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Ethylene, a key factor in the regulation of seed dormancy
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Ethylene is an important component of the gaseous environment, and regulates numerous
plant developmental processes including seed germination and seedling establishment.
Dormancy, the inability to germinate in apparently favorable conditions, has been demon-
strated to be regulated by the hormonal balance between abscisic acid (ABA) and
gibberellins (GAs). Ethylene plays a key role in dormancy release in numerous species, the
effective concentrations allowing the germination of dormant seeds ranging between 0.1
and 200 1μL L− . Studies using inhibitors of ethylene biosynthesis or of ethylene action and
analysis of mutant lines altered in genes involved in the ethylene signaling pathway (etr1,
ein2, ain1, etr1, and erf1) demonstrate the involvement of ethylene in the regulation of
germination and dormancy. Ethylene counteracts ABA effects through a regulation of ABA
metabolism and signaling pathways. Moreover, ethylene insensitive mutants in Arabidopsis
are more sensitive to ABA and the seeds are more dormant. Numerous data also show
an interaction between ABA, GAs and ethylene metabolism and signaling pathways. It has
been increasingly demonstrated that reactive oxygen species (ROS) may play a significant
role in the regulation of seed germination interacting with hormonal signaling pathways.
In the present review the responsiveness of seeds to ethylene will be described, and the
key role of ethylene in the regulation of seed dormancy via a crosstalk between hormones
and other signals will be discussed.
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INTRODUCTION
In soil, seeds are exposed to various environmental factors
including temperature, moisture, oxygen and light, which reg-
ulate seed germination, and subsequent seedling growth. Phase
I of the germination process is initiated by imbibition, which is
required to activate the respiratory metabolism, and transcrip-
tional and translational activities. In phase II called germination
sensu stricto, water uptake ceases and reserve mobilization starts.
Phase III is characterized by radicle protrusion (Bewley and
Black, 1994; Bewley, 1997; Nonogaki et al., 2010; Weitbrecht
et al., 2011). Germination requires specific temperatures, oxy-
gen levels and light, the exact proportions being species specific.
However, the seeds of species (or even within species) do not
germinate, or do so with difficulty, even when incubated under
apparently favorable conditions; these are considered as dormant
and cannot germinate in the same conditions (i.e., water, air,
temperature) under which non-dormant seeds do (Bewley and
Black, 1994; Corbineau and Côme, 1995; Bewley, 1997). Dor-
mancy is a heritable trait, but its intensity at harvest and its
maintenance after harvest is highly modulated by the environ-
mental conditions throughout seed development and ripening
on the plant, and during seed storage (Bewley, 1997). Fac-
tors inhibiting germination can reside within the embryo itself
(embryo dormancy) or can result from an inhibitory action of
the covering structures (seed coat imposed dormancy; Bewley
and Black, 1994; Hilhorst, 2007). Primary dormancy sets dur-
ing seed development, but a secondary dormancy can develop
in mature seeds with some degree of primary dormancy or in

non-dormant seeds in response to unfavorable conditions for
germination (Hilhorst, 2007; Hilhorst et al., 2010).

The involvement of the hormonal balance between abscisic
acid (ABA) and gibberellins (GAs) in the regulation of seed
germination and dormancy in response to environmental signals
is well documented and discussed in recent reviews (Finkelstein
et al., 2008; Nambara et al., 2010; Nonogaki et al., 2010; Weit-
brecht et al., 2011; Graeber et al., 2012; Rajjou et al., 2012; Arc
et al., 2013; Miransari and Smith, 2014). ABA is well known
to play a crucial role in induction of dormancy in the devel-
oping seeds and in maintenance of dormancy during seed
imbibition, while GAs are involved in dormancy release and/or
germination (Finkelstein et al., 2008; Cutler et al., 2010; Nam-
bara et al., 2010; Miransari and Smith, 2014). In addition to
GAs and ABA, other hormones (ethylene, jasmonates, auxins)
also play a role in the control of seed germination (Linkies
and Leubner-Metzger, 2012; Arc et al., 2013; Miransari and
Smith, 2014). Ethylene (C2H4) in particular regulates germina-
tion and dormancy of numerous species via a complex hormonal
signaling network (Matilla, 2000; Brady and McCourt, 2003; Feur-
tado and Kermode, 2007; Matilla and Matilla-Vazquez, 2008;
Arc et al., 2013).

