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Plant growth and carbon metabolism are closely associated since carbohydrate in the form
of sucrose generated by photosynthesis, provides the primary source of building blocks and
energy for the production and maintenance of biomass. Regulation of carbon partitioning
between source and sink tissues is important because it has a vast influence on both
plant growth and development. The regulation of carbon partitioning at the whole plant
level is directly linked to the cellular pathways of assimilate transport and the metabolism
and allocation of sugars, mainly sucrose and hexoses in source leaves, and sink organs
such as roots and fruit. By using tomato plant as a model, this review documents
and discusses our current understanding of source–sink interactions from molecular to
physiological perspectives focusing on those that regulate the growth and development
of both vegetative and reproductive organs. It furthermore discusses the impact that
environmental conditions play in maintenance of this balance in an attempt to address
the link between physiological and ecological aspects of growth.
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INTRODUCTION
The partitioning and allocation of carbon (C) is intimately
connected to plant growth since the export of carbohydrate
from photosynthesizing leaves provides the substrate for the
growth and maintenance of non-photosynthetic tissues. Through
photosynthesis plants can highly efficiently convert CO2 into 3-
phosphoglyceric acid and glyceraldehyde-3-phosphate leading to
the biosynthesis of sugars as well as terpenoids and fatty acids.
This fixed carbon is transformed into reserve molecules, which
can be broken down at a later time to provide the cell with ATP,
reducing power, and carbon skeletons, which support a number
of physiological functions including growth. Carbohydrates such
as sucrose provide both an energy source and the building blocks
for the production and maintenance of biomass.

Biomass accumulation in plants is a remarkably stable func-
tion of light intercepted by the canopy and CO2 transformation
into dry matter via photosynthesis, thus illustrating the depen-
dence of plant growth on C fixation. Photosynthetically active
“source” tissues such as mature leaves, export fixed C, primarily in
the form of sucrose, to non-photosynthetic “sink” tissues such as
fruits or reproductive organs, tubers, meristems, or roots (Koch,
2004). During its life cycle, a typical plant undergoes considerable
changes in the dynamics of carbon transport and metabolism in

both source and sink organs as well as in the degree of competition
among various sinks for the common pool of carbohydrates avail-
able. Changes in source and sink activities are known to induce
cyclic patterns of growth (production flushes; Gary et al., 1993;
Valentin et al., 1998; Gautier et al., 2001; Bertin et al., 2003). Com-
mercial horticultural crops such as citrus and apple are exposed
to a sustained pruning throughout their growth cycles in order to
control their growth and to maintain a desired balance of photoas-
similate partitioning between source and sink organs. However,
altered source sink dynamics across development are by no means
confined to crop species with several reports evidencing this behav-
ior in non-cultivated species (Graf et al., 2010; Pyl et al., 2012;
Sulpice et al., 2014).

In order to fully understand the relationship between pho-
toassimilate partitioning and growth, we need to consider three
important key steps, (1) production of photoassimilates (source
capacity), (2) transport of photoassimilates, and (3) utilization of
photoassimilates in sink organs (Figure 1). This brief review high-
lights the role of carbohydrate transport and metabolism in plant
growth and its perspective in altering agronomic yield. For this
purpose we focus on recent development in tomato, which as well
as being an important horticultural crop is a model for research
on source–sink interactions and competition.
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FIGURE 1 | Schematic diagram of transfer and transport processes

contributing to the flow of assimilates through the source–sink system.

Circles describe facilitators, squares represent symporters, triangles describe
H+-ATPases/PPases, and pentagons antiporters. 1, LeSUT1; 2, LeSUT2;

LeSUT4; 4, putative SlSweets. MC, mesophyll cell; PC, parenchyma cells; CC,
companion cells; SE, sieve element; Suc, sucrose; SPS, sucrose-P-synthase;
SPP, sucrose-P-phosphatase; CW-Inv, cell wall invertase; V-Inv, vacuolar
invertase.

