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The conventional understanding of the role of the seed coat is that it provides a protective
layer for the developing zygote. Recent data show that the picture is more nuanced. The
seed coat certainly represents a first line of defense against adverse external factors, but it
also acts as channel for transmitting environmental cues to the interior of the seed.The latter
function primes the seed to adjust its metabolism in response to changes in its external
environment.The purpose of this review is to provide the reader with a comprehensive view
of the structure and functionality of the seed coat, and to expose its hidden interaction with
both the endosperm and embryo. Any breeding and/or biotechnology intervention seeking
to increase seed size or modify seed features will have to consider the implications on this
tripartite interaction.

Keywords: seed development, nutrients supply, seed photosynthesis, PCD, maternal–filial interface

INTRODUCTION
The evolution of sexual reproduction and the seed underlies much
of the evolutionary success of the flowering plants. The most dis-
tinctive characteristic of the angiosperms is the double fertilization
event, followed by the development of a seed encased in mater-
nal tissue, referred to as the seed coat (or testa). The enclosure of
the developing embryo affords it protection and thereby enhances
its chances of reaching maturity and establishing the subsequent
generation; this feature has not been achieved by species belong-
ing to other clades of the plant kingdom. The progenitor structure
of the angiosperm seed on the female side is the ovary, and its
final form comprises an embryo, an endosperm, and the seed
coat. The embryo results from the fusion between an egg cell and
a sperm nucleus, while the endosperm develops from the fusion
between the two central cell nuclei and a second sperm nucleus to
produce (in diploid species) a triploid structure. The seed coat is
entirely maternal in origin. When fertilization fails, the structure
degenerates rapidly, thereby ensuring that the assimilate invested
in an aborted seed is recycled (Roszak and Köhler, 2011). Post
fertilization, the development of the seed relies on a coordinated
interaction between the seed coat, the embryo, and the endosperm.
The molecular basis of seed development has been intensively
studied (Lafon-Placette and Köhler, 2014), but until now, the lack
of suitable in vivo analytical methods has hampered systematic
investigations of either the metabolism occurring or the internal
structures developing within the growing seed. Here, a description
is given of our current understanding of the functional role of the
seed coat in the developing seed.

FROM OVULE TO SEED COAT
The seed coat originates from cell layers surrounding the ovule.
The analysis of a number of Arabidopsis thaliana mutants has

revealed its structure and function, as well as identifying many of
the genes involved in its development (Haughn and Chaudhury,
2005; Figueiredo and Köhler, 2014). Seed coat development is
repressed prior to fertilization by dosage-sensitive, sporophytically
active polycomb-type-proteins that are expressed in the maternal
tissue surrounding the female gametophyte (Roszak and Köhler,
2011). The fertilization generates a signal that relieves the poly-
comb type protein-mediated repression, resulting in the initiation
of seed coat formation (Roszak and Köhler, 2011).

The A. thaliana seed coat is composed of five cell layers: the
three-layered inner integument and the two-layered outer integu-
ment; each of these layers follows a distinct path during seed
development. The endothelium (the innermost cell layer) synthe-
sizes proanthocyanidins (PAs), which first condense into tannins,
then oxidize to impart the brown pigmentation seen in the mature
seed of many species (Lepiniec et al., 2006). The two adjacent cell
layers are crushed together as the seed expands (Nakaune et al.,
2005). The outer integument undergoes extensive differentiation,
regulated by the YABBY family transcription factor INNER NO
OUTER (Kelley and Gasser, 2009), going on to form the sub-
epidermal and epidermal cell layers. The former of these generates
a thickened wall on the side facing the epidermis (Haughn and
Chaudhury, 2005), while the latter produces a pectinaceous car-
bohydrate referred to as mucilage (Arsovski et al., 2010; Haughn
and Western, 2012). The outer integument is associated with a
suberized layer, and the endothelium with a cutin-like polyester
layer (Molina et al., 2008). In leguminous species, the seed coat
is typically a multi-layered structure, including both macro- and
osteosclerids in its outer integument and parenchyma in its inner
integument (van Dongen et al., 2003; Verdier et al., 2012). In the
cereal grain (strictly a caryopsis rather than a seed, since the ovary
wall is fused with the seed coat), the endothelium and the outer
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integument each form a pair of cell layers, while the enlarged
pericarp takes over some of the key functions of the seed coat
(Sreenivasulu et al., 2010). The various impacts of the seed coat
are illustrated for a contrasting set of species in Figure 1.

The development of the endothelium has been revealed by the
analysis of A. thaliana mutants impaired in seed coat pigmenta-
tion. A number of relevant genes have been isolated, classified for
the most part into either transcription factors or genes required for
the synthesis and compartmentation of PA flavonoid compounds
(Haughn and Chaudhury, 2005). Comprehensive transcriptomic
descriptions of the developing A. thaliana seed coat have provided
a wealth of information relevant to how the process occurs in
other species (Dean et al., 2011). The Medicago truncatula myb
transcription factor gene MtPAR has been shown to be a key reg-
ulator of PA synthesis, and its transcription co-localizes with the
site of PA accumulation in the seed coat (Verdier et al., 2012).
Key M. truncatula genes along with the precursor transporter
MATE1 (involved in PA synthesis) have been isolated and char-
acterized by Zhao and Dixon (2009). Orthologs of BANYULS,

FIGURE 1 |The structure of (A) the oilseed rape seed, (B) the barley

caryopsis, and (C) the tobacco seed. em, embryo; es, endosperm; tc,
endosperm transfer cell; ii, endothelium; les, liquid endosperm; vb, main
vascular bundle; np, nucellar projection; oi, outer integument; pe, pericarp;
sc, seed coat. Bars: 0.5 mm.

which encodes anthocyanidin reductase (Albert et al., 1997), have
been identified in oilseed rape and its close relatives Brassica rapa
and B. oleracea (Auger et al., 2010). The transcriptional regula-
tion of flavonoid metabolism is less well understood in legumes
and cereals, perhaps because the genes underlying PA synthe-
sis have been lost during domestication, with the result that
white-seededness is commonplace in these taxa. Consequently,
in contrast to its wild relatives, cultivated barley (similarly to rice
and wheat) does not accumulate substantial amounts of PA (Sang,
2009). The relationship of secondary PA metabolism with both
developmental regulation and the stress response has the poten-
tial to contribute significantly to future crop improvement and is
being investigated by a number of research groups (Debeaujon
et al., 2000; Bassoi and Flintham, 2005; Lepiniec et al., 2006; Gao
et al., 2013).