The role of reactive oxygen species (ROS) in seed biology
has progressively emerged and evolved this last decade. Orig-
inally considered as harmful compounds, causing deleteri-
ous reactions toward a wide range of biomolecules and thus
to seeds, ROS are now widely acknowledged as signaling
compounds regulating the germination process through an
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hormonal network (Bailly et al., 2008; Diaz-Vivancos et al., 2013;
El-Maarouf-Bouteau et al., 2014).

In this review, we describe how ethylene interacts with other
plant hormones in regulation of germination and dormancy,
concentrating on its interactions with ABA, GAs, and ROS.

ETHYLENE BIOSYNTHESIS DURING GERMINATION
Ethylene production by seeds begins immediately after the
onset of imbibition and increases with time of germination.
There is, however, a peak in ethylene emission concomitant
with the radicle protrusion through the seed coat (Ketring and
Morgan, 1969; Fu and Yang, 1983; Satoh and Esashi, 1983;
Gallardo et al., 1991; Gorecki et al., 1991; Siriwitayawan et al.,
2003; El-Maarouf-Bouteau et al., 2014). Seed ethylene production
is species dependent (Kepczynski and Kepczynska, 1997; Matilla,
2000), but is generally below levels detectable by gas chromatogra-
phy during imbibition. Using a high sensitivity laser photo acoustic
spectroscopy (Cristescu et al., 2008), El-Maarouf-Bouteau et al.
(2014) have confirmed the occurrence of an ethylene peak at the
end of the germination process in sunflower (Helianthus annuus)
seeds. Interestingly, a close relationship between the ability to pro-
duce ethylene and seed vigor has been reported in various species
including rape (Brassica napus; Takayanagi and Harrington, 1971),
cotton (Gossypium spp.; Ketring et al., 1974), peanut (Arachis
hypogaea; Ketring et al., 1974), cocklebur (Xanthium pennsylvan-
icum; Gorecki et al., 1991), snap bean (Phaseolus vulgaris; Samimy
and Taylor, 1983), sunflower (Chonowski et al., 1997) and pea
(Pisum sativum; Gorecki et al., 1991), and 1-aminocyclopropane
1-carboxylic acid (ACC)-dependent C2H4 production was pro-
posed as a marker of seed quality (Khan, 1994; Corbineau,
2012).

The pathway of ethylene biosynthesis in seeds is the same
as that described for other plant organs, in which S-adenosyl-
methionine (S-AdoMet) and ACC are the main intermediates
(Yang and Hoffman, 1984; Wang et al., 2002; Rzewuski and
Sauter, 2008; Figure 1). S-AdoMet synthesized from methionine
by the S-AdoMet synthetase (or SAM synthetase), is converted
to ACC, the direct precursor of ethylene, by ACC synthase
(S-adenosyl-L-methionine methylthioadenosine-lyase, ACS). The
by-product 5′-methylthioadenosine (MTA) is recycled back to
methionine through the Yang Cycle (Yang and Hoffman, 1984;
Kende, 1993). S-AdoMet is also the precursor of the biosynthe-
sis of polyamines, which can also play a role in seed germination
(Matilla, 1996). Ethylene production results from the oxidation
of ACC by ACC oxidase (ACO), which also generates CO2 and
hydrogen cyanide (HCN; Figure 1). Autocatalytic synthesis of
ethylene via induction of ACC and ACO transcription is well
known in fruit ripening (Lin et al., 2009), ethylene also regulates
ACO expression in pea (Petruzzelli et al., 2000, 2003), beechnut
(Fagus sylvatica; Calvo et al., 2004b), and turnip (Brassica rapa;
Puga-Hermida et al., 2003). In contrast, ethylene or ACC does
not affect the abundance of ACO transcript in sugar beet (Beta
vulgaris; Hermann et al., 2007) and, expression of SoACS7 in
Sisymbrium officinale and PsAC1 in pea (Petruzzelli et al., 2000,
2003; Iglesias-Fernandez and Matilla, 2010).

