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Meiosis, a specialized cell division to produce haploid cells, marks the transition from
a sporophytic to a gametophytic generation in the life cycle of plants. In angiosperms,
meiosis takes place in sporogenous cells that develop de novo from somatic cells in
anthers or ovules. A successful transition from the mitotic cycle to the meiotic program in
sporogenous cells is crucial for sexual reproduction. By contrast, when meiosis is bypassed
or a mitosis-like division occurs to produce unreduced cells, followed by the development
of an embryo sac, clonal seeds can be produced by apomixis, an asexual reproduction
pathway found in 400 species of flowering plants. An understanding of the regulation of
entry into meiosis and molecular mechanisms of apomictic pathway will provide vital insight
into reproduction for plant breeding. Recent findings suggest that AM1/SWI1 may be the
key gene for entry into meiosis, and increasing evidence has shown that the apomictic
pathway is epigenetically controlled. However, the mechanism for the initiation of meiosis
during sexual reproduction or for its omission in the apomictic pathway still remains largely
unknown. Here we review the current understanding of meiosis initiation and the apomictic

pathway and raised several questions that are awaiting further investigation.
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INTRODUCTION

Meiosis is an extremely important step in sexual reproduction. It
is widely accepted that it evolved from mitosis and shares certain
features with mitosis (Maynard Smith, 1978). Yet at least three
meiosis-specific events make meiosis a specialized cell division:
meiotic recombination and pairing between homologous chro-
mosomes during prophase I, the suppression of sister-chromatid
separation during the first meiotic division, and the absence of
chromosome replication at the start of the second division (Kleck-
ner, 1996). While these meiosis-specific events have been studied
extensively, the mechanisms that switch mitosis into meiosis are
still puzzling. In multicellular organisms, meiosis initiation takes
place within multicellular organs; consequently, mechanisms that
initiate meiosis must integrate developmental cues. In plants, the
decision to start meiosis may also be connected with reproduc-
tive cell fate specification since plants do not have pre-determined
germ lines. Thus, the switch of somatic fate to germinal cell fate
and the mitosis—meiosis cell cycle transition occur sequentially
during the development of reproductive organs (i.e., anthers and
ovules; Ma, 2005). Importantly, these sexual processes can be
replaced by the asexual apomictic pathway in which meiosis is
bypassed or a mitosis-like division occurs to produce unreduced
daughter cells, followed by the development of an embryo with-
out fertilization, apomictic plants can then produce diploid seeds
with identical genetic content to their maternal genome. This
phenomenon is called apomixis that occurs naturally in some
flowering plants (Barcaccia and Albertini, 2013). If apomixis is
engineered into crops to produce clonal seeds, its application
on agriculture will be broad and profound. Here, we review
the current understanding of the cell cycle transition that directs

sporogenous cells to leave the mitotic cell cycle and enter the mei-
otic program in higher plants and additionally discuss advances in
the apomictic pathway.

WHAT HAVE WE LEARNED FROM OTHER MODEL SPECIES
ABOUT INITIATION OF MEIOSIS?

The cellular events during meiosis are evolutionarily conserved
among species; however, the mechanisms controlling the initia-
tion of meiosis are diverse (Pawlowski et al., 2007). The molecular
controls elucidated to date involve signaling pathways, tran-
scriptional and translational regulations of meiotic genes, and
cyclin-dependent kinase (CDK) circuits. Although different mech-
anisms are adopted, the final readout is likely the activation of
a specific cyclin—-CDK complex to initiate the meiotic S phase.
It was also suggested from many studies that the decision to
start meiosis is made before the onset of the pre-meiotic S phase
(Watanabe etal., 2001). Here, we first summarize the discoveries
from several model species, and then discuss recent advances in
plants.