Elucidation of the development of the A. thaliana outer integu-
ments has relied on mutants that produce either less mucilage
than the wild type or those which produce mucilage of a differ-
ent composition. Both regulatory and structural genes have been
recognized (Haughn and Chaudhury, 2005; Arsovski et al., 2010;
Haughn and Western, 2012). The set of WD repeat, bHLH and myb
transcription factors that regulate outer integument development
partially overlaps with the factors controlling trichome initia-
tion and development, the regulation of anthocyanin production
and endothelial development, although the relevant interaction
partners are distinct (Schiefelbein, 2003; Bernhardt et al., 2005;
Haughn and Chaudhury, 2005; Gonzalez et al., 2008). For exam-
ple, outer integument differentiation is controlled by the proteins
TTG1, myb5/TT2, and TT8/EGL3, which also drive the tran-
scription of ABE1, ABE4, GH, GL2, and mybL2 (Gonzalez et al.,
2008; Li et al., 2009). The A. thaliana model has been informa-
tive for understanding the molecular basis of the synthesis of
cotton fibers, which arise from the epidermal cells of the outer
integument and are distributed all over the seed’s surface (Lee
et al., 2007; Liu et al., 2012; Ruan, 2013). Several of the regulatory
genes involved in fiber initiation have proven to be homologs of
A. thaliana genes (e.g., TTG1 and GL2) responsible for trichome
formation and the differentiation of the outer integument. The
current understanding is that a transcriptional myb/bHLH/WD
repeat complex is required for this initiation process (Yang and Ye,
2013). A full understanding of the regulatory machinery operating
in the epidermal cells will aid in achieving further improvement
in a number of cotton seed traits (Yan et al., 2009; Efe et al., 2010)
as well as the development of sustainable means of processing
seeds and the fibers (Kimmel and Day, 2001; Stiff and Haigler,
2012).

NO LIFE WITHOUT PROTECTION
In many seeds, the epidermal layer of the seed coat generates a
cuticle which represents a physical barrier between the seed and
its external environment. Neither viruses nor bacteria are able
to penetrate an intact mature seed cuticle (Singh and Mathur,
2004; Gergerich and Dolja, 2006). The only entry points into
a mature seed of this type for a pathogen are the micropyle –
which represents the point of entry of the pollen tube – and the
funiculus, which links the maternal vascular system to the seed
integument. The immature seed coat is less robust, so it offers
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less protection against pathogen penetration, which can occur via
either the ovary wall or the stigma. Mechanically damaged cuticles
offer an alternative path for pathogen invasion (Singh and Mathur,
2004). Integrity of seed coat surface is extremely important for
seed quality and fitness during seed storage or germination, and
diverse technologies are available for preserving and enhancing of
seed surface (Black and Halmer, 2006; Brooker et al., 2007).

An additional layer of protection is provided in certain seeds
by the deposition of toxic compounds such as cyanogenic glyco-
sides, terpenoids, and flavonoids. The issue of seed coat chemistry
has especial resonance in relation to the presence of glucosinolates
in brassicaceous crops (Bohinc et al., 2012). The accumulation
of phenolics in plant tissues is considered to be an adaptive
response to adverse environmental conditions (Lattanzio et al.,
2006; Vermerris and Nicholson, 2007).

Since plants lack mobile defender cells, they are forced to rely
on the innate immunity of every cell and on the production of
signal molecules by invaded cells and their subsequent sensing
(Jones and Dangl, 2006). The small and highly stable cysteine-
rich peptides referred to as defensins actively inhibit pathogen
invasion in both plants and animals (Stotz et al., 2009). Defensins
genes induced by pathogen infection have been identified in a
number of plant species (Thomma et al., 2002; Lay and Anderson,
2005; Carvalho and Gomes, 2009). Their products are concen-
trated mainly in the peripheral/bordering cells, as typified in
barley and rice (Kovalchuk et al., 2010), and are released fol-
lowing tissue damage (Thomma et al., 2002; Lay and Anderson,
2005). Defensin production can also be promoted by certain
abiotic stress agents, and also by exposing plants to the phy-
tohormones methyl jasmonate, ethylene, or salicylic acid (Lay
and Anderson, 2005). The expression of defensins in response
to a variety of biotic and abiotic stimuli implies the possibil-
ity of cross-talk between distinct signal transduction pathways
and gene expression programs involved in cellular signaling and
growth regulation (Hanks et al., 2005; Okuda et al., 2009). Plant
defensins have become the focus of a considerable body of biotech-
nological research (Carvalho and Gomes, 2009; Kovalchuk et al.,
2010).

The barrier function of the seed coat does not extend to gases,
since it is in most cases at least semi-permeable (Welbaum and
Bradford, 1990; Beresniewicz et al., 1995). The seed coat epider-
mis in the mature seed features no, or at best only scarce, functional
stomata (Cochrane and Duffus, 1979; Geisler and Sack, 2002). In
conjunction with the chemical composition of the cuticle, this
implies a rather limited capacity for gas exchange (Nutbeam and
Duffus, 1978; Sinclair et al., 1987; Sinclair, 1988). It was already
demonstrated some 40 years ago that most of the gas exchange
activity occurring within the pea seed is located in the micropylar
region (Wager, 1974). The diffusivity of carbon dioxide through
plant tissue is much higher than that of oxygen, since (unlike oxy-
gen) carbon dioxide is readily soluble in water and so can move
from cell to cell in the form of the carbonate ion. The presence
of gas-filled intercellular spaces is therefore likely to be essential
for translocation of oxygen within the seed. Synchrotron X-ray
computer tomography has identified such spaces in the develop-
ing seeds of both A. thaliana (Cloetens et al., 2006) and oilseed
rape in vivo (Verboven et al., 2013). In the latter species, both the

seed coat and the hypocotyl are well supplied with void spaces,
unlike the cotyledons, where the spaces are small and only poorly
inter-connected (Figure 2). In silico modeling has revealed a three
orders of magnitude range in oxygen diffusivity from the seed coat
to particular embryonic tissues (Verboven et al., 2013). The multi-
ple void spaces present in the seed coat suggest that gas exchange is
effective within this part of the seed. There is a lack of any intercon-
nectivity with the embryo, so the seed coat void network is likely
to be autonomous. Both the seed cuticle and the lipid-containing
aleurone layer of the endosperm have been identified as barri-
ers to oxygen exchange, the former between the seed coat and
external atmosphere and the latter between the seed coat and the
endosperm/embryo. The oxygen pool stored in the voids of oilseed
rape seed is consumed about once per minute. Since the develop-
ing seed has a high respiratory rate, it requires an additional supply
of oxygen to maintain aerobic respiration.

Oxygen micro-sensor measurements made within the seed
of faba bean, pea (Rolletschek et al., 2002, 2003) and soy-
bean (Borisjuk et al., 2005), and within the grains of barley
(Rolletschek et al., 2004), wheat (van Dongen et al., 2004), and
maize (Rolletschek et al., 2005) have established that hypoxia is
the norm. In the developing seed, it may be advantageous to
keep the oxygen level low, because the bioenergetic efficiency of
mitochondria is usually increased at low oxygen levels (Gnaiger
et al., 2000). Thus, a low internal oxygen concentration in the
seed may stimulate carbon use efficiency. Low oxygen levels help
to avoid the formation of toxic concentrations of reactive oxygen
species, which damage cellular structures and require the expen-
diture of energy for repair (Borisjuk and Rolletschek, 2009). In
maize, the level of expression of detoxification genes (encoding
glutathione S-transferase, superoxide dismutase, and ascorbate
peroxidase) decreases during grain development (Méchin et al.,
2007), consistent with a reduction in oxygen availability. To sum-
marize, maintaining a low oxygen level within the seed has been
proposed to provide a means for the developing seed to control
the local level of metabolic activity (Borisjuk and Rolletschek,
2009). Deep within the mature seed, the inhibition of gas exchange
can generate a state of near-anoxia, which may help to ensure
the remarkable longevity of seeds (Shen-Miller, 2002). While the
mechanistic basis of seed longevity is not fully understood, an
important component is likely the control of oxidation (Hendry,
1993; Smirnoff, 2010; Bailly and Kranner, 2011). Practical meth-
ods to prolong seed viability in ex situ gene banks exploit this
natural phenomenon by hermetically sealing the seed in order to
maintain a high level of carbon dioxide within; this is combined
with careful drying down and refrigeration, which help to slow
seed metabolism/respiration and suppress oxidation processes
(Kranner et al., 2010).