CARBOHYDRATE PARTITIONING IN SOURCE TISSUES
The photosynthetic activity of source tissues is determined by
the activity of various enzymes of the Calvin–Benson cycle,
which can be divided into three distinct phases. In phase 1
(carbon fixation), CO2 is condensed with the five-carbon sugar
ribulose bisphosphate. This reaction is catalyzed by ribulose 1,5-
bisphosphate carboxylase (Rubisco) generating two molecules
of 3-phosphoglycerate (3-PGA). In phase 2 (reduction), the
3-PGA is converted to glyceraldehyde 3-phosphate, the three-
carbon precursor of sucrose. In phase 3 (regeneration), the
ribulose bisphosphate is regenerated in order to incorporate
CO2 to initiate the cycle. In order to remobilize the inorganic
phosphate incorporated in the primary products of photosyn-
thesis, assimilates are converted either to sucrose in the cytosol,
or to transitory starch, which is synthesized in the plastids
and degraded into glucose and maltose at night. Starch can
be seen as an overflow product synthetized when the rate of
CO2 fixation exceeds the rate of sucrose synthesis. Feedback
inhibition of sucrose synthesis via the signal metabolite fructose-
2,6-bisphosphate leads to the accumulation of phosphorylated
intermediates and decrease inorganic phosphate (Pi) in the chloro-
plast, resulting in activation of ADP-glucose pyrophosphorylase
(AGPase) by a rising glycerate-3-phosphate:Pi ratio (MacRae and
Lunn, 2006). Recent study on a series of TILLING mutants with
smaller changes in AGPase activity demonstrated that AGPase
exerts control over the pathway of starch synthesis (Hädrich

et al., 2011). Moreover, the sugar trehalose-6-phosphate (Tre6P)
has been proposed to act as an intermediate between sucrose
and AGPase (Kolbe et al., 2005), which might provide the route
whereby starch accumulation is linked to the sucrose and, pos-
sibly, plant carbon status (Smeekens et al., 2010; Stitt et al.,
2010).

An important question concerning the capacity of a source
leaf is whether the photosynthetic activity is always running at
its maximum or is rather controlled by the metabolism of pho-
toassimilates within, or their transport to, sink tissues. There are
several examples of sink-dependent alteration of photosynthesis of
source leaves. The overexpression of a sucrose phosphate synthase
(SPS) gene in tomato caused considerable modification of carbon
allocation within the leaves and additionally at the whole plant
level. Most importantly, the amount of sucrose unloaded into the
fruit was considerably higher, which lead to increase the total fruit
number as well as total fruit weight (Micallef et al., 1995). Thus,
suggesting that not only development, but also fruit growth are
limited by sucrose available from phloem unloading. Consistently
with this hypothesis, transgenic tomatoes with reduced sucrose
synthase (SuSy) activity that catalyzes the cleavage of sucrose into
UDP-glucose and fructose, displayed a reduced sucrose unloading
capacity, leading to reduced fruit set as well as slower growth rate
(D’Aoust et al., 1999). The negative effect of suppression of SuSy
on fruit set is reminiscent of that on seed development observed
in SuSy deficient maize (Chourey et al., 1998) and cotton (Ruan
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et al., 2008). Similarly, tomato plants constitutively overexpressing
the hexokinase 1 gene of Arabidopsis displayed reduced photosyn-
thetic rates as well as harboring smaller fruit containing lower
sugar content (Dai et al., 1999; Menu et al., 2004).

Tomato fruits initially contain chloroplasts that are photosyn-
thetically active, but these differentiate to non-photosynthetic
chromoplasts during ripening. This transition would appear
to be coupled to a decline in the expression of genes (Alba
et al., 2004; Carrari et al., 2006; Kahlau and Bock, 2008;
Osorio et al., 2011) and enzyme activities (Schaffer and Petreikov,
1997; Steinhauser et al., 2010) associated with carbon assimilation.
Despite the high expression of photosynthetic genes (Lemaire-
Chamley et al., 2005), fruit are rarely net assimilators of CO2

(Carrara et al., 2001). Moreover, the triose phosphate and glucose-
phosphate transporters are both active in tomato chloroplasts,
indicating that both could import and export phosphoesters. Early
studies shown that tomato fruit contributes by its own fixed car-
bon between 10 and 15% of the carbon skeletons required (Tanaka
et al., 1974). A similar effect was also observed in transgenic tomato
with reduced chloroplastic fructose-1,6-biphosphatase activity
and thus likely reduced rates of fruit photosynthesis (Obiadalla-Ali
et al., 2004). Moreover, the combined metabolomic and tran-
scriptomic analyses of tomato plants with reduced expression
of Aux/IAA transcription factor IAA9, suggested an important
role for photosynthesis of ovary in the initiation of fruit develop-
ment (Wang et al., 2009). A recent study showed that fruit-specific
reduction in the expression of glutamate 1-semialdehyde amino-
transferase (GSA), which has previously been documented to
contribute to the control of chlorophyll biosynthesis (Höfgen et al.,
1994), displayed lower chlorophyll levels and photosynthetic activ-
ity but few other differences. Indeed, no differences in fruit size,
weight, or ripening capacity and only minor alterations in other
primary or intermediary metabolites were observed (Lytovchenko
et al., 2011). These results, suggest that fruit photosynthesis is not
essential for fruit energy metabolism. However, the same study
intriguingly demonstrated that fruit photosynthesis was impor-
tant for seed set, indicating that further study is required to
enhance our understanding of the interactions between different
organs of the plant. Two recent studies provide highly intrigu-
ing insights into the competition for assimilates within the plant
(Génard et al., 2010; Toubiana et al., 2012). The work of Toubiana
et al. (2012), follows on from earlier work on tomato introgres-
sion lines which revealed clear negative correlations between fruit
amino acid levels and the harvest index (the proportion of dry
weight of the plant invested in, in this instance, its fruits; Schauer
et al., 2006) even used pruning to simulate agronomic practice
(Do et al., 2010). The latter study likely provides information with
regard to environmental manipulations, which alter source-to-
sink partitioning. That said much broader analysis such as those
carried out in a collection of Arabidopsis accessions grown under a
variety of C and N availabilities (Kleessen et al., 2012; Sulpice et al.,
2013), will be required in order to achieve greater insight into the
interplay between plant, environment, metabolism, and growth.