Increased ethylene production during germination is asso-
ciated with an increase in ACO activity, as well as

a progressive accumulation of ACS and ACO transcripts
(Gomez-Jimenez et al., 1998; Matilla and Matilla-Vazquez, 2008;
Linkies et al., 2009; Iglesias-Fernandez and Matilla, 2010; Linkies
and Leubner-Metzger, 2012). Although ACS is considered to be
a key enzyme in the regulation of ethylene production in most
plant responses to abiotic and biotic stresses (Wang et al., 2002),
it was demonstrated in seeds that ACO activity plays a fundamen-
tal role during germination (Matilla and Matilla-Vazquez, 2008;
Linkies and Leubner-Metzger, 2012). Both ACS and ACO are
encoded by a multigene family, and the regulation of particular
ACS and ACO genes differ among each other (Wang et al., 2002,
2005; Yamagami et al., 2003). In both Arabidopsis and cress (Lep-
idium sativum), ACO1 and ACO2 have been demonstrated to be
the major ACOs involved in ethylene synthesis (Linkies et al., 2009;
Linkies and Leubner-Metzger, 2012), and the correlation between
the abundance of ACO transcripts and the ACO activity suggests
its regulation at a transcriptional level during germination.

Ethylene is involved in various developmental processes and
responses to biotic and abiotic stresses in plants (Bleecker
and Kende, 2000; Wang et al., 2002). The key components
in its signaling pathway have been identified using a molecu-
lar dissection of ethylene responsiveness in Arabidopsis (Wang
et al., 2002; Stepanova and Alonso, 2009; Yoo et al., 2009).
Five membrane-localized ethylene receptors, ethylene resistant
1 (ETR1), ETR2, ethylene response sensor 1 (ERS1), ERS2,
and ethylene insensitive 4 (EIN4) exist in Arabidopsis (Wang
et al., 2002). Among them, ETR1 and ERS1 contain three trans-
membrane domains in the N-terminus and a histidine kinase
domain in the C-terminus, when ETR2, EIN4, and ERS2
present four transmembrane regions and a serine-threonine kinase
domain in the C-terminus (Wang et al., 2006; Kendrick and
Chang, 2008). Binding of ethylene to its receptors results in
inactivation of CTR1 (constitutive triple response 1) protein
kinase, which in turn activates the kinase cascade control-
ling EIN2 and its transcription factors in the nucleus. These,
such as EIN3, EILs, ethylene response element binding pro-
teins (EREBPs)/ethylene responsive factors (ERFs) activate the
transcription of ethylene response genes (Wang et al., 2002;
Liu et al., 2004; Hall et al., 2007; Rzewuski and Sauter, 2008;
Yoo et al., 2008, 2009; Stepanova and Alonso, 2009; Figure 1).
Recently, it was demonstrated that EIN2 is phosphorylated by
CTR1 kinase in the absence of ethylene, and that EIN2 protein
level is regulated through its degradation by the proteasome
(Qiao et al., 2009, 2012; Ju et al., 2012).

SEED RESPONSIVENESS TO EXOGENOUS ETHYLENE
Exogenous ethylene or ethephon, an ethylene releasing com-
pound, improves germination in numerous species (Esashi, 1991;
Corbineau and Côme, 1995; Kepczynski and Kepczynska, 1997;
Matilla, 2000; Matilla and Matilla-Vazquez, 2008; Arc et al., 2013).
It stimulates germination of non-dormant seeds incubated in
non-optimal environmental conditions such as too high tem-
peratures (Rao et al., 1975; Abeles, 1986; Gallardo et al., 1991),
osmotic stress (Negm and Smith, 1978; Kepczynski, 1986; Khan
et al., 2009), hypoxia (Esashi et al., 1989; Corbineau and Côme,
1992), and salinity (Zapata et al., 2003; Wang et al., 2011; Lin
et al., 2013; Silva et al., 2014). It can also break primary and
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FIGURE 1 | Ethylene biosynthesis and signaling pathways. S-adenosyl
methionine (S-AdoMet) is synthesized from methionine by the SAM
synthetase, it is then converted to 1-aminocyclopropane-1-carboxylic acid
(ACC) by the ACC synthase (ACS), 5-methylthioadenosine (MTA) being a
by-product. MTA is recycled to methionine through the Yang Cycle by
successive enzymatic reactions involving different intermediates among
which 5-methylthioribose (MTR) and 2-keto-4-methylthiobutyrate (KMB).
S-AdoMet is also the precursor of the spermidine/spermine
biosynthesis pathway. Ethylene production results from the ACC
oxidation catalyzed by the ACC oxidase (ACO) that also generates
carbon dioxide and cyanide. Malonylation of ACC to malonyl-ACC
(MACC) reduces ACC content and consequently ethylene production.