PERCEIVING ENVIRONMENTAL CUES
The seed coat’s function is simultaneously to protect the embryo
and to transmit information regarding the external environment.
An impenetrable seed coat may help to keep the embryo safe, but
at the same time it would exclude the sensing of environmental
cues. The evolutionary solution to this dilemma is to combine
certain structural features with appropriate levels of metabolic
and photosynthetic activity in the seed coat.
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FIGURE 2 | Experimental measurements and in silico modeling of

oxygen distribution in the developing oilseed rape seed. (A) Oxygen
concentration (blue line) along a transect of the seed, as determined by a
needle micro-sensor. The x axis plots the penetration of the sensor. (B) In
silico modeling of oxygen concentration in the pore spaces of the seed
coat [indicated by arrows in (A)]. (C) Oxygen concentration map
(color-coded). For details see Verboven et al. (2013). hy, hypocotyl; ic, inner
cotyledon; les, liquid endosperm; oc, outer cotyledon; sc, seed coat.

As plant species vary so much with respect to the distribution
and amount of chlorenchyma in their developing seed, it is difficult
to make meaningful generalizations regarding seed photosynthe-
sis. However, out of 19 major crop species, only maize grains
lack chlorophyll (Bewley and Black, 1994). Both the seed coat and
embryo of pea (Tschiersch et al., 2012), soybean (Saito et al., 1989),
oilseed rape (Borisjuk et al., 2013) and faba bean (Rolletschek et al.,
2003) are photosynthetically active during seed development. The
immature caryopsis of barley, wheat, rice and other grasses fea-
tures a photosynthetically active pericarp (Bewley and Black, 1994;
Rolletschek et al., 2004). The site of photosynthetic electron trans-
port coincides with that of chlorophyll (Tschiersch et al., 2012), as
for example in the barley pericarp (Figures 3A,B). When exposed
to light, the chloroplastids (Figure 3C) produce sufficient ATP and
NAPDH to meet local energy demand. Given the very short half
life of both ATP and NADPH, it is likely that little long distance
transport occurs from their site of synthesis. Non-photosynthetic
plastids within the pericarp depend entirely on an external supply
of ATP, just as is the case for other non-photosynthetic tissues
(Möhlmann et al., 1994; Möhlmann and Neuhaus, 1997). The
spatial separation between the endosperm and the photosynthet-
ically active pericarp implies that seed photosynthesis does not
make any direct energy contribution to assimilate storage in the
endosperm.

Photosynthetic activity in the seed coat, as in the leaves,
fixes carbon dioxide (Nutbeam and Duffus, 1978; Caley
et al., 1990), and generates oxygen (Rolletschek et al., 2004;
Tschiersch et al., 2012). This process is saturated in seeds at a light
intensity some fivefold below that applicable for leaves. Oxygen
production and carbon dioxide fixation combine to maintain a

FIGURE 3 | Photosynthesis in the barley pericarp. (A) Cross-section of a
grain. (B) The effective quantum yield of photosystem II (FII) across a
cross-section of a 12-day-old caryopsis, measured at a light intensity of
160 μmol quanta m−2 s−1. The scale shows the relationship between the
color and FII. (C) A transmission electron micrograph of seed chlorenchyma
plastids. (D) Chlorophyll auto-fluorescence within the crease region of the
pericarp. (E) Oxygen levels within the caryopsis, as measured by a
micro-sensor. For details see Tschiersch et al. (2012). es, endosperm; g,
grana; np, nucellar projection; p, pericarp; st, starch grain; tc, transfer cell;
vb, vascular bundle.
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consistent gaseous environment within the seed. The effect of
photosynthetic oxygen evolution exceeding the oxygen demand
of the respiring seed coat is an increase in the internal oxygen
level (Patrick et al., 1995; Rolletschek et al., 2002, 2003), which
serves to relieve hypoxic stress and thereby enhances the syn-
thetic activity of the seed (Greenway and Gibbs, 2003; Rolletschek
et al., 2005). Importantly, the tissues through which nutrients
are transported to the endosperm/embryo are oxygen depleted
(Melkus et al., 2011). In the dark, the oxygen level can fall below
0.1% of the ambient atmospheric concentration (Rolletschek et al.,
2011), but the chlorenchyma layer that surrounds the region
ensures that the level of oxygen present is much higher in the
light than this (Figures 3D,E). Both nutrient transport to, and
storage activity within the endosperm rely heavily on respira-
tory energy and thus on a steady supply of photosynthetically
derived oxygen. Experiments tracking the incorporation of labeled
sucrose into starch have shown that the process is stimulated by
both light and oxygen (Gifford and Bremner, 1981), underlin-
ing the dependence of storage activity on a supply of oxygen.
Similarly, assimilate supply to the dicotyledonous seed is also
oxygen-dependent, as shown by phloem unloading experiments
(Thorne, 1982).

The seed coat’s high rate of respiration, along with its low per-
meability with respect to carbon dioxide, contributes to elevating
the seed’s internal level of carbon dioxide. However, high con-
centrations of carbon dioxide do promote phosphoenolpyruvate
carboxylase activity, which serves to encourage carbon dioxide re-
fixation and so restricts its loss (Wager, 1974; Harvey et al., 1976;
Flinn, 1985; Araus et al., 1993; Golombek et al., 1998). Limiting
carbon dioxide loss in this way can make an important contri-
bution to the seed’s overall carbon budget (Vigeolas et al., 2003;
Rolletschek et al., 2004). In addition, re-fixation of carbon dioxide
is mediated by Rubisco activity during photosynthesis (Goffman
et al., 2004; Ruuska et al., 2004). The seed’s rate of carbon dioxide
uptake from the atmosphere is much lower than the leaf ’s (Brar
and Thies, 1977; Watson and Duffus, 1988), in line with both a
lower activity of photosynthesis-associated enzymes (Duffus and
Rosie, 1973) and a limited rate of metabolic turn-over (Schwender
and Ohlrogge, 2002; Sriram et al., 2004). Critical factors should be
considered such as (1) the low density of stomata on the surface
of the developing seed, and (2) the low amount of chlorenchyma.
Most relevant experiments have disregarded the re-assimilation of
internally produced CO2 and hence probably underestimated the
actual sizes of the occurring fluxes (Araus et al., 1993). Neverthe-
less, the generally held conclusion still stands that the contribution
of seed photosynthesis to dry matter production (via net CO2

fixation) is low.
One likely hypothesis regarding the evolutionary significance

of retaining photosynthetic capacity in the seed coat suggests that
the interception and processing of light by the seed coat gives the
seed the means to sense its external environment, which is inte-
grated with the hormonal, metabolic, and other signals brought
to the seed through the phloem. Assimilate generated in the leaf
is exported into the phloem in the form of sugar. The developing
seed can benefit from the capacity to anticipate a burst of sugar
arriving via the phloem, since this would facilitate the seed’s rapid
adjustment to its synthesis of storage products. Photosynthesis has

a marked effect on the entrainment and maintenance of robust cir-
cadian rhythms (Haydon et al., 2013). In this way, the retention
of seed photosynthesis can provide a means of tuning the seed’s
metabolism to the quantity and quality of the light available to the
mother plant.

