3.0, LI-COR, Lincoln,
Nebraska, USA).

SSCP markers for candidate genes
Mutant screens in Arabidopsis and other plants identified sev-
eral genes that control shoot branching and are involved in
strigolactone biosynthesis and perception. Some of these genes,
such as CCD8 (Liang et al., 2010), MAX2 (Dong et al., 2013)
and BRC1 (Chen et al., 2013), have also been characterized in
chrysanthemum. In addition, we isolated a CCD7 homolog from
chrysanthemum (unpublished) and screened this sequence and
those of the other genes containing polymorphisms using SSCP
analysis. Several primer pairs were used that covered various
fragments of each candidate gene (Table 2). Most of the PCR
products were IRD-labeled using the universal M13 sequences
(5′-GTAAAACGACGGCCAGT-3′ for the forward primer and
5′-CAGGAAACAGCTATGAC-3′ for the reverse primer) at the
5′ end (Schuelke, 2000). The PCR conditions were as follows:
0.2 μM of each unlabeled primer, 0.07 μM of each labeled
primer and 0.07 μM of a M13 primer end-labeled with either
the IRD 700 dye or the IRD 800 dye (Eurofins MWG, Ebers-
berg, D) in a final 25 μL reaction volume [2x Williams Buffer,
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Table 1 |The primer combinations used for the amplified fragment

length polymorphism (AFLP) analysis.

Hind III- IRD 700 Hind III- IRD 800 MseI

AGC AGT ACCG

AAT AGT ACAG

AAT ACG ATGG

AGC ACA ACAT

AAT – ACGA

AGA – ACGG

AGT – ATAG

AAC – ACCT

AAT – ATGA

– ACA AAGC

– ACG AGCA

– ACG AAGC

– ACG ACGA

– ACG ACAC

– ACG ATCA

– ACA ACCA

– ACA ACAG

Only the selective bases are listed in the table below. The framework of the
selective HindIII primers was 5 ′-AGACTGCGTACCAGCTT-NNN-3 ′, and that of the
selective MseI primers was 5 ′-GACGATGAGTCCTGAGTAA-NNNN-3 ′.

0.16 mM dNTPs, 0.7 U DCS-Taq polymerase (Enzymatics, Bev-
erly, MA, USA) and 30 ng template DNA]. The conditions of
the PCR amplification were as follows: 95◦C (3 min), then
25 cycles at 94◦C (30 s)/58◦C (30 s)/72◦C (45 s), followed by
eight cycles at 94◦C (30 s)/52◦C (45 s)/72◦C (60 s), and a final
extension at 72◦C for 10 min. All other PCR products, which
were visualized by silver staining according to the protocol of
Sanguinetti et al. (1994), were amplified by a standard PCR reac-
tion in a final reaction volume of 20 μl containing 1x Williams
Buffer, 0.2 mM dNTPs, 0.5 μM primers, 0.5 U DCS Taq poly-
merase and 30 ng template DNA. The conditions of the PCR
amplification were as follows: 95◦C (3 min), then 30 cycles at
94◦C (30 s)/60◦C (60 s)/72◦C (60 s), followed by a final exten-
sion at 72◦C for 10 min. An equal volume of SSCP dye (95 %
formamide, 0.01 M NaOH, 0.05% xylene cyanol, and 0.05% bro-
mophenol blue) was added to each PCR reaction, and this step
was followed by denaturing the samples for 3 min at 95◦C. The
denatured samples were immediately placed on ice prior to load-
ing onto cooled (10◦C) 0.5x MDE gels [0.5x MDE® gel solution
(Lonza Group Ltd., Basel, SUI), 0.6x long run TBE (80.4 mM
Tris, 7.5 mM boric acid, and 1.5 mM EDTA), 8.3% glycerine,
0.05% APS, 10 μl TEMED and ad 15 ml water]. IRD-labeled
single strands were detected with the Odyssey® Infrared Imag-
ing System (LI-COR, Lincoln, Nebraska, USA) and automatically
documented using Odyssey Software (V3.0, LI-COR, Lincoln,
Nebraska, USA). The non-IRD-labeled single strands were visu-
alized by silver staining according to the protocol of Sanguinetti
et al. (1994).