TRANSPORT OF CARBOHYDRATES FROM SOURCE-TO-SINK
All photoassimilates that are not required for the support of
leaf function are converted into sucrose or amino acids and

loaded into the phloem for translocation to the sink organs. High
concentration of sucrose in the sieve elements (SEs) of source
tissues raise turgor pressure, resulting in hydrostatic pressure-
driven mass flow of sugars to the SEs of sink tissues, where
sugars are unloaded and turgor pressure drops. Sugar trans-
port is highly regulated (Tiessen and Padilla-Chacon, 2013),
and sucrose-specific signaling is involved in controlling trans-
port activity (Chiou and Bush, 1998). Different transporters are
required for efficient movement of sucrose across plasma mem-
branes for apoplastic phloem loading in tomato source leaves
and phloem unloading in fruit pericarp at the rapid expansion
phase (Ruan and Patrick, 1995). These operate with different
energetic and kinetic constraints rendering them suitable for:
(i) efficient export into cell wall spaces, a process most likely
mediated by sucrose facilitators such as AtSWEET11 and 12
(Chen et al., 2012), (ii) uptake of sucrose in cells as mediated by
Suc/H+ symporters (Carpaneto et al., 2005), (iii) loading from
the cytosol into storage vacuoles by hexose/Suc/H+ antiporters
(Milner et al., 1995; Brown et al., 1997; Ruan et al., 1997), and
(iv) fine-tuning of sucrose/hex flux in order to on the one hand
maintain homoeostasis and on the other regulate intraorganellar
signaling.

In tomato, three sucrose transporter genes have been identified,
LeSUT1, LeSUT2, and LeSUT4. All three proteins were demon-
strated to be co-localized in the SEs, whereas transcription of
SUT1 was also shown to take place in companion cells (Barker
et al., 2000; Weise et al., 2000). LeSUT1 is mainly expressed in
sucrose exporting source leaves; whereas LeSUT2 is expressed pre-
dominantly in sink organs such as sink leaves, stem, and fruits
(Barker et al., 2000). Although the expression patterns of LeSUT1
and LeSUT2 are different at the tissue level, they are co-localized
in the SEs in the loading and transport zone, particularly in leaves,
petioles, and stem tissues. Moreover, both genes have been proven
to physically interact, which is suggestive of the potential forma-
tion of oligomeric complexes with unique transport capacities
(Reinders et al., 2002). However, oligomerization of the sucrose
transporters has yet to be confirmed in planta, so the physio-
logical importance of this observation is currently unknown. If
sucrose transport mediated by these transporters is essential for
phloem loading, then a reduction in transport activity would
be anticipated to lead to feedback inhibition of photosynthesis
and a consequent reduction in the supply of carbon to the sink
organs. In order to test this hypothesis, transgenic tomato plants
were generated which independently suppressed the expression
of LeSUT1 and LeSUT2. The leaves of LeSUT1 antisense plants
displayed early senescence and chlorosis. Furthermore, the rate of
photosynthesis in these plants was reduced and analysis of metabo-
lites revealed an accumulation of soluble sugars and the inability
to mobilize transitory starch during prolonged dark treatment.
Moreover, measurements of C efflux from cut petioles indicated
a blockage in phloem loading a fact that rendered the plants
unable to produce normal fruits (Hackel et al., 2006). By con-
trast reduced LeSUT2 expression exclusively affected tomato fruit
seed development, pollen germination, and pollen tube length.
The data suggest, that LeSUT1 and LeSUT2 appear to have a
role in phloem loading and unloading, respectively (Hackel et al.,
2006).

www.frontiersin.org October 2014 | Volume 5 | Article 516 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Functional_Plant_Ecology/archive


Osorio et al. Carbon partitioning in tomato

The sucrose transporter of group 4 (LeSUT4) was originally
published as high capacity transporter of phloem minor veins
(Weise et al., 2000). However, the recent finding of other sucrose
transporters from group 4 in Arabidopsis and barley tonoplasts
(Endler et al., 2006), raises questions about the initial interpreta-
tion with it seeming more likely that group 4-type transporters are
vacuolar sucrose transporters that are primarily expressed in sink
tissues.