The meiosis decision in single-celled yeasts is often cued by
environmental conditions. In the budding yeast Saccharomyces
cerevisiae, starvation induces expression of the Initiator of Meiosis
I (IMEI) gene, which encodes a transcription factor responsible
for activating early meiotic genes (Chu etal., 1998). One of these
target genes, IME2, which encodes a Ser/Thr protein kinase, pro-
motes meiotic DNA replication by directly phosphorylating Rfa2,
asubunit of replication protein A (Foiani et al., 1996; Clifford et al.,
2005). Sicl, an inhibitor of the CDK (CDC28), is also phospho-
rylated by Ime2p and then leads to its degradation. Subsequently,
CDC28, in conjunction with the B-type S phase cyclins, Clb5, and
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Clbé, triggers the initiation of the premeiotic S phase (Dirick et al.,
1998; Stuart and Wittenberg, 1998).

In fission yeast S. pombe, a key transcription factor STEI],
which is produced in response to environmental conditions, is
responsible for early meiotic genes expression (Sugimoto etal.,
1991). MEI2, an RRM-type RNA-binding protein, plays a crucial
role in promoting entry into meiosis by regulating meiosis-specific
mRNAs accumulation. During mitosis, MEI2 is inactivated by
PAT1 kinase. Under meiosis-inducing conditions, this repres-
sion of MEI2 is released, allowing binding to and stabilization of
meiosis-specific mRNAs at the G1 phase (Kitamura etal., 2001).
In addition, this process reinforces stabilization also by sequestrat-
ing MMII protein, which function is to eliminate these meiotic
mRNAs (Harigaya et al., 2006). Finally, CDC2 kinase binding with
cyclin CIG2 is essential for entry into the pre-meiotic S phase
(Borgne etal., 2002). Recently, protein S-palmitoylation, a lipid
modification was also found to regulate the entry into meiosis
(Zhang etal., 2013).

In mammals, meiosis is initiated at different stages of develop-
ment in females and males (Bowles and Koopman, 2007). Mouse
studies have revealed that retinoic acid (RA) produced during
embryonic development can induce meiosis in both sexes. The
level of RA is negatively regulated by the Cyp26b1 enzyme that
has RA degradation activity (Bowles etal., 2006; Koubova etal.,
2006). Stimulated by RA 8 (Stra8), a vertebrate-specific gene, is
then induced by RA and is required for the transition to meiosis
(Anderson et al., 2008). Stra8 plays no role in the mitotic phases of
embryonic germ-cell development, but in females it is required for
pre-meiotic DNA replication and the subsequent events of meiotic
prophase. On the other hand, Dmrt] represses Stra8 transcription
in the mitotic phase, thereby preventing meiosis (Matson etal.,
2010).

From these studies, the mechanisms that initiate meiosis are
very different, and more importantly, the genes involved share no
similarity. No doubt different strategies evolved because of the
different reproductive requirements of diverse organisms.

THE DECISION OF MITOSIS-MEIOSIS SWITCH IN PLANTS

In plants, meiosis is initiated in sporogenous cells that are dif-
ferentiated in ovules and anthers (Bhatt etal., 2001). In each
ovule, only a single megaspore mother cell (MMC) surrounded
by the somatic nucellar cells is differentiated and then undergoes
meiosis (Figure 1). During anther development, after primary
sporogenous cells (i.e., the precursor of pollen mother cells,
PMCs) are differentiated, they first undergo several rounds of
mitosis to proliferate, and then meiosis occurs synchronously
in all the PMCs of each anther (Figure 1; Palmer, 1971).
Thus, the decision of mitosis—meiosis transition must coor-
dinate with the developmental stages of anthers and ovules.
For example, the signal that starts meiosis in an anther must
be generated after complete development of the somatic layers
of anthers (Kelliher and Walbot, 2011). Interestingly, the sig-
nal can also establish the synchronization of the meiotic cell
cycle in an anther. On the other hand, only a single MMC
in each ovule is specified to enter meiosis, which accompa-
nies the development of ovule in parallel. Thus, the regula-
tory mechanism of meiosis initiation may be different between

female and male in plants because of distinct development of
sporogenesis.