EST-SSR markers
Sequence information for 7009 ESTs from Chrysanthemum mori-
folium was downloaded from NCBI (November 2010). These ESTs
were screened for mono-, di-, tri-, tetra-, penta-, hexa-, and
hepta-nucleotide motifs of microsatellites with a copy number
of at least four repeats using the tandem repeat finder (Benson,
1999). For the 21 SSR-containing ESTs, primer pairs were designed
using the Primer3Plus software (Untergasser et al., 2007) with the
default settings. Each forward primer was extended by a univer-
sal M13 sequence tag (5′-GTAAAACGACGGCCAGT-3′) at the 5′
end for IRD-labeling of the PCR fragments (Schuelke, 2000). The
three EST-SSR markers (Table 3) were used on the entire popula-
tion using the PCR conditions as described previously. The PCR
products were separated on 6% polyacrylamide gels (Sequagel
XR, Hessle, UK) using a DNA Analyzer (LI-COR, Lincoln, NE,
USA) and automatically documented using e-Seq-Software (V3.0,
LI-COR, Lincoln, Nebraska, USA).

DATA ANALYSIS
The marker banding patterns for each genotype were visually
scored as present (1), absent (0), or ambiguous (?).

According to Mather (1957), the uniparental and biparental
markers were classified as SD or MD markers using the geometric
means between the two segregation distributions. For the uni-
parental markers, the geometric mean was calculated between the

1:1 and the 3:1 distribution by the formula
√

3
1 × 1

1 = 1.73 as

the point for selection, whereas for the biparental markers, the
mean between the 3:1 and 15:1 distribution was determined by

the equation
√

15
1 × 3

1 = 6.71 for selection (Grivet et al., 1996).

For each marker, the segregation ratio was estimated and com-
pared to the corresponding selection point. Markers with ratios
below this point were classified as SD markers, and those with
ratios above the threshold were classified as MD markers. Silva
et al. (1993) estimated the theoretical proportion of SD to MD
markers as 0.625–0.375 for allopolyploidy and and 0.75 to 0.25 for
autopolyploidy in hexaploids. We compared our calculated ratios
to these ratios using the chi-square test in the R software (version
2.15.2, R Core Team, 2012).

By determining the ratio of SD markers in coupling to those in
repulsion in a population of 75 individuals, Wu et al. (1992) distin-
guished allopolyploidy (ratio of 1:1) from autopolyploidy (ratio
of 1:0). We estimated this ratio using the previously selected uni-
parental SD markers of the MK11/3 population for each parent. We
generated linkage maps with a maximal recombination frequency
of 0.35 for 75 randomly selected offspring in the backcross-1
(BC1) mode of JoinMap version 4 (Van Ooijen, 2006). The mark-
ers were placed into linkage groups based on their independent
LOD values, which ranged from 4 to 10. The marker distances
in centimorgans were calculated using Kosambi’s mapping func-
tion. Subsequently, the values of the marker data matrix were
inverted so that the present bands were coded as absent and
the absent bands were coded as present. These inverted markers
were integrated into the previously calculated maps. The mark-
ers that were linked in the original dataset were designated to be
in coupling, and the markers that showed linkage between the
original and the inverted datasets were designated to be linked in
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Table 2 | A list of the primer pairs for the candidate genes CCD7, CCD8, MAX 2, and BRC1 used in the single-strand conformation polymorphism

(SSCP) analysis.