Ethylene can stimulate its own biosynthesis, by improving ACC
synthesis catalyzed by ACS, and conversion to ethylene by ACO.
Ethylene binds to receptors (among which ethylene receptor 1, ETR1)
located in the endoplasmic reticulum, which leads to the deactivation
of the receptors that become able to recruit CTR1 (constitutive triple
response). Release of CTR1 inhibition allows EIN2 to act as a positive
regulator of ethylene signaling pathway. EIN2 acts upstream of nuclear
transcription factors, such as EIN3 (ethylene insensitive), EILs
(EIN3-like), ERBPs (ethylene responsive element binding protein), and
ERFs (ethylene response factor). −→ and —• arrows indicate positive
and negative interactions between the different elements of the
signaling cascade, respectively.

secondary dormancy (Table 1). It breaks the embryo dormancy
in apple (Malus domestica; Kepczynski et al., 1977; Sinska and
Gladon, 1984; Sinska and Lewandowska, 1991) and beechnut
(Calvo et al., 2004a), the dormancy of which is usually broken
by chilling, and in sunflower (Corbineau et al., 1990), the dor-
mancy of which is progressively alleviated during dry storage
(after-ripening). It also promotes the germination of seeds exhibit-
ing a seed coat imposed dormancy in various species such as
cocklebur (Katoh and Esashi, 1975; Esashi et al., 1978), subter-
ranean clover (Trifolium subterraneum; Esashi and Leopold, 1969),
Rumex crispus (Taylorson, 1979), and Arabidopsis (Siriwitayawan
et al., 2003). In particular, it can also overcome the secondary dor-
mancy induced by high temperatures in lettuce (Lactuca sativa;
Speer et al., 1974; Abeles, 1986), sunflower (Corbineau et al., 1988),
Amaranthus caudatus (Kepczynski et al., 1996a) and Amaranthus

paniculatus (Kepczynski and Kepczynska, 1993). In Rhus coriaria, a
post-fire pioneer, low ethylene concentrations (0.03–0.10 μL L−1)
released by wet ash stimulates germination (Ne’eman et al., 1999),
although it does not improve that of many other species in
which germination is smoke-induced (Brown and van Staden,
1997). Ethylene also improves germination of seeds from parasitic
plants such as Striga asiatica, Striga lutea and Striga hermonthica
(Egley and Dale, 1970; Bebawi and Eplee, 1986).

The stimulatory effect of ethylene is dose dependent, the
hormone being efficient when applied at concentration rang-
ing from 0.1 to 200 μL L−1 depending on the species, the
depth of dormancy and the environmental conditions. Break-
ing of dormancy either during chilling in apple (Sinska, 1989)
or dry storage in sunflower (Corbineau and Côme, 2003), Ama-
ranthus retroflexus (Kepczynski and Sznigir, 2014) and Stylosanthes
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Table 1 | Plant species whose seed dormancy is broken by ethylene, ethephon, an ethylene releasing compound, or 1-aminocyclopropane-

1-carboxylic acid, the direct precursor of ethylene.

Type of dormancy Species Reference

Primary dormancy Amaranthus caudatus

Amaranthus retroflexus

Arabidopsis thaliana

Arachis hypogaea

Chenopodium album

Fagus sylvatica

Helianthus annuus

Pyrus malus

Rhus coriaria

Rumex crispus

Stylosanthes humilis

Trifolium subterraneum

Xanthium pennsylvanicum

Kepczynski and Karssen (1985)

Kepczynski et al. (1996b)

Siriwitayawan et al. (2003)

Ketring and Morgan (1969)

Machabée and Saini (1991)

Calvo et al. (2004a)

Corbineau et al. (1990)

Kepczynski et al. (1977)

Sinska and Gladon (1984)