HIGHWAYS AND BYWAYS TRAVELED DURING SOLUTE
TRANSFER
Assimilates produced by the mother plant are delivered to the
developing seed via the same conduit, the vascular system, which
brings hormonal signals and the necessary protein- and RNA-
based messages. Collectively, this enables the coordination of
physiological and developmental processes at the whole organ-
ism level (van Bel et al., 2013). As the vascular system does not
extend beyond the seed coat (Patrick et al., 1995), the embryo
and the endosperm are apoplastically isolated from the mother
plant and are therefore somewhat autonomous. Several path-
ways for nutrient flow are available, depending on seed size and
structure. The smallest seeds (orchid seeds can be as small as
200 μm in diameter) have no vascular structure; rather, the
zygote forms a haustorium which extends toward the terminus
of the mother plant’s vascular system. Slightly larger seeds form
a bundle of pro-vascular elements. Medium-sized seeds develop a
simple, well developed collateral bundle (van Dongen et al., 2003).
Finally, in large-seeded species, the vascular bundle is bulky
enough to anastomose, thereby allowing for the distribution
of nutrients throughout the seed (Vinogradova and Falaleev,
2012). In the A. thaliana seed, the vascular tissue terminates
at the junction of the funiculus and ovule, and in the maize
kernel, the vascular bundle terminates at the placenta–chalazal
region (Figure 4A; Dermastia et al., 2009; Gómez et al., 2009;
Costa et al., 2012). In contrast, wheat, barley and rice grains
form a vascular system that extends over the whole length of
the grain (Figure 4B; Sreenivasulu et al., 2010). The vascular
architecture of Fabaceae species seeds is highly variable, rang-
ing from a single chalazal vein in the Viciae and Trifolieae
to an extensive anastomosed arrangement in the Phaseoleae
(Figure 4C; van Dongen et al., 2003; Weber et al., 2005; Verdier
et al., 2013).

Vascular structures are typically embedded within parenchy-
matous tissue. Adjacent parenchyma cells are interconnected by
plasmodesmata, forming a symplastic continuum (domain). The
plasmodesmata within these domains are larger than elsewhere
in the seed (Ruan and Patrick, 1995; Oparka et al., 1999; Stadler
et al., 2005a,b), which facilitates the movement of small molecules
such as sugars and peptides. The maternal symplasm represents
the major route for nutrients to reach the seed (Wang and Fisher,
1994; Borisjuk et al., 2002; van Dongen et al., 2003). In A. thaliana,
each integument forms an independent symplasm (Stadler et al.,
2005a; Ingram, 2010), which acts as an extension of the phloem
(Stadler et al., 2005a,b). In common bean, faba bean, and pea,
assimilate unloading sites are distributed throughout the seed
coat parenchyma, with the possible exception of the branched
parenchyma (Patrick and Offler, 1995). In the small grain crops,
the nucellar projection is the focus of a well organized transport
route. The cellular architecture of the nucellar projection has been
described in wheat (Wang and Fisher, 1994) and barley (Thiel
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FIGURE 4 |The vascular bundle (thick red lines) and post phloem

routes (thin red arrows) of solute transfer in (A) maize, (B) barley, and

(C) pea. The yellow line indicates the outer surface of the endosperm and
the black stripes indicate the maternal–filial interface. (D) The monitoring of
sucrose allocation (indicated by color code) resulting from a 12-hour period
of feeding with 13C sucrose to the stem at the onset of seed filling stage in
barley. The time elapsed since the beginning of the feeding is shown. For
details see Melkus et al. (2011). em, embryo; es, endosperm; pe, pericarp.

et al., 2008; Melkus et al., 2011). A characteristic feature of tissues
adjacent to the nutrient transport route is the presence of multiple
symplastic junctions, large intercellular spaces and cell wall invagi-
nations. The cells of the nucellar projection are extended toward
the endosperm, thereby directing the flow of nutrients into the
seed. With the exception of the crease region, a thick cuticular layer
borders the pericarp and encloses the whole endosperm. In rice,
two routes have been identified for nutrients to reach the devel-
oping grain: one is analogous to the nucellar projection, while the
second passes through the nucellar epidermis (Oparka and Gates,
1981; Krishnan and Dayanandan, 2003).

The structure of the seed impedes the direct visualization of the
site of the interaction between maternal and filial tissue. Various
dyes and fluorescence- or isotope-labeled substances have been
employed to follow nutrient (mainly sucrose) transport (Fisher
and Cash-Clark, 2000; Stadler et al., 2005a,b). However, this exper-
imental approach has the major disadvantage of being destructive.
Invasive methods inevitably risk inducing artifacts with respect to
both metabolite distribution and enzymatic activity. Non-invasive
technologies, in the form of biosensors or imaging platforms like
Foerster resonance energy transfer (FRET), Positron Emissions
Tomographie (PET), and nuclear magnetic resonance (NMR)
provide potentially superior alternatives (Frommer et al., 2009;
Jahnke et al., 2009; Borisjuk et al., 2012). Real-time information
on signaling and metabolite levels with subcellular granularity
can be obtained in vivo with the help of genetically encoded
FRET nanosensors (Frommer et al., 2009). PET does appear to
be an appropriate platform for in planta analysis (Jahnke et al.,
2009). When 11C is the target isotope, its spatial resolution of
1.4 mm (Phelps, 2004) suits it for the study of long distance

translocation. NMR – and especially 13C NMR – is less sensi-
tive than PET, but it delivers a fivefold higher level of in-plane
resolution than PET, and can be used for real time monitor-
ing (Melkus et al., 2011). The dynamic NMR-based imaging of
sucrose in barley seed was integrated with flux balance analy-
sis (FBA), which operated with more than 250 biochemical and
transport reactions occurring in the cytosol, mitochondrium,
plastid, and extracellular space. This approach has helped to
unravel the complex biochemical processes affecting sucrose dis-
tribution in the grain (Melkus et al., 2011; Rolletschek et al.,
2011).

DELIVERING NUTRIENTS ACROSS THE MATERNAL–FILIAL
INTERFACE
Some experimental evidence has been obtained to support the
view that the delivery of metabolites to the embryo bypasses
the endosperm (Yeung and Meinke, 1993; Weijers et al., 2003;
Stadler et al., 2005a; Morley-Smith et al., 2008; Ungru et al., 2008;
Pignocchi et al., 2009). However, other data suggest that the pro-
cess is, in fact, mediated by the endosperm, largely because
compromised endosperm development is so often associated with
aberrant embryo growth (Chaudhury et al., 2001; Choi et al., 2002;
Garcia et al., 2005; Ingouff et al., 2006). In either case, the inter-
generational transfer of materials occurs via the apoplastic space.
The specialized cellular structures developed at the tissue mar-
gins coordinate nutrient delivery from the seed coat into the seed
itself. Transfer cells develop invaginated cell walls, thereby increas-
ing the surface area of their plasma membrane and hence their
capacity to transport nutrients (Andriunas et al., 2013). Nutri-
ent transporters such as sucrose transporter 1 (Weber et al., 2005;
Melkus et al., 2009) and amino acid permease 1 (AAP1; Tegeder,
2014) are typically present in both maternal and filial cells. Often
they appear as tissue-specific isoforms: examples are the tono-
plast intristic proteins (TIPs) for water (Gattolin et al., 2010)
and Siliques Are Red 1 (SIAR1) for amino acids (Ladwig et al.,
2012); some can change from efflux to influx mode in response
to metabolic signals (Ladwig et al., 2012). The transfer cells posi-
tioned on either side of the apoplast (Zhang et al., 2007) act as the
gateway for nutrient flow, as demonstrated in vivo by NMR in the
barley caryopsis (Figure 4D; Melkus et al., 2011; Rolletschek et al.,
2011).