The first discovery about meiosis initiation was the isolation of
the maize ameioticl (amI) mutantby Rhoades (1956). The original
aml mutant allele does not undergo meiosis; instead mitosis-like
divisions take place in well-developed meiocytes in both female
and male organs (Golubovskaya etal., 1993). Am1 encodes a plant
specific coiled-coil protein with unknown functions (Pawlowski
etal., 2009). All five null mutant alleles display identical phe-
notypes in male meiocytes in which mitosis replaces meiosis.
However, female MMCs in the mutant may either undergo mito-
sis, or arrest at interphase. Interestingly, the aml-pral allele
carrying a single amino acid substitution (R358W) can enter
meiosis but cells arrest in the leptotene/zygotene stage, resem-
bling the phenotype of the rice aml mutant that also carries an
amino acid substitution (R360W) in a conserved region (Gol-
ubovskaya etal., 1997; Pawlowski etal., 2009; Che etal., 2011).
These results suggest that AM1 is required for meiosis initia-
tion and may also regulate meiotic progression. In contrast to
maize and rice, mutants in the closest homolog of AmI in Ara-
bidopsis, switch1/dyad (swil), exhibit abnormal meiosis with sister
chromatid cohesion defects in male meiocytes, and the mitosis-
like division was only observed in female meiocytes (Mercier
etal., 2001, 2003). These differences among species may indi-
cate that the AM1-related genes have undergone species-specific
diversification.

While the molecular functions of AM1/SWI1 are still unknown,
microarray analyses showed that AMI is required for normal
expression of many meiotic genes (Nan etal., 2011). Using Agi-
lent 44K microarrays, the authors compared transcriptomes in
1-mm and 1.5-mm anthers of am1-489 (null allele) and amI-pral
(point mutant allele) and their fertile siblings. In 1-mm anthers
when meiosis is about to start in the wild-type, 484 genes were
missing and 1208 genes were ectopically expressed in am1-489
anthers. These genes are considered to contribute to the initia-
tion of meiosis or the suppression of mitosis. In 1.5-mm anthers,
during prophase I in the wild-type, 3700 transcripts were missing
and another 3107 genes were differentially expressed in am1-489
anthers. Nearly 60% of transcriptome changes, regardless of stage,
were genes enriched in PMCs and many putative meiosis-related
genes were found among them. However, none of the meiosis-
related genes were regulated in an absolute On/Off pattern on the
am1-489allele, somewhat surprising given that the am1-489 PMCs
perform mitosis instead of abnormal meiosis. These results rede-
fine the role of AM1 in the modulation of transcript accumulation
for many meiotic genes rather than simply switching them on or
off (Nan etal., 2011).

Recently, microarray analyses on laser-captured germinal and
somatic initials from maize 0.3-mm anthers (right after sporoge-
nous cells are differentiated) found about 2500 genes specific or
enriched in germinal initials (Kelliher and Walbot, 2014). Surpris-
ingly, more than 100 meiotic genes are expressed in the mitotic
amplification period that is long before the onset of meiosis initi-
ation. This finding raises a possibility that precocious expression
of meiotic genes permits gradual dilution of mitotic chromatin
components, a hypothesis recently proposed for the mouse germ-
line (Hackett etal., 2013). Another possibility is that those PMC
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FIGURE 1 | Structure of plant reproductive organs in maize and
sequence of events leading to spore or gametophyte formation in
anthers and ovules. (A) Longitudinal section of an anther with numerous
pollen mother cells (PMCs, shown in gray) that are proliferated from primary
sporogenous cells by mitosis, which accompanies the development of
surrounding 4 layers of somatic cells. (B) After primary sporogenous cells
(PSCs) are differentiated, they first undergo mitotic divisions to produce
sporogenous cells (SCs) and further develop into PMCs. By the time when
the development of surrounding somatic cells (shown in A) is complete,
unknown meiosis initiation siganl is generated to start meisois synchronously

apospory apomixis

in all PMCs of an anther. Each PMC enters meiosis to produce four haploid
spore cells. (C) Longitudinal section of an ovule with a single megaspore
mother cell (MMC, shown in gray). (D) Schematic illustration showing the
sequential development of embryo sac through sexual reproduction or
apomictic pathways. In sexual reproduction, the single MMC (shown in gray)
is differentiated and then enters meiosis to produce a haploid functional
megaspore (FMS), and then develops into an embryo sac. In diplospory
apomixis, the specified MMC unergoes an abnormal meiosis or mitosis to
produce a diploid FMS. In apospory apomixis, somatic nucellar cells develop
into embryo sac without meiosis.