Gene Accession Primer pairs Product size Detection method

CCD7 unpublished F CCCTCTAGATGGTCATGG 550 bp Silver staining

R AGCAAGATCTAACAAGTCCACACCAC

F* TGTCATGCAACGCAGAGGAT 1750 bp M13-IRD700

R CCCACATTTGAGAAGGAGCTT

F GGTGGGGCCCCTTACGAGAT 600 bp Silver staining

R GCATTGCATGACATCATAAG

F* TCCATGACTGGGCTTTCACA 380 bp M13-IRD700

R CCCACATTTGAGAAGGAGCTT

CCD8 Liang et al. (2010) F* ATGGCATCCTGAGTCGAAAG 550 bp M13-IRD700

R GCGTCTACTAGTTCTCCCTTTGG

F* ACAAGCTGCGGCTTCAAA 260 bp M13-IRD700

R GCGTCTACTAGTTCTCCCTTTGG

F* GGTGCGTCCCTAACTGACAA 480 bp M13-IRD700

R GACTCAGGATGCCATTCAAAC

MAX2 JX556222 F* GCCAATCCAGGGTCGGATAC 550 bp M13-IRD700

R GTAACGACAAACTCCTCTGG

F* ATGTCTTTCTCCACCACAACAAT 1400 bp M13-IRD700

R AAGCCTACTCGCACTCAACG

BRC1 JX870411 F TGCAGCATCAGTTCAGTGACT 380 M13-IRD700

R* AGCAGTAGCATACAATTGACATAGT

The gene, gene bank accession (if available), primer sequence (5′–3′), size of expected PCR product and detection method are given. Primers marked by an asterisk
contained a universal M13 sequence (5′-GTAAAACGACGGCCAGT-3′ for forward primers or 5′-CAGGAAACAGCTATGAC-3′ for reverse primers) at the 5′ end for infrared
(IRD) labeling of the PCR fragments. Those fragments were detected via infrared imaging, whereas non-labeled fragments were detected via silver staining.

Table 3 | List of the three polymorphic EST-SSR markers used on the chrysanthemum MK11/3 population.

Accession Forward primer Reverse primer Product size Motif Copy number

69838459 CCTCTCCTCCCAACAAACAA CCGTAAGTGCCTTCACCAAT 209 bp AAG 8

69834897 CCGCTACAATTCAAACAAACAA GTGGTGGTGGTTGAGAACCT 207 bp AATCCA 5

69837400 CCAATTGAGGCGTTTTGTTT CATTTTCCACGTAAGCACCA 239 bp GGT 10

The GB accession of the chrysanthemum EST, primer sequence (5′–3′), size of the expected PCR product, motif and number of repeats are given.

repulsion (Ukoskit and Thompson, 1997; Kriegner et al., 2003).
The resulting ratio of markers in the coupling to the repulsion
phase was compared to the assumed ratios (Wu et al., 1992) for
allopolyploidy (1:1) and autopolyploidy (1:0 for polyploids above
tetraploidy) using the chi-square test in the R software (version
2.15.2, R Core Team, 2012).

RESULTS
MOLECULAR MARKER DATA FOR THE MK11/3 POPULATION
Allo- and autohexaploids differ in their segregation ratios, their
ratios of marker dosage and their ratios for markers in coupling to
those in repulsion. Therefore, we used various molecular markers,
such as AFLP, SSCP, and SSR markers, to investigate the inheritance
patterns in chrysanthemum.

All of the segregating marker fragments were analyzed domi-
nantly because of the complex banding patterns for even single-
locus markers, such as SSR or SSCP markers, in a hexaploid
genome. In total, 406 polymorphic markers were scored in the
MK11/3 population. The vast majority were AFLP markers with
327 fragments derived from 21 primer combinations, followed by
65 SSCP marker fragments for the candidate genes CCD7 (29 frag-
ments), CCD8 (16 fragments), MAX2 (8 fragments), and BRC1
(12 fragments) and 14 DNA fragments derived from the three
EST-SSRs.