The maternally located efflux transfer cells are responsible for
the release of nutrients into the apoplast, and form cell wall
ingrowths which direct the flow toward the seed (Stadler et al.,
2005b; Zhang et al., 2007). The plasma membranes in these cells
are enriched with respect to aquaporins, membrane transporters,
and channels for sugars, amino acids and peptides, inorganic
ions, and other compounds (Zhang et al., 2007; Thiel et al., 2008;
Bihmidine et al., 2013). These efflux cells, like the cells of the
barley and wheat nucellar projections, typically undergo pro-
grammed cell death (PCD; Zhou et al., 2009; Radchuk et al.,
2011), which contributes to nutrient transfer to the filial tissue.
In the maize seed coat placenta–chalazal region, PCD is coor-
dinated with endosperm cellularization and is completed prior
to the beginning of the storage phase. In this way, PCD func-
tions as an adaptive process to facilitate the passage of solutes
(Kladnik et al., 2004). In barley, the extensive vacuolization of cells
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in the nucellar projection allows for the transient accumulation of
sucrose, which is released together with the complete cell contents
to the apoplast after cell disintegration. A defective nucellar pro-
jection compromises nutrient flow into the endosperm, resulting
in a reduction in final grain size (Radchuk et al., 2006; Melkus
et al., 2011; Yin and Xue, 2012). Although important for the seed’s
fate, the identity, and mechanics of efflux constituents and trans-
porters are only poorly understood (Braun, 2012; Patrick et al.,
2013).

The influx transfer cells in monocotyledonous species lie on the
surface of the endosperm, directly opposite the maternal unload-
ing site (Thiel et al., 2008; Monjardino et al., 2013; Lopato et al.,
2014). The development and function of these transfer cells have
been comprehensively and recently reviewed (Lopato et al., 2014;
Thiel, 2014). In dicotyledonous species, the transfer cells usually
face the seed coat (Borisjuk et al., 2002; Offler et al., 2003; Olsen,
2004). A delay in the trans-differentiation of the embryonic epi-
dermal cells to form transfer cells in the pea mutant E2748 has a
negative impact on embryo growth and seed viability (Borisjuk
et al., 2002). Maize grains defective for the formation of basal
endosperm transfer cells exhibit a shrunken kernel phenotype,
as exhibited in the mutants reduced grain filling 1 (Maitz et al.,
2000), globby1 (Costa et al., 2003), baseless1 (Gutiérrez-Marcos
et al., 2006), empty pericarp 4 (Gutiérrez-Marcos et al., 2007), and
miniature1 (Kang et al., 2009).

The coordinated differentiation of opposing transfer cells
requires a functional interaction between them, so presumably
relies on an effective signaling mechanism. How this interac-
tion operates is unclear, but a possible sequence of events has
been suggested by Weber et al. (2005) and Andriunas et al. (2013).
In the dicotyledonous seed, the expanding cotyledon makes
contact with the seed coat, after which the innermost thin-
walled parenchyma cells are gradually crushed (Offler et al., 1989;
Harrington et al., 1997). The stress, akin to wounding, may induce
an ethylene burst (Harrington et al., 1997; Zhou et al., 2010). In
response, a secondary ethylene burst in the adjacent embryo cells
could be mediated by the auto-regulated expression of 1-amino-
cyclopropane-1-carboxylic (ACC) synthase (Chang et al., 2008).
The process initiates the trans-differentiation of epidermal cells
into transfer cells (Zhou et al., 2010). Crushing of the seed coat
is also coupled with a decrease in the activity of extracellular
seed coat-specific invertase (Weber et al., 1996a,b), which leads
to a local reduction in the level of intracellular glucose (Borisjuk
et al., 1998). The lowered glucose level, sensed via a hexokinase-
dependent pathway, removes the glucose-induced repression of
ethylene-insensitive 3 (EIN3) and triggers an ethylene-signaling
cascade, driving transfer cell differentiation (Dibley et al., 2009;
Andriunas et al., 2011). As shown in both in vitro and in vivo
experiments, transfer cell formation across a wide range of plant
species involves an interaction between phytohormones, sugar,
and reactive oxygen species (Dibley et al., 2009; Forestan et al.,
2010; Zhou et al., 2010; Andriunas et al., 2012; Xia et al., 2012).
The signals and signaling pathways responsible for the induction
of transfer cell formation may be conserved across the mono-
cotyledon/dicotyledon divide (Andriunas et al., 2013). When the
promoter of the maize transfer cell-specific transcription fac-
tor ZmMRP1 (Gómez et al., 2009) was fused to a GUS reporter

gene and inserted into maize, A. thaliana, tobacco, and barley,
GUS activity could be identified in regions of active transport
between source and sink tissues in each of these species (Barrero
et al., 2009), supporting the idea that the processes involved in
transfer cell differentiation are similar across a diversity of plant
species, and that differentiation is initiated by conserved induction
signals.

COMMUNICATING BETWEEN ADJACENT SEED
COMPARTMENTS
Coordination of seed development clearly requires communi-
cation between seed compartments, and in particular a level
of feedback between the seed coat and the endosperm/embryo.
Transporters localized at the embryo surface seem to be regulated
by the metabolite concentrations present in the seed apoplast, but
it is unclear how these transporters contribute to coordinating
carbon partitioning between the maternal and filial tissues of the
seed. For example, storage protein synthesis in the A. thaliana
embryo and final seed weight depend on nitrogen availability and
are mediated by AAP1, which is expressed in both the embryo and
the seed coat. In both the seed coat and the endosperm of the
aap1 loss-of-function mutant, amino acid levels are higher than in
the wild type, whereas in the embryo, the content of storage pro-
teins and carbohydrate is lower (Sanders et al., 2009). Similarly,
phloem amino acid concentrations regulate nitrogen loading into
the oilseed rape seed (Lohaus and Moellers, 2000; Tilsner et al.,
2005; Tegeder, 2014).

Nutrient release from the seed coat needs to be precisely tuned
via a fast and sensitive mechanism such as, for example, cell turgor,
which directly depends on the activity of vacuolar sucrose trans-
porters (Walker et al., 2000). A turgor-homeostatic mechanism in
the seed coat could sense a loss of solute from the seed apoplast and
then could act to balance this by adjusting efflux activity (Patrick
and Offler, 2001). The growth of the endosperm, therefore, may
trigger a feedback signal to the seed coat, which is then transmit-
ted via a calcium signaling cascade (Zhang et al., 2007) to drive
cell elongation. Such a mechanism could allow the endosperm
to coordinate aspects of seed development (Borisjuk et al., 2002;
Melkus et al., 2009).