Recently, a new class of sugar transporters called SWEETs,
which are involved in the release of sugars to the apoplast,
have been described in Arabidopsis and rice (AtSWEET 10–15;
OsSWEET 11 and 14; Chen et al., 2012). The Arabidopsis double
mutant, atsweet11;12, displayed reduced export of carbon from the
leaf, increased accumulation of starch, and a reduced photosyn-
thetic capacity (Chen et al., 2012). The SWEET proteins have not
yet been identified in tomato but can be predicted that they operate
at the placenta–seed interface, in outer pericarp, at early devel-
opmental stages during hexose accumulation phase (Ruan and
Patrick, 1995; Jin et al., 2009). Here, the Suc effluxers likely facili-
tate the sucrose export into the apoplasm where Suc is hydrolysed
by invertases into glucose and fructose prior to uptake by Hex/H+
symporters (Ruan et al., 2010). However, direct molecular genetic
testing of this hypothesis is yet to be performed.

The importance of the supply to and the subsequent mobi-
lization of sucrose in, heterotrophic organs has been the subject
of considerable research effort spanning many years (Miller
and Chourey, 1992; Zrenner et al., 1996; Heyer et al., 2004;
Lytovchenko et al., 2007). While the mechanisms of sucrose
loading into the phloem has been intensively studied over a
similar time period (Riesmeier et al., 1993, 1994; Bürkle et al.,
1998; Meyer et al., 2004; Sauer et al., 2004), those by which it
is unloaded into the sink organ have only been clarified rela-
tively recently (Bret-Harte and Silk, 1994; Viola et al., 2001; Kuhn
et al., 2003; Carpaneto et al., 2005). In tomato, early studies sug-
gested that sucrose unloading in pericarp during early stages of
fruit development is likely symplasmic (Ruan and Patrick, 1995;
Damon et al., 1998; D’Aoust et al., 1999). The post-phloem cel-
lular pathway in the outer fruit pericarp was shown to shift
from symplastic during starch accumulation (13–14 days after
anthesis) to apoplastic during hexose accumulation (23–25 days
after anthesis; Offler and Horder, 1992; Ruan and Patrick, 1995;
Patrick and Offler, 1996). During the switch from the starch-
accumulating to the sugar-accumulating phase, the symplastic
continuity between phloem and storage parenchyma is dimin-
ished and an apoplastic unloading step for sucrose was thought
to predominate. This symplastic-to-apoplastic switch is consis-
tent with facilitated transport to accumulate soluble sugars at
high concentrations without attenuating phloem unloading due
to osmotic effect exerted from the recipient sink cells (Offler
and Horder, 1992). Three sugar transporter genes (acc. num-
bers: U321367, U336512, U318421) were found to co-localize
with quantitative trait locus (QTLs) for sugar accumulation in
tomato fruit (Prudent et al., 2011). Moreover, cultivar differ-
ences in hexose content of tomato fruit correlate well with
maximal activities of hexose/H+ symporters (Ruan et al., 1997).
This relationship was verified by RNAi knockdown of three hex-
ose symporters (McCurdy et al., 2010) which localize to plasma

membrane of storage parenchyma cells (Dibley et al., 2005).
The reduction in fruit expression levels of these three hex-
ose symporters caused a decrease in fruit hexose accumulation.
By contrast, photoassimilate production by source leaves and
phloem transport capacity to fruit were unaffected (McCurdy
et al., 2010).

CARBOHYDRATE METABOLISM AND ACCUMULATION IN
SINK TISSUES
Experimental manipulations of source supply, source activity, and
sink strength have all provided strong evidence for the hypothe-
sis that photosynthesis and sink utilization of carbohydrates are
tightly coordinated (Paul and Foyer, 2001; Kaschuk et al., 2010).
Generally, when sink activity is decreased by removing active sinks
or introducing nutrient deficiency, carbohydrates accumulate in
leaves and photosynthesis becomes inhibited (Paul and Pellny,
2003), which does not depend on the sink removal, but on the
remaining sink capacity. Similarly, when sucrose export from
source leaves is restricted, photosynthesis is inhibited (Krapp and
Stitt, 1995; Bürkle et al., 1998; Zhang and Turgeon, 2009), which is
due to the remaining transport capacity. Therefore, the amount of
sugars accumulated in fruit is not only dependent on endogenous
metabolic processes but also in the degree of phloem unloading,
since tomato fruits have a low photosynthetic activity (Farrar and
Williams, 1991) which is actually not even required to support
fruit growth (Lytovchenko et al., 2011).