precursors are preparing for meiosis at the transcriptional level,
and may store some meiotic transcripts for translation at later
developmental stages (Zhang etal., 2014). Regardless, this finding
suggests that the decision to start meiosis is a series of consecu-
tive steps rather than a single switch. Perhaps, the expression of
meiotic genes may be one of the earliest actions, and the following
regulatory cascade finally governs the initiation and progression
of meiosis. Thus, which transcription factors are responsible for
early meiotic gene expression and whether meiotic genes are under
translational control are interesting questions for further study. In
addition, identification of components in the regulatory cascade
will provide better understanding of this process.

Another gene that has been reported to be involved in meio-
sis initiation is rice MEL2, named for its “meiosis arrested at
leptotene” phenotype. MEL2 encodes an RNA-recognition-motif
(RRM) protein, and it is required for regulating the premeiotic
G1/S-phase transition of male and female germ cells (Nono-
mura etal,, 2011) as most germ cells fail to enter pre-meiotic S
phase in mel2 mutant. A small proportion of PMCs can escape

from the defects and undergo meiosis with a significant delay
or continued mitotic cycles. How an RRM protein affects the
initiation of meiosis is unclear at the molecular level, but this
result implied a possible link between mRNA processing, trans-
port or stability, and entry into meiosis in plants. Studies in yeast
have shown that the final trigger to start meiosis is the activa-
tion of specific cyclin—-CDK complexes to initiate the meiotic S
phase. Arabidopsis has at least 50 cyclins and only a few of them
are specifically expressed in the inflorescence (Bulankova etal.,
2013). Mutant analyses revealed that some of these cyclins con-
tribute to distinct meiosis-related processes, but none of cyclin
mutants showed meiosis initiation defects, which was attributed
to gene redundancy. Thus, it will be interesting to know which, if
any, cyclin—-CDK complex is responsible for the transition. Besides
cyclin—CDK complexes, some meiosis-specific regulators, such as
replication factor MUM2 and cohesion protein REC8, are involved
at the meiotic S phase although much of the basic replication
apparatus is employed (Strich, 2004). Therefore, what is special
about the pre-meiotic S phase and which are the specific genes
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that differ from the mitotic S phase in plants? Understanding of
these meiosis-specific components at meiotic S phase will help us
to illustrate the molecular mechanisms of meiosis initiation. A
proteomics study may offer valuable information on this aspect.

To date, mutants directly affecting meiosis initiation showed
similar phenotypes in that some of reproductive cells fail to enter
meiosis in either female, male, or both sexes. Although some of
these mutants produce unreduced daughter cells by mitosis-like
division, there is no evidence that these resulting diploid cells in
ovules would undergo the apomictic pathway without fertilization.
However, an interesting study demonstrated that in the Arabidopsis
swil/dyad mutant, few seeds were produced when pollinated with
wild-type pollens. Most of the progeny were triploid, suggesting
that unreduced female daughter cells after mitosis-like division are
able to develop further and be fertilized by haploid male gametes
(Ravi etal., 2008).