Sucrose, hexoses, and amino acids can all provide a regulatory
signal (Koch, 2004; Weber et al., 2005; Ruan et al., 2010). Sugar
responsiveness is a prominent feature of genes contributing to
the sink strength of developing organs, and provides an impor-
tant mechanism for sink adjustment to source delivery (Xiong
et al., 2013b). A number of genes involved in sucrose metabolism
are up-regulated by sugars (Smidansky et al., 2002; Kang et al.,
2009). As a result, the strongest sink is the one most efficiently
up-regulated by the supply of assimilate (Bihmidine et al., 2013).
A balancing via down-regulation is also feasible (Kang et al., 2009).
An invertase prominent in regulating sucrose unloading (Cheng
et al., 1996; Weber et al., 2005; Chourey et al., 2011) has been pro-
posed to enhance sugar signaling in the context of establishing
assimilate sinks (Weber et al., 1996a, 2005; Ruan et al., 2010; Aoki
et al., 2012). The expression of the myb-like transcription factor
ZmMRP-1, a key regulator of transfer cell differentiation (Gómez
et al., 2009), is modulated by various carbohydrates, with glucose
being the most effective inducer (Barrero et al., 2009). ZmMRP1
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transcriptionally activates a number of transfer cell-specific genes
in the maize endosperm (Gómez et al., 2002); one of these is
Meg1, which encodes a small cysteine-rich peptide localizing to
the plasma membrane of differentiating endosperm transfer cells,
where it regulates the expression of cell wall invertase 2 (Costa et al.,
2012). The strong maternal influence over placental-like functions
is conferred by genomic imprinting, which has been attributed
to maternal–filial co-adaptation (Wolf and Hager, 2006; Gehring
et al., 2009). Meg1 is one of more than a hundred imprinted genes
active in the endosperm (Raissig et al., 2011; Waters et al., 2011;
Wolff et al., 2011; Zhang et al., 2011), and is the first to have been
identified as having a role in regulating the flow of nutrients to the
embryo (Costa et al., 2012). Meg1 also acts in tripartite (seed coat-
endosperm-embryo) interaction and regulates maternal nutrient
uptake, sucrose partitioning, and seed weight.

MAINTAINING A LEVEL OF CONTROL OVER SEED SIZE
The developing maternal tissue has an effect on endosperm fill-
ing and thus also final seed size. Several genes associated with
seed size in A. thaliana are expressed in the seed coat (Haughn
and Chaudhury, 2005; Roszak and Köhler, 2011). Among them
are the transcription factors ARF2/MNT [which restricts seed
size by suppressing cell proliferation in the integuments (Schruff
et al., 2006; Li et al., 2008)], AP2 (Jofuku et al., 2005; Ohto
et al., 2005, 2009), TTG2 and EOD3/CYP78A6, which control cell
expansion in the integuments (Garcia et al., 2005; Ohto et al.,
2009; Fang et al., 2012) and KLUH/CYTOCHROME P450 78A5,
which stimulates cell proliferation in the endothelium. The up-
regulation of KLUH increases seed size, produces larger seedlings
and increases seed oil content (Adamski et al., 2009). NARS1
and NARS2 are expressed in the outer integument, acting redun-
dantly to regulate seed shape and embryogenesis (Kunieda et al.,
2008); the seed of the nars1 nars2 double mutant are abnormally
shaped.

At least 400 quantitative trait loci (QTL) related to grain size
have been identified in rice and candidate genes have been iden-
tified for some of these (Huang et al., 2013). Dwarf1 is strongly
transcribed in the early developing pericarp and only weakly in
the endosperm (Izawa et al., 2010). This gene encodes the α sub-
unit of the heterotrimeric G protein (Ashikari et al., 1999; Fujisawa
et al., 1999), which is suspected of controlling cell number, since
its loss-of-function mutant displays a ubiquitous reduction in cell
number (Izawa et al., 2010). A second candidate gene, gif1, encodes
a cell wall invertase required for carbon partitioning during early
grain filling (Wang et al., 2008). Its transcript is only detectable
in the (maternal) vascular tissue, suggesting that its role is asso-
ciated with sucrose unloading (Wang et al., 2008). The expansion
of parenchymatous cell layers seen in a faba bean accession (large-
versus small-seeded) may reflect the activity of cell wall invertase 1
(Weber et al., 1996a).

Several factors involved in ubiquitin-related activity have been
shown to influence seed size (Li and Li, 2014). In rice, a
ubiquitous RING-type protein displaying E3 ubiquitin ligase
activity (encoded by GW2) negatively regulates grain size by
restricting cell division. Its loss-of-function mutant forms an
enlarged spikelet hull, which allows for a greater contact area
between the endosperm and the seed coat (Song et al., 2007).

An uncharacterized protein, encoded by a candidate gene for
a QTL for seed width mapping to chromosome 5, interacts
with polyubiquitin, and acts to limit grain size, possibly by its
involvement in the ubiquitin-proteasome pathway (Weng et al.,
2008). However, because ubiquitin-related genes are so widely
expressed – including within the endosperm – it is unclear whether
their function is exclusively under maternal control. The A.
thaliana gene DA2 is a homolog of GW2; it acts in the maternal
tissue to restrict the growth of the seed. The da1 mutant pro-
duced larger and heavier seeds then wild type (“da” means “large”
in Chinese; Li et al., 2008). The growth-restricting factor DA1 is
an ubiquitin receptor which determines final seed size by restrict-
ing the period of integument cell proliferation (Li et al., 2008; Xia
et al., 2013). The gene underlying a major grain length QTL in
rice encodes a putative phosphatase 2A-type protein harboring
a Kelch-like repeat domain. Its effect is manifested by inducing
a higher cell density on the outer surface of the glumes and the
ovary (Zhang et al., 2012).

The influence of the maternal tissue on caryopsis size has been
well documented in cereals, although quite how this is achieved
at the molecular and metabolic level remains unresolved (Huang
et al., 2013). The extensive synteny and conserved gene structure
among cereals has allowed much of the knowledge gained from
rice to be exploited in crops such as maize, wheat, and barley. In
particular, orthologs of GW2 have been identified in both wheat
(Su et al., 2011) and maize (Li et al., 2010).

SMALL PROVISIONS FOR GOOD REASON
At an early developmental stage, the seed coat in dicots, and the
pericarp in monocots accumulate a significant amount of starch
(Figure 5). In A. thaliana, oilseed rape, and pea, starch accumula-
tion occurs in the cells of the outer integument during the growth
phase (Abirached-Darmency et al., 2005; Haughn and Chaudhury,
2005; Borisjuk et al., 2013). In the A. thaliana seed coat, the most
abundant transcript level of the genes encoding starch synthesis
enzymes are observed during the pre-globular and globular devel-
opmental stages (Khan et al., 2014). Starch granules in the chalazal
part of the seed coat are smaller and less abundant than in the distal
part, a trait which is mirrored by a differential starch synthesiz-
ing enzyme transcript profile (Khan et al., 2014). In M. truncatula,
an abundance of starch granules accumulates transiently in the
seed coat from the embryo heart stage all the way up to mid-
maturation (Verdier et al., 2013). Based on the behavior of pea
seeds lacking ADP-Glc pyrophosphorylase activity, it appears that
transiently produced starch is required for sink acquisition, maxi-
mal embryo growth and final seed size (Rochat et al., 1995; Vigeolas
et al., 2004). The role of this transient starch is not completely clear.
Young maternal tissue may perhaps have evoloved a starch stor-
age function to ensure a sufficient assimilate sink strength, which
becomes redundant once the growing seed’s own sink is estab-
lished (Radchuk et al., 2009). Accumulating assimilate in the form
of starch is energetically highly efficient (Schwender, 2008), so it is
unsurprising that the transient maternal sink accumulates starch
rather than protein or lipid.