Marker segregation types of 1:0 or 7:1 are expected for an
allopolyploid organism, and types of 4:1 or 9:1 are expected for
an autopolyploid organism. Accordingly, all of the polymorphic
markers were tested to determine whether their segregation ratios
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Table 4 |The marker segregation types for the MK11/3 population.

Parental

composition

Segregation

ratio

Number of

markers

Type of

segregation

Maternal 1:1 63 Non-informative

Paternal 1:1 85 Non-informative

Maternal 1:2 17 Skewed

Paternal 1:2 18 Skewed

Maternal 3:1 7 Disomic,

duplex × nulliplex

Paternal 3:1 5 Disomic,

duplex × nulliplex

Maternal 4:1 3 Hexasomic,

duplex × nulliplex

Paternal 4:1 5 Hexasomic,

duplex × nulliplex

Biparental 7:1 1 Disomic,

duplex × simplex

Only the 204 markers that were assigned a segregation ratio expected for uni-
parental and biparental markers by the chi-square test (1-α = 0.95; df = 1) are
shown.

were consistent with autopolyploidy or allopolyploidy by the chi-
square test (Table 4). For 204 of the total 406 markers significant
possible segregation types were assigned by the statistical test.
Not all markers could be assigned because a large number of
individuals is needed to clearly distinguish between different segre-
gation types (e.g., a hexasomic 15:1 or a disomic 24:1 segregation).
The 1:1 segregation pattern does not distinguish between the types
of ploidy and is therefore not informative. A large proportion of
the markers (34) displayed a skewed segregation and did not fit to
any of the ratios diagnostic for allo- or autopolyploidy. In total,
13 markers segregated in a disomic manner, with four, four and
two of them linked to each other, whereas eight markers showed
a 4:1 ratio that is characteristic of hexasomic inheritance. There-
fore, there are more markers indicating a disomic inheritance, as
expected for an allo-hexapolyploid genome.

THE SEGREGATION PATTERNS OF SSR MARKER FRAGMENTS
The three SSR markers amplified four (marker 69838459) or five
(markers 69834897 and 69837400) fragments. An example of the
segregation pattern of the EST-SSR marker 69834897 is given in
Figure 1. This marker amplified five alleles in the progeny MK11/3,
of which four (A–D) were polymorphic between the maternal
(541) and paternal parents (VZR). For all three EST-SSRs, an
independent assortment of the amplified alleles was observed,
as expected for polysomic inheritance. No cosegregation of spe-
cific alleles was observed, nor was any allele combination found
to exclude another, as would be expected in the case of disomic
inheritance with fixed heterozygosity in allopolyploids.

MARKER DOSAGE RATIOS
Of the 406 segregating uni- and biparental markers, 273 were
classified as SD markers and 133 were classified as MD markers

according to their segregation ratios (Mather, 1957). The ratio of
SD to MD markers was estimated to be 0.67–0.33 and was com-
pared to the theoretical proportion of SD to MD markers indicative
of auto- and allopolyploidy (Silva et al., 1993; Silva and Sorrells,
1996; Ukoskit and Thompson, 1997) using the chi-square test
(Table 5). The ratio was significantly different from the expected
ratio for allopolyploidy and for autopolyploidy, although the ratio
was closer to the values expected for allohexaploids.

AN ANALYSIS OF MARKER LINKAGE
Of the previously selected 245 SD markers, 80 markers were
biparental and 165 were uniparental. These uniparental SD mark-
ers (81 for the maternal parent 541 and 84 for the paternal parent
VZR) we used to identify markers in the coupling and the repulsion
phases by a mapping approach. For 71 (32 for 541 and 39 for VZR)
of the 165 markers, we showed linkage in coupling, whereas no
markers were linked in repulsion and had LOD scores greater than
1.0. Therefore, the ratio of markers in coupling to those in repul-
sion was 1:0 (Table 6), as expected for an autopolyploid organism
with a ploidy degree above tetraploidy.