Ne’eman et al. (1999)

Taylorson (1979)

Ribeiro and Barros (2006)

Esashi and Leopold (1969)

Katoh and Esashi (1975)

Thermo-dormancy Lactuca sativa Speer et al. (1974)

Secondary dormancy Amaranthus caudatus

Amaranthus paniculatus

Helianthus annuus

Lactuca sativa

Rumex crispus

Xanthium pennsylvanicum

Kepczynski and Karssen (1985)

Kepczynski and Kepczynska (1993)

Corbineau et al. (1988)

Abeles (1986)

Samimy and Khan (1983)

Esashi et al. (1978)

humilis (Ribeiro and Barros, 2006) is associated with an increas-
ing sensitivity to ethylene. At harvest, dormant sunflower seeds
require 50 μL L−1 ethylene in order to germinate at 15◦C, but
only 10 and 3 μL L−1 after 8 and 15 weeks of dry-storage
at 5◦C, respectively (Corbineau and Côme, 2003). In contrast,
the responsiveness to the hormone decreases progressively dur-
ing seed incubation under environmental conditions that induce
a secondary dormancy (Negm et al., 1973; Speer et al., 1974;
Esashi et al., 1978; Jones and Hall, 1984; Corbineau and Côme,
2003).

Although ethylene stimulates the germination of numer-
ous light sensitive seeds, it does not overcome the light
requirement in Amaranthus retroflexus (Schönbeck and Egley,
1981), celery (Apium graveolens; Thomas et al., 1975), lettuce
(Burdett and Vidaver, 1971), and Spergula arvensis (Olatoye
and Hall, 1973). Recently, Wilson et al. (2014b) demonstrate
that loss of ETR1 reduces the inhibitory effect of far-red
on the germination of Arabidopsis seeds through expression
of genes involved in ABA and GAs metabolism. An epis-
tasis analysis performed by the same authors also suggests
that ETR1 may interact with phytochromes to control seed
germination.

An additive or synergistic effect of CO2 and ethylene has also
been demonstrated in seeds of peanut (Ketring and Morgan, 1972),
Spergula arvensis (Jones and Hall, 1984), cocklebur (Katoh and

Esashi, 1975), and lettuce (Negm and Smith, 1978; Saini et al.,
1986). In the case of cocklebur (Esashi et al., 1986) and sunflower
(Corbineau et al., 1990) seeds, it was suggested that the improving
effect of CO2 results from an enhancement of C2H4 biosynthesis,
since it is suppressed in the presence of inhibitors of ethylene
synthesis.

INVOLVEMENT OF ETHYLENE IN SEED GERMINATION AND
DORMANCY
Numerous studies demonstrate that the ability to germinate
correlates with ethylene production, suggesting that ethylene is
involved in the regulation of seed germination and dormancy
(reviewed in Kepczynski and Kepczynska, 1997; Matilla and
Matilla-Vazquez, 2008; Arc et al., 2013). For example, induc-
tion of thermodormancy at high temperatures is associated with
a reduced ethylene production in chickpea (Cicer arietinum;
Gallardo et al., 1991), sunflower (Corbineau et al., 1988), and
lettuce (Prusinski and Khan, 1990). This decrease in C2H4 pro-
duction may result from an increase in ACC-malonyltransferase
activity, thus from a decrease in ACC content as demonstrated
in chickpea (Martinez-Reina et al., 1996), an inhibition of ACO
activity (Corbineau et al., 1988; Gallardo et al., 1991), or a reduced
expression of ACS and ACO (Argyris et al., 2008). In con-
trast, breaking of dormancy by various treatments (e.g., chilling,
GAs, NO, HCN) leads to an increase in ethylene production
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(Kepczynski and Kepczynska, 1997; Arc et al., 2013). In Ara-
bidopsis, the inductive effect of chilling is associated with
a reduced expression of ACO, but in a transient induction
of ACS (Narsai et al., 2011; Linkies and Leubner-Metzger,
2012). However, after-ripening of Sisymbrium officinale seeds
inhibits expression of SoACS7 and SoACO2 which are involved
in ethylene biosynthesis, during early seed incubation, but
stimulates that of SoGA20ox2, SoGA3ox2, and SoGA2ox6
involved in GA metabolism (Iglesias-Fernandez and Matilla,
2009).