Transient starch is utilized for the growth and development
of the maternal tissue (Xiong et al., 2013a), for example, by pro-
viding a source of carbohydrate to reinforce the cell wall with
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FIGURE 5 |Transient starch accumulation in the maternal tissues of

the barley caryopsis and the oilseed rape seed. (A) Transient starch
accumulation (visualized in black by iodine staining) in the pericarp of the
developing barley caryopsis at (B) 2, (C) 8, and (D) 14 days after
fertilization. The pericarp is indicated by arrows. For details see Radchuk
et al. (2009). (E–G) Starch in the seed coat of young and maturing seeds of
oilseed rape. For details see Borisjuk et al. (2013). em, embryo; es,
endosperm; np, nucellar projection; pe, pericarp; sc, seed coat.

pectinaceous mucilage (Khan et al., 2014). It may also help support
the growth of the endosperm and embryo (Radchuk et al., 2009;
Verdier et al., 2013). In Zingiberales and Caryophyllales species, the
nucellus, rather than degenerating, accumulates large amounts
of starch (López-Fernández and Maldonado, 2013), forming a
so-called perisperm which persists until the seed is mature. In
quinoa and the grain amaranth, the perisperm consists of dead,
thin-walled cells completely filled with starch granules, produc-
ing a structure which strongly resembles the cereal endosperm
(López-Fernández and Maldonado, 2013).

The synthesis of transient starch is performed by a similar set
of genes as is used in the leaf (Radchuk et al., 2009). Its mode of
breakdown in the cereal pericarp is distinct between living and
dying cells. In living chlorenchyma cells, it most likely occurs via a
pathway similar to that followed in the photosynthesizing leaf; this
involves the phosphorylation of the starch granule surface, making

it accessible for the degrading enzyme β-amylase. Plastid-localized
BAM5, BAM6, and BAM7 β-amylases are thought to produce
maltose, acting either at the granule surface or on linear malto-
oligosaccharides. The action of iso-amylase 3 on the granule, on
the other hand, releases soluble malto-oligosaccharides, which can
be metabolized by disproportionating enzyme 1 (DPE1), liber-
ating glucose, and larger malto-oligosaccharides for continued
degradation. After its transport to the cytosol, maltose can be
further converted to glucose by DPE2. In dying cells, the mode
of starch breakdown resembles that occuring in the germinating
grain, which requires a combination of α- and β-amylase activity.
AMY1 is active in the pericarp and nucellar tissue of a develop-
ing grain and is responsible for most of the α-amylase activity
seen in germinating grains (Radchuk et al., 2009). A plausible
starch degradation pathway in dying pericarp cells involves the
joint activity of AMY1 and AMY4. Linear malto-oligosaccharides
released by the action of these enzymes should provide an appro-
priate substrate for β-amylase 2. The molecular identity of the
gene/enzyme responsible for the conversion of maltose to glucose
remains to be identified.

Seed coat tissues may also serve as a transient depot for pro-
teins and microelements. In faba bean, the storage protein legumin
B is deposited in the seed coat at mid-embryogenesis (Panitz
et al., 1995), while the wheat pericarp and nucellus accumulate
significant quantities of calcium, copper, iron, molybdenum, mag-
nesium, manganese, and phosphorus (Wu et al., 2013; Xiong et al.,
2013a). The physiological significance of this accumulation has
not yet been elucidated.

DYING QUIETLY
Because cell division in the maternal tissue ceases soon after fer-
tilization, further enlargement only occurs through cell expansion
(Radchuk et al., 2011; Figueiredo and Köhler, 2014). The rapid
growth of the endosperm and embryo requires the triggering of
PCD to remove maternal cells in order to allow seed expansion.
In both dicotyledonous and monocotyledonous seeds, the early
stages of endosperm expansion are at the expense of the nucel-
lus (Domínguez et al., 2001; Greenwood et al., 2005; Lombardi
et al., 2007; Zhou et al., 2009; Radchuk et al., 2011). After the
cereal nucellus has degenerated, the next tissue to undergo PCD
is the pericarp, starting from its innermost cell layer (Radchuk
et al., 2011). The chlorenchyma is retained in a viable, func-
tional state almost up to physiological maturity. In A. thaliana
and the castor oil plant, PCD occurs first in the endosperm and
later in the integuments (Greenwood et al., 2005; Nakaune et al.,
2005).

As in animal cells, the molecular basis for PCD in plants relies
on caspase-like activity. Although no caspase homologs have been
identified in plants, plants do harbor proteases sharing some
similarity to animal caspases. Caspase-1-like, caspase-3-like, and
caspase-6-like activities have all been detected in the degenerating
chayote (Sechium edule) nucellus (Lombardi et al., 2007). Vacuo-
lar processing enzyme (VPE, also referred to as legumain) has
caspase-1-like activities (Hara-Nishimura et al., 2005), while phy-
taspase possesses caspase-6-like activity (Chichkova et al., 2010).
A seed specific δVPE produced by A. thaliana is present in the
two inner cell layers of the seed coat. In a mutant defective for
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δVPE, PCD is delayed and the seed coat remains thick through-
out development. In contrast, in the wild type, the two layers
undergo PCD very early during seed development, reducing their
thickness by more than 50% (Nakaune et al., 2005). The spatial
and temporal patterns of HvVPE4 transcription coincides with
the onset of PCD in the barley pericarp (Radchuk et al., 2011).
The product of HvVPE2a (also called nucellain), together with
those of HvVPE2b, HvVPE2c, and HvVPE2d, are important for
the timely degeneration of the nucellus and the nucellar projection
(Linnestad et al., 1998; Radchuk et al., 2011). HvVPE2b possesses
caspase-1 like activity (Julián et al., 2013). The supposed role of the
barley VPEs in grain development still requires experimental con-
firmation. Novel technologies (Tsiatsiani et al., 2012) might help
to identify the target(s) of VPE.

A large number of proteases are present in degenerating mater-
nal tissue, some of which may be active components of PCD
(Sreenivasulu et al., 2006; Thiel et al., 2008). The ricinosome, a
castor oil plant specific organelle, contains a large quantity of a
pro-cysteine endopeptidase (CysEP), which serves to disintegrate
the nucellar cells, leaving crushed and folded cell wall residues
in the apoplastic space (Greenwood et al., 2005). Nuclear DNA
fragmentation has been detected in the nucellus of the castor oil
plant (Greenwood et al., 2005), chayote (Lombardi et al., 2007),
barley (Linnestad et al., 1998; Radchuk et al., 2011) and wheat
(Domínguez et al., 2001), as well as in the A. thaliana endothelium
(Nakaune et al., 2005).