As mentioned above some studies postulate apoplastic unload-
ing from phloem throughout tomato fruit development (Zanor
et al., 2009), especially during phases of hexose accumulation
(Ruan and Patrick, 1995). In such a scenario, cell wall inver-
tase catalyzes the breakdown of sucrose into glucose and fructose
in the apoplasm, which have the potential to regulate sugar
fluxes by increasing apoplasmic levels of hexoses. The apoplas-
mic unloading of sugar can thus facilitate influx of hexoses
across plasma membrane of storage cells or can accelerate the
efflux of sucrose from phloem to sink apoplasm by sucrose
concentration differences, possibly mediated by SWEET sucrose
effluxers, as recently reported in Arabidospis and rice (Chen
et al., 2012). The Solanum pennellii apoplasmic invertase (LIN5)
identified as QTL for hexose accumulation in the tomato intro-
gression line (Brix9-2-5), was characterized by a higher affinity
for sucrose. Thus tomato containing the S. pennellii LIN5 exhib-
ited a significant increase in soluble solids (usually sugars and
acids) without a negative impact on fruit yield (Fridman et al.,
2002, 2004; Gur and Zamir, 2004; Zanor et al., 2009). Increas-
ing the activity, by silencing its inhibitor (INVINH1), similarly
increased fruit sugar level and seed size (Jin et al., 2009). The
metabolic rationale behind the strategy of apoplasmic invertase
modification is that the hydrolysis of translocated sucrose at the
point of unloading in the fruit sink can increase the gradient
of translocation from source-to-sink and hence the net import
into the fruit (Ho, 1996; Fridman et al., 2004; Koch, 2004). In
addition, such a strategy has the added advantage that it gen-
erates glucose signals, which stimulate cell growth and sugar
accumulation (Jin et al., 2009). By contrast to the effects from
developmental regulation of cell wall invertase activity, constitu-
tive knockdown of a vacuolar soluble acid invertase SAI (TIV1)
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caused a switch from hexose-accumulation to sucrose-storing
tomato fruit without any change in total sugar content per fruit
(Klann et al., 1996). Sucrose-accumulating fruits were smaller
than control fruits, which suggest that soluble acid invertase con-
trols sugar composition and cell expansion, consistent with the
function of SAI in other plant systems (Roitsch and Gonzalez,
2004).

AGPase is a key regulatory plastidial enzyme of starch biosyn-
thesis and maps to a QTL for sugar content (Petreikov et al., 2009).
A tomato introgression line of S. habrochaites was characterized by
increasing sugar content and higher AGPase activity that resulted
from temporally extended expression of AGPase large subunit
(Petreikov et al., 2006). These tomatoes exhibited higher starch
content in the immature fruit, which leaded to higher total solu-
ble solids (mainly sugar) and fruit size at mature stage (Petreikov
et al., 2006). The relationship between AGPase activity and tomato
sugar content has been verified altering malate metabolism, which
post-translationally affects AGPase activity through an effect on
cellular redox balance (Centeno et al., 2011; Osorio et al., 2013).
Moreover, while modification in malate metabolism in tomato
fruit had relatively little effect on the total fruit yield, they had dra-
matic consequences in postharvest shelf life and susceptibility to
bacterial infection, which is an important consequence of altered
C partitioning (Centeno et al., 2011).

Nowadays, there is an important debate whether or not C stor-
age should be considered as an actively regulated sink instead of
being a simple surplus resulted when supply of new assimilated
carbon is higher than demands. To date, our understanding of the
regulation of storage is based on diurnal starch dynamics, where
starch is accumulated during the day to support growth and res-
piration at night. Therefore, from these studies can be concluded
that the synthesis and degradation of starch are controlled by inde-
pendent regulatory networks that allow plants to balance carbon
supply via photosynthesis with C use for growth and other activ-
ities (Sulpice et al., 2009; Stitt and Zeeman, 2012). Although this
question has not been opened in tomato plants, in long-lived trees
recent attempts at explaining C limitation under stress suggest
that priority allocation to storage could compete with growth and
make assimilated C a limiting resource (McDowell, 2011; Sala et al.,
2012). This considerations imply that under limiting availability
of assimilates, C storage is given priority over growth, because ulti-
mately survival depends more on C demands for metabolism than
for growth (Sala et al., 2012). However, further empirical evidences
are needed to corroborate these theories.