CURRENT ADVANCES IN THE APOMICTIC PATHWAY

Apomixis is a type of asexual reproduction through seeds that
avoid both meiosis and fertilization. In the apomictic path-
way, differentiated MMCs or other somatic cells in ovules that
gain germinal cell fate are able to bypass meiosis or undergo
an abnormal meiosis to produce unreduced spores that further
divide mitotically to form an embryo sac (Figure 1; Koltunow,
1993; Carman, 1997). Although apomixis is genetically regu-
lated and occurs naturally in more than 400 species of flowering
plants, its implementation at the molecular level is still unclear.
Over the past few years, there has been increasing evidence to
show that epigenetic control may regulate apomixis. In Ara-
bidopsis, argonaute 9 (ago9) mutants exhibit multiple MMCs
compared to a single MMC in the wild-type ovule, and addi-
tional MMC:s in the mutant are able to initiate gametogenesis
without undergoing meiosis, resembling apospory (Figure 1;
Olmedo-Monfil etal., 2010). AGO9 preferentially interacts with
24-nucleotide small interfering RNAs (siRNA) derived from trans-
posable elements to direct homolog-based RNA-dependent DNA
methylation (RADM). Moreover, mutations in SUPPRESSOR OF
GENE SILENCING3 (SGS3) and RNA-DEPENDENT RNA POLY-
MERASEG6 (RDR6), two genes required for siRNA biogenesis, also
lead to an identical defect to that in ago9 mutants (Olmedo-
Monfil etal., 2010). Similarly, maize AGO104, the homolog of
Arabidopsis AGO9, is found to regulate reproductive fate despite
some differences between maize ago104 and Arabidopsis ago9 phe-
notypes (Singh etal., 2011). The maize agol04 mutant has a single
MMCG; however, defective female meiosis with aberrant conden-
sation results in functional female gametes with an unreduced
chromosome set, resembling diplospory (Figure 1). Additionally,
AGO104 is required for heterochromatic CHG and CHH methyla-
tion. Consistent with the idea that epigenetics regulates apomixis,
mutations of two DNA methyltransferases, DMT102 and DMT103
in maize, also exhibit apomictic development (Garcia-Aguilar
etal., 2010). Thus, loss of RADM seems to direct somatic cells
to distinct reproductive cells with an apomictic fate (seen in Ara-
bidopsis ago9 mutant) or lead to apomixis in correctly specified
MMC:s (seen in maize agol04 mutant). Interestingly, both AGO9
in Arabidopsis and AGO104 in maize are specifically expressed in
surrounding somatic nucellar cells, and not in the reproductive

cells, implying that both genes control the apomictic pathway in
a non-cell-autonomous manner. siRNAs produced from somatic
cells may move to germinal cells to regulate the chromatin state
by suppressing transposable elements. Indeed, many transpos-
able elements are silenced in Arabidopsis wild-type ovules, in an
AGO9-dependent manner (Durdn-Figueroa and Vielle-Calzada,
2010). These results suggest a link between siRNA-dependent
chromatin remodeling and the apomictic pathway (Garcia-Aguilar
etal., 2010; Grimanelli, 2012).

Another gene belonging to the ARGONAUTE family with
meiotic phenotypes is rice MELI. It encodes an AGO5 pro-
tein that is required for maintaining germ cell identity and
normal meiosis progression. Interestingly, the mell mutant
also shows defective chromosome condensation with abnormal
pericentromere histone modification (Nonomura etal., 2007).
Recently, MELI has been shown to bind to 21-nucleotide phased
small interfering RNA (Komiya etal., 2014). Further investiga-
tion is needed to understand the epigenetic regulation of plant
reproduction.

Opver the past few years, the identification of mutants has shed
light on genetic control of epigenetic mechanisms involved in
apomixis. However, it is still not clear how the RADM-dependent
process affects cell fate specification, meiosis, and gametophyte
development? Why is there a need for transposes-derived siRNA
in the germ line? Is it possible that RADM resets cell fate in the
germ line, a role also demonstrated for the animal PTWI pathway
(Houwingetal.,2008; Juliano et al.,2011)? Perhaps, identifying the
targets of the RADM pathway at different stages will be essential
for further definition of their roles. In addition, what is the rela-
tionship between AM1/SWI1-dependent meiosis initiation and
the RADM pathway? It is worth noting that alterations in histone
modification were observed in the swil mutant (Boateng etal.,
2008), raising the possibility that somehow AM1/SWII is involved
in chromatin remodeling. Many exciting questions are awaiting
further investigation.

CONCLUSION

Understanding the initiation of meiosis and apomixis in plants
will be enlightening, and may have many potential applications for
plant breeding and in agriculture including developing a strategy
for acquiring apomixis in crops, and allowing manipulation of the
meiotic cell cycle. It will be crucial to identify more participants
in the mitosis—meiosis decision and the apomictic pathway and to
explore their molecular functions.
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