The transcription factor OsMADS29 has been described as a
regulator of PCD in the rice nucellus (Yang et al., 2012; Yin and
Xue, 2012). OsMADS29 transcripts are concentrated in the nucel-
lus and the nucellar projection (Yin and Xue, 2012), but are also
detectable in the inner layers of the pericarp, in other maternal
seed tissues and in the embryo (Yang et al., 2012; Nayar et al.,
2013). PCD is slowed in an OsMADS29 knockdown line, lead-
ing to a reduction in starch accumulation in the endosperm and
the production of shrunken or aborted grain (Yin and Xue, 2012).
An alternative role for this transcription factor – in relation to
hormone homeostasis, plastid biogenesis and starch synthesis –
has been suggested by Nayar et al. (2013). OsMADS29 is thought
to bind to the promoters of cysteine protease genes (Yin and
Xue, 2012). The down-regulation of OsMADS29 suppresses the
transcription of VPE genes in the grain (Yang et al., 2012). As
yet, however, there is no consensus regarding the localization of
either its transcript or its gene product, its primary target(s) or
its likely function during grain development. The transcription
of its barley homolog, HvMADS29, is restricted to the nucellus
and the nucellar projection and coincides with that of Jekyll and
HvVPE2a. The promoter regions of Jekyll, HvVPE2a, HvVPE2b,
and HvVPE2d contain the same CArG-like regions recognized by
OsMADS29, which implies that they are all transcriptionally reg-
ulated by HvMADS29. Jekyll is a key player in grain development
(Radchuk et al., 2006), and is also active in nurse tissues, where
it mediates the gametophyte-sporophyte interaction in both the
gynoecium and the androecium (Radchuk et al., 2012). Its down-
regulation slows PCD in the nucellus and nucellar projection,
although the mechanistic basis of this effect is unclear. The Jekyll
product, which is unique to Pooideae, is a small, cysteine-rich pro-
tein deposited within the intracellular membranes (Radchuk et al.,

2012). It has no significant similarity to other proteases or any
protein of known function, and has no in vitro protease activity.

IMPROVING THE CHANCES OF SEED SURVIVAL
The capacity of the seed coat to limit water loss and to protect
against mechanical damage persists beyond seed maturation. The
mechanical strength of the seed coat is achieved primarily by the
accumulation of sclerenchyma. Cell walls containing lignin, cel-
lulose, and sometimes silica are effective in providing protection
against attacks by fungi, insects, and herbivores (Lanning and
Eleuterius, 1992). Seed coat constituents (e.g., PAs in Brassica
napus) impair the digestibility and are being targeted by genetic
and molecular approaches to improve nutritional value of seeds
(Auger et al., 2010; Yu, 2013).

The seed coat can also contribute to seed dispersion: some
species produce winged seed, where the wing structure is formed
by outgrowths of the seed coat, while others produce hairy seed.
Some of the compounds found on the seed coat have industrial
applications. Under natural conditions, the cotton boll (its fibers
are almost pure cellulose) will tend to increase the dispersion of
the seeds, and indeed the use of cotton for fabric is known to date
to prehistoric times. Genetically modified cotton has increased
yield, but further improvements are needed (Molina et al., 2008;
Kathage and Qaim, 2012; Ruan, 2013).

The seed coat, along with the endosperm, is the primary
determinant of seed dormancy (Debeaujon et al., 2000; Bethke
et al., 2007; Iglesias-Fernández et al., 2007), which represents a
physiological adaptation to environmental uncertainty (Bewley
et al., 2013). Dormancy dictates the environmental conditions
required to trigger germination (Finch-Savage and Leubner-
Metzger, 2006). The acquisition of seed dormancy is under
complex genetic control, but it is vital as a means of assur-
ing the survival of natural plant populations (Penfield and King,
2009; Graeber et al., 2012). Seed dormancy can be a critical trait
for breeders (Fuller and Allaby, 2009; Gao et al., 2013; Smýkal
et al., 2014) and would represent a prime target for biotechnology
intervention, provided that its regulation were better understood
(Flintham, 2000; Graeber et al., 2012).

A combination of external factors, such as light, temperature,
water, and chemicals play an important role in breaking seed dor-
mancy. Many small seeded species, the seeds of which contain
little stored energy, are triggered to germinate by exposure to
light. In some cases the minimum duration of exposure required
can be measured in milliseconds (Quail, 1997). Phytochromes
represent the main vehicle for seeds to sense light (Smith, 2000;
Mochizuki et al., 2009). The linkage between the light-regulated
trigger and the hormone-mediated induction of germination in
A. thaliana has been been explored by Cho et al. (2012). A rapid
adaptation to light fluctuation can represent a key competitive
advantage in natural plant populations. A particularly striking
example of how the seed coat contributes to seed survival is pro-
vided by species that have adapted to bushfires. Australian Banksia
species are destroyed when burnt, but the fire stimulates the open-
ing of their seed-bearing follicles and promotes the germination
of buried seed. The smoke from bushfires contains as many as
5000 different compounds (Nelson et al., 2012), including a num-
ber of substances proven to stimulate germination (Nelson et al.,
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2012). While volatiles such as ethylene and nitric oxide are not
very persistent in the soil, other smoke compounds (in particular,
karrikins, and cyanohydrins) are quite stable in the upper layers of
the soil where dormant seeds tend to be found. The seed coat of a
mature Banksia sp. seed is permeable to these molecules. The seeds
of hundreds of plant species have been tested with many smoke
compounds, and the mode of action of some has been elucidated
in A. thaliana (Nelson et al., 2010; Flematti et al., 2013). It has even
been suggested that some of these compounds have been co-opted
through evolution as signals for germination (Nelson et al., 2012;
Challis et al., 2013).

CONCLUDING REMARKS
During seed development, the seed coat (dicots) and pericarp
(monocots) serve a number of functions, most of which have
evolved to protect the seed and to promote the development
of the embryo and the endosperm within it. The architecture,
chemical composition and metabolism of the seed coat work
together to ensure effective responses to both biotic and abiotic
factors. Nutrients passing from the mother plant to the develop-
ing embryo and endosperm must traverse the seed coat, which
therefore controls seed development and seed filling. Special-
ized tissues have developed in a coordinated fashion on either
side of the apoplast to direct and facilitate nutrient flow toward
the growing embryo and endosperm. The seed coat and the
endosperm act together to determine final seed size. The fine-
tuning of nutrient flow from the seed coat to their endosperm and
embryo is controlled at the genetic, epigenetic, and metabolic
level, but how the interplay is achieved in vivo remains to be
clarified.

Photosynthesis in the seed coat provides oxygen to the hypoxic
regions deep within the developing seed. The overwhelming pro-
portion of the nutrition supplied to the seed is provided by the
leaf of the mother plant, the delivery of which is tied to the cir-
cadian rhythm. Adapting the seed’s metabolism to this uneven
flow of nutrition is facilitated by the seed’s ability to sense light.
In the course of seed development, the maternal tissues undergo
PCD, thereby providing both the space and nutrients for the
growth of the filial tissue. Finally, an outer seed envelope is
built which is important for providing protection for the mature
seed, enabling the establishment of dormancy and aiding in seed
dispersal.
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