SOURCE–SINK REGULATION BY STRESS
Plants are able to perceive and respond to a wide range of biotic
and abiotic stimuli (Metlen et al., 2009). In response to these stim-
uli they undergo physiological, biochemical, and physical changes
to produce a phenotype that match their environment (Sultan,
2000). Such phenotypic plasticity can be expressed locally at the
site affected by stimuli. However, plants can also coordinate their
responses to changes in their surroundings with other plant mod-
ules and respond in a systemic and integrated manner at the
whole-plant level (de Kroon et al., 2005).

Upon attack by herbivores, plants produce a number of defen-
sive compounds and structures that hinder the performance and

fitness of the attackers. Several studies have shown that herbivore
attack leads to reallocation of carbon and nitrogen from damaged
leaves into storage tissues (Babst et al., 2005, 2008; Schwachtje
et al., 2006), often in a rapid manner known as induced sequestra-
tion (Orians et al., 2011). In tomato specifically, export of nitrogen
from leaves into roots has been shown in response to methyljas-
monate (Gómez et al., 2010). Recently, the whole-plant metabolic
responses of tomato after leaf herbivory by two caterpillars (the
generalist Helicoverpa zea and the specialist Manduca sexta) were
characterized using metabolic analysis (Steinbrenner et al., 2011).
In this study, it was found that the primary metabolic responses
across the entire tomato plant varied widely from tissue to tissue.
The induced metabolic change was stronger in the apex and root
tissues than in undamaged leaflets of damaged leaves, indicating
rapid and significant whole-plant responses to damage. Interest-
ingly, these metabolic changes were herbivore-specific, which H.
zea herbivory strongly affected concentrations of defense-related
metabolites, while M. sexta altered metabolites associated with
carbon and nitrogen transport (Steinbrenner et al., 2011; Gómez
et al., 2012).

Stresses including insufficient supply of nutrients, drought,
heat, or cold, often induce seed and fruit abortion and, hence,
irreversible yield losses (Boyer and McLaughlin, 2007; Bita et al.,
2011; Li et al., 2012; Ruan et al., 2012). For example, heat stress
can result in 70% yield loss in tomato as a result of flower and
fruit abortion (Bita et al., 2011). If several enough, heat stress
can also led to 100%, or to 10% if it is only mild (Sato et al.,
2000). Therefore, any exogenous factors, which alter the resource
availability from source and its utilization within sink, can be
anticipated to influence carbohydrate partitioning, and sink yield
and quality.

Heat mainly affects the biochemical reactions of photosyn-
thesis, and depending on the duration and intensity, can irre-
versible damage Rubisco, oxygen-evolving complexes, chloroplast
ultrastructure, thylakoid membranes, and PSII reaction centers
(Havaux, 1993; Camejo et al., 2005, 2006). Tomato has an opti-
mum growth temperature of 24–26◦C in the day and 18–20◦C at
night. Temperatures above 30◦C in the daytime and 21◦C at night
as well as lower that 15◦C could block the reproductive (gameto-
phytic) phase in flowering plants, resulting in low pollen viability,
poor pollen elongation, and ultimately fruit abortion (Weaver and
Timm, 1989). A recent study has revealed that the reproductive
development of tomato is more sensitive to high night tempera-
ture than day temperature (Liu et al., 2012). This implies that lack
of photoassimilate supply at night aggravates heat-induced dam-
age. A pollination of heat-stressed and emasculated flower with
non-stressed pollen reduce the flower abortion rate, which indi-
cate that pollen development is more vulnerable to heat stress than
the female organs in tomato (Ruan et al., 2010). The reduction
of tomato pollen viability by heat could be attributed to reduc-
tion in starch accumulation in developing pollen grains and total
soluble sugar in the anther wall (Pressman et al., 2002). Further
analysis by the same group revealed that reduction of cell wall
invertase activity in anthers might be the major factor contribut-
ing to pollen sterility under heat stress (Pressman et al., 2006).
This reduction in the cell wall invertase activity could be due
to an induction of the invertase inhibitor protein (Frank et al.,
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2009). Interestingly, expression of SPS was also up-regulated by
heat in maturing tomato pollen (Frank et al., 2009). SPS is a key
enzyme in the biosynthesis of sucrose, which is thought to play
an important role as osmo-protectant in the maintenance of cell
membrane integrity and thereby cellular function. Recently, Li
et al. (2012) described the influence of heat stress on fruit and
seed set, a critical phase for realizing yield potential. They exam-
ined patterns of carbon allocation and sucrose cleavage enzymes
in heat-tolerant and -sensitive tomato lines finding a strong cor-
relation between high invertase activity and increased sucrose
import into young fruit, and heat-tolerance most likely due to
an increase in sink strength and sugar signaling activities (Li et al.,
2012).