DISCUSSION
Based on their evolutionary origin and published cytological
analyses, cultivated chrysanthemums have been mainly classified
as allopolyploid plants (Watanabe, 1977, 1983; Li et al., 2011).
However, several studies raised questions regarding whether the
behavior of meiotic chromosomes is an appropriate indicator
of the type of ploidy and therefore if the formation of biva-
lents or multivalents is a reliable indicator of whether a species
is genetically an autopolyploid with tetrasomic inheritance or
an allopolyploid with disomic segregation (Soltis and Rieseberg,
1986; Krebs and Hancock, 1989; Sybenga, 1996; Qu et al., 1998).
With the advent of molecular markers as an informative genomic
tool, Wu et al. (1992) and Silva et al. (1993) described effective
methods based on SD markers to distinguish allopolyploids from
autopolyploids. Therefore, we used molecular markers (AFLP,
SSCP, and SSR,) to investigate the type of ploidy of cultivated
chrysanthemums.

In total, we scored 406 polymorphic markers in the F1 MK11/3
population. Characteristic segregation ratios for allo- (e.g., 1:0
or 7:1) and autopolyploids (e.g., 4:1 or 9:1) have been estab-
lished based on the type of ploidy of a genome. By using the
chi-square test, the ratios of all of the segregating markers were
compared to the theoretically expected segregation ratios. The vast
majority of the markers (148) were not informative because they
segregated in a ratio of 1:1, which is expected for a uniparental
SD marker for allo- as well as autopolyploids. Additionally, 35
markers displayed skewed segregation ratios, which is a com-
mon phenomenon in plants (Mccouch et al., 1988; Gardiner et al.,
1993; Wang et al., 1998) and has been reported for chrysanthe-
mum (Zhang et al., 2010). Of the other markers, 13 segregated
in a disomic manner (uniparental 3:1, 7:1 with some of them in
linkage), which would be expected for an allopolyploid, whereas
eight markers displayed a 4:1 ratio, which suggests a hexasomic
inheritance between a duplex and a simplex marker. Indeed, it
is difficult to reliably distinguish among several similar segrega-
tion ratios, as this requires a large number of individuals. Langton
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FIGURE 1 |The segregation pattern of EST-SSR 69834897 for selected individuals from the MK11/3 population. Different genotypes are represented by
individual lanes. The maternal parent 541 and the paternal parent VZR are shown on the left side of the gel. The three alleles of each parent are indicated as A to
E, with E being present in both genotypes.

Table 5 |The ratios of single-dose (SD) to multi-dose (MD) markers in

the MK11/3 population.

Observed Expected

Allopolyploid Autopolyploid

Single-dose 273 253.75 304.5

Multi-dose 133 152.25 101.5

Markers in total 406 406 406

SD:MD 0.67:0.33 0.625:0.375 0.75:0.25

χχχ2
0.95 (df=1)

= 3.84 3.894* 13.034*

p-value (ααα = 0.05) 0.048* 0.0003*

The segregation ratios were compared with the theoretical proportions of SD to
MD markers for allo- (0.625:0.375) and autopolyploidy (0.75:0.25) using the chi-
square test (Silva et al., 1993). Significance is indicated with *, the critical value
is χ2

0.95 (df=1)
= 3.84, and the p-values are given.

Table 6 |The ratios of the uniparental SD markers linked in coupling to

those in repulsion for the MK11/3 population.

Allopolyploid Autopolyploid

Coupling Repulsion Coupling Repulsion

Observed 71 0 71 0

Expected 35.5 35.5 71 0

χχχ2
0.95 (df=1)

= 3.84 43.6708* 0

p-value (ααα = 0.05) 3.89e−11* 1

The obtained segregation ratio of 71 markers in coupling to 0 markers in repulsion
was compared with the theoretical proportions for auto- (1:1) and allopolyploidy
(1:0) using the chi-square test (Wu et al., 1992). Significance is indicated by *, the
critical value was χ2

0.95 (df=1)
= 3.84, and the p-values are given.