Drought induces large alterations in source–sink relations due
to a modification of growth priorities and to a reduction of the per-
formance of photosynthetic organs (Vu et al., 1999). For instance,
water stress could inhibit fruit growth as a result of both sink
and source limitations (Chaves et al., 2009; Muller et al., 2011).
Similarly to the response of plants to heat and cold stresses, the
reproductive phase in flowering plants is often highly sensitive to
drought stress (Guilioni et al., 1997; Smith and Stitt, 2007). Some
studies have addressed the regulation of source- and sink-specific
enzymes in response to water deficit. In this vein, several studies
demonstrated that the reduced expression of cell wall and vacuo-
lar invertases in drought stress could promote abortion (Andersen
et al., 2002; McLaughlin and Boyer, 2004; Zanor et al., 2009).
However, it is important to note that these studies were merely
correlative and that changes in hormone levels (Andersen et al.,
2002) and in the expression of a diverse range of other genes
(Boyer and McLaughlin, 2007) have also been reported to occur
coincidently to abortion. Tomato transformants deficient in the
expression of the cell wall invertase gene, LIN5, showed a higher
incidence of abortion (Zanor et al., 2009). This suggest that the
reduction in apoplasmic invertase activity is likely an early step
in the signal transduction cascade linking perception of stress to
the initiation of senescence and membrane degradation events
that lead to irreversible abortion (Zanor et al., 2009). The changes
documented in these transformants in the expression of genes
associated with hormonal synthesis and function, provide hints to
the nature of this cascade which may ultimately lead to its eluci-
dation. It was recently shown that the reduced activity of another
apoplastic enzyme, ascorbate oxidase, correlated with increased
final fruit yield under drought stress (Garchery et al., 2013). This
manipulation resulted in increases in stomatal conductance in leaf
and sugar content, as well as a modified apoplastic hexose:sucrose
ratio with the authors arguing that the increased redox state of the
apoplast protects against the rise in reactive oxygen species (ROS)
levels following stress. Therefore, ascorbate oxidase may be a good
candidate for strategies aimed at improving water stress tolerance
in tomato.

The detrimental effects of salts result not only from a water
deficit due to the relatively high solute concentrations in the soil
but also from specific Cl− and Na+ stresses. The physiology of
the tomato in salty and non-salty conditions has been extensively
studied, revealing an inhibition in growth and development, res-
piration, and protein synthesis as well as disruption in nucleic
acid metabolism and an increase in oxidative stress (Zhang and

Blumwald, 2001; Jiménez et al., 2002; Gautier et al., 2009; Manaa
et al., 2011, 2013). Additionally, in salt-treated plants, stomatal
closure caused by depletion of cellular water content and the
reduction in the transport of assimilates are the main causes of
photosynthesis inhibition (Hare et al., 1998). Moreover, accumu-
lation of glucose, fructose, and mainly sucrose in leaves as well
as in ripe tomato fruits can also lead to a decrease in photo-
synthesis by feedback inhibition mechanisms (Poljakoff-Mayber
and Lerner, 1994; Gautier et al., 2010). Furthermore, salinity leads
to osmotic stress due to depletion of cellular water (Hare et al.,
1998). This osmotic adjustment could lead to an accumulation
in the vacuole of compatible solutes and ions, thus increas-
ing the turgor potential (Romero-Aranda et al., 2001). However,
an increase in the turgor pressure is not always related with
an increase in water content in the cell, as cell size has also
been documented to be reduced under conditions of salinity.
Romero-Aranda et al. (2001) observed that it reduced cell expan-
sion in tomato plants, where it was associated with a reduced
osmotic and water potential and an increase in the turgor poten-
tial. Several cellular processes involved in salt–stress tolerance
including osmotic adjustment, osmo-protection, ion homeosta-
sis, elimination of oxygen scavengers, stress response are linked
with the duration of the stress (Munns et al., 2002). Intrigu-
ingly, application of exogenous calcium has a mitigating effect
on tomato fruit by salinity where it seems to induce adaptation
via the activation of the enzymes involved in energy and car-
bohydrate metabolism (Gautier et al., 2009; Manaa et al., 2013).
However, considerable further research is required in order to
define the mechanisms by which calcium mediates this impact on
metabolism and growth.

Plants grown for long periods at elevated [CO2] show a down
regulation of leaf photosynthesis (Delucia et al., 1985; Sage et al.,
1989), and carbohydrate source–sink balance is believed to have a
major role in the regulation of photosynthesis through feedback
inhibition (Stitt, 1991). Source–sink imbalance may occur during
exposure to elevated [CO2] when photosynthesis rate exceeds the
export capacity or the capacity of sinks to use photosynthates
for growth, resulting in an accumulation of carbohydrates in
photosynthetically active source leaves (Stitt, 1991). As we have
previously mentioned, levels of soluble sugars in plant cells have
been shown to influence the regulation of expression of several
genes coding for key photosynthetic enzymes (Koch, 1996; Pego
et al., 2000). The buildup in carbohydrates may signal the repres-
sion, but does not directly inhibit the expression, of Rubisco and
other proteins that are required for photosynthesis (Stitt, 1991;
Jang and Sheen, 1994; Makino and Mae, 1999). In tomato, tran-
script levels for Rubisco subunits, chlorophyll a/b binding protein
(Cab), and Rubisco activase (Rca) decline with CO2 enrichment,
whereas those for core proteins in phosystems I and II remain
unchanged (Van Oosten et al., 1994; Van Oosten and Besford,
1995). Also, despite a large accumulation of starch occurring
in leaves of elevated CO2 grown plants, transcript levels for
AGPase show little change (Van Oosten et al., 1994). Furthermore,
although photorespiration decreases under elevated [CO2] (Stitt,
1991) responses of enzymes and/or transcripts associated with the
photorespiratory pathway have not been well investigated (Moore
et al., 1999).
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The response of plant growth to phosphorus (P) limitation
is shaped differently from the response to nitrogen (N) limita-
tion (Burns et al., 1997; De Groot et al., 2001). An explanation
for this different response may be due to different function of N
and P in the cell. N is part of the machinery of the plant’s energy
metabolism (photosynthesis and respiration), whereas a relatively
large part of inorganic phosphate is incorporated in structural
compounds (phospholipids, nucleic acids; Mengel and Kirkby,
1987). N limitation affects CO2 fixation directly through effects
on photosynthetic components rich in nitrogen such as chloro-
phyll, light-harvesting complex, and Rubisco (Hikosaka, 1996;
Evans and Poorter, 2001). Furthermore, N limitation may affect
CO2 fixation indirectly due to the limitation of growth and the
subsequent accumulation of carbohydrates and feedback limita-
tion of photosynthesis (Paul and Driscoll, 1997; De Groot et al.,
2001). P limitation as well as N limitation, affects photosynthesis
but though different mechanisms (De Groot et al., 2003; Fujita
et al., 2003). This P limitation may affects photosynthesis through
changes in the activity of Calvin-cycle enzymes, RuBP regener-
ation and/or Rubisco activity as long as P plays an important
regulatory role in starch and sucrose biosynthesis, Rubisco acti-
vation and is also part of ATP and NADPH/NADP+. To test these
hypotheses, an elegant experiment was designed using tomato
grown plants at low N, high N, low P, and high P at two irradi-
ances (De Groot et al., 2003). The results were consistent with the
hypothesis of N-limited produces an reduction of photosynthesis,
possible by feedback from the leaf carbohydrate pool, while under
P-limited conditions the production of assimilates is limited (De
Groot et al., 2003). This evidence was strengthened by analysis of
tomato plants grown in liquid culture under P starvation (Fujita
et al., 2003). However, direct molecular evidence and information
about the regulatory networks under N and P limitation remain
to be defined.

CONCLUSION AND PERSPECTIVES
Growth and development in plants are integrated processes in
which primary assimilation in source tissues is balanced by
the metabolic needs of heterotrophic sinks. In this review, we
briefly provide evidence that assimilate partitioning plays a cen-
tral role in balancing photosynthetic activity in the leaves with
photoassimilate utilization and storage in sink. The data pre-
sented clearly demonstrate that molecular tools can be applied
to study whole plant physiology in the context of carbon par-
titioning and yield manipulation. However, to elucidate the
mechanisms that regulate source–sink relations, complementary
experimental approaches are required which also take environ-
mental and eco(physio)logical factors into account. It will also be
crucial to improve our understanding of plant sugar metabolism
and unravel the underlying network of highly flexible regula-
tory mechanisms, which underpin it in order to gain insight into
source–sink regulation. In a future world of elevated atmospheric
carbon dioxide concentration and environmental deterioration,
enhancing the capacity for sucrose export and carbon utiliza-
tion is an important component of maximizing or even merely
maintaining photosynthesis and yield. That said the concepts
outlined here do not merely reflect the challenges presented in
understanding the interplay between plant and environment, and

metabolism and growth in a crop species such as tomato but have
broader implications for understanding these trade-offs in any
plant species.
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