(1989) also described the hexasomic inheritance of the carotenoid
pigmentation in chrysanthemums, but even this study was not
considered as conclusive by the author himself because of con-
flicting results of Jordan and Reimann-Philipp (1983) on the
inheritance of anthocyanin pigmentation. Also the analysis of the
marker dosages, which revealed a 0.67 to 0.33 ratio of SD to MD
markers, showed significant differences to the ratios expected for
both, disomic (0.625:0.375) and hexasomic (0.75:0.25) inheritance
(Silva et al., 1993; Silva and Sorrells, 1996; Ukoskit and Thompson,
1997).

Therefore, we analyzed the segregation patterns of three
EST-SSRs in addition to the AFLP markers. For each marker,
the alleles were inherited in all possible combinations and
not independent of each other, as would be expected for
fixed heterozygosity. This result indicates polysomic inheri-
tance, as expected for autopolyploids. Therefore, it is very
likely that the progenitors of cultivated chrysanthemums were
phylogenetically closely related (Dai et al., 1998; Wang et al.,
2002).

Furthermore, we did not detect any markers linked in repulsion
in our mapping approach. This result also supports our hypothesis
that chrysanthemums display polysomic inheritance. Two other
published mapping approaches in chrysanthemums provide no
information about the type of linkage of the mapped markers
(Zhang et al., 2010, 2011). By increasing the number of mark-
ers, the mapping resolution could be improved, but this does not
explain the lack of markers linked in repulsion in our study.

To summarize our marker results, two methods (segrega-
tion patterns of SSRs and the ratios for markers in coupling to
those in repulsion) clearly showed a polysomic inheritance in
chrysanthemums, as is characteristic of an autopolyploid. Nev-
ertheless, some markers segregated in a disomic manner and
the ratio of marker dosages was close to the expected ratio for
disomic inheritance, but not significant. Therefore, the inheri-
tance in chrysanthemum seems to be mainly polysomic with a
random assortment of homologs, but there are a few loci with
disomic inheritance as well due to a partial preferential pair-
ing of chromosomes. This mixed inheritance has already been
detected in cytological studies in chrysanthemum that reported
the predominant formation of bivalent chromosomes and the
occurrence of multivalent chromosomes, though only in a small
proportion (Dowrick, 1953; Chen et al., 2009; Li et al., 2011).
Such intermediates have also been described in strawberries
(Lerceteau-Kohler et al., 2003), rapeseed (Udall et al., 2005), and
yellow cress (Stift et al., 2008). Thus, we propose to classify culti-
vated chrysanthemums as segmental allopolyploids according to
Stebbins (1947).

This change in classification is important for the breeding
progress of chrysanthemums. If chrysanthemums were strict
allopolyploids, the free combination of desirable alleles would not
occur. In our study, we showed that most molecular markers were
inherited in a polysomic manner. Therefore, the desirable alleles
can be enriched in the gene pool independently of their subge-
nomic origins. Finally, the complex inheritance of ornamental
traits in a segmental allo-hexaploid plant limits the effectiveness
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of marker-assisted selection, and phenotypic selection should be
prioritized.

As Stebbins noted decades ago, it might be difficult to
unambiguously determine the type of ploidy of an organism. In
addition to cytological methods, molecular markers are useful
tools with which to investigate the type of ploidy, and the combi-
nation of both approaches might be necessary to reveal the true
type of ploidy. Based on the results of cytological studies, which
report the predominant occurrence of bivalent chromosomes, a
disomic inheritance was postulated for chrysanthemums. In con-
trast to these data, our analyses of molecular markers indicate a
polysomic inheritance. Therefore, we suggest changing the clas-
sification of chrysanthemums from allopolyploid to segmental
allopolyploid.
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