Data obtained using inhibitors of ethylene biosynthesis path-
way or mutants altered in ethylene biosynthesis and signaling
pathways demonstrated that endogenous ethylene plays a key
role in the regulation of germination and dormancy. Incuba-
tion of seeds in the presence of aminoethoxyvinylglycine (AVG)
and aminooxyacetic acid (AOA), inhibitors of ACS activity,
CoCl2 and α-aminoisobutyric acid (α-AIB), inhibitors of ACO
activity, or 2,5-norbornadiene (2,5 NBD) and silver thiosul-
fate (STS), inhibitors of ethylene action, allowed demonstra-
tion of the involvement of endogenous ethylene in germination
and dormancy breakage (Kepczynski et al., 1977, 2003; Sin-
ska and Gladon, 1989; Corbineau et al., 1990; Longan and
Stewart, 1992; Gallardo et al., 1994; Hermann et al., 2007). In
contrast, seed incubation in the presence of ACC, the direct
precursor of ethylene, improves seed germination in numerous
species such as lettuce (Fu and Yang, 1983), sunflower (Cor-
bineau et al., 1990), cocklebur (Satoh et al., 1984), Amaranthus
sp. (Kepczynski, 1986; Kepczynski et al., 1996b), chickpea (Gal-
lardo et al., 1994), and sugar beet (Hermann et al., 2007). This
effect of ACC suggests that ACO is potentially active, and that

dormancy might result from insufficient ACC level due to low
ACS activity.

It is important to notice that HCN, a co-product of ACC oxi-
dation, can also break seed dormancy in apple (Perino et al., 1984;
Lewak, 2011; Krasuska and Gniazdowska, 2012; Krasuska et al.,
2014), sunflower (Oracz et al., 2008) and Amaranthus retroflexus
(Kepczynski and Sznigir, 2014).

Using Arabidopsis lines altered in ethylene biosynthesis and
signaling allowed to characterize the regulation of dormancy
by ethylene (Table 2). Seeds of ethylene insensitive etr1 (ethy-
lene resistant) as well as ein2 (ethylene insensitive 2) mutants
display enhanced primary dormancy relative to wild type, prob-
ably due to high ABA sensitivity, whereas ctr1 (constitutive triple
responses) mutant have a slightly enhanced rate of germination
(Bleecker et al., 1988; Leubner-Metzger et al., 1998; Beaudoin
et al., 2000; Ghassemian et al., 2000; Hall et al., 2001; Chiwocha
et al., 2005; Subbiah and Reddy, 2010). EIN2 plays a key role in
the ethylene signaling pathway, and loss of its function results
in a hypersensitivy to salt and osmotic stress during germina-
tion and early seedling development in Arabidopsis (Wang et al.,
2007). ERFs genes might also play a pivotal role in ethylene
responsiveness and regulation of germination (Leubner-Metzger
et al., 1998; Pirrello et al., 2006). FsERF1 expression is minimal
in dormant beechnut embryo, but increases during moist chill-
ing which breaks dormancy (Jimenez et al., 2005). In sunflower,
ERF1 expression is fivefold higher in non-dormant than in dor-
mant embryos, and expression is markedly stimulated by HCN,
which breaks dormancy (Oracz et al., 2008). In tomato (Solanum
lycopersicon), SlERF2 transcript abundance is higher in germinat-
ing seeds than in non-germinating ones, and its overexpression

Table 2 | Dormancy and ABA sensitivity of various mutants of Arabidopsis thaliana affected in ethylene biosynthesis or signaling pathway.

Mutant or transgenic linesa Gene/locus Seed dormancy Hormone sensitivity and content Referenceb

etr1-1

etr1-2

ETR1 Enhanced C2H4 insensitive and ABA hypersensitive

Higher ABA content

1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12

etr1-3 ETR1 Enhanced Reduced C2H4 sensitivity 10

etr1-6 ETR1 Slightly enhanced More sensitive to ABA 10, 13

etr1-8 ETR1 Enhanced – 10

ein2-1, ein2-5, ein2-49 EIN2 Enhanced ABA hypersensitivity

Higher ABA content

1, 3, 4, 7, 11, 12

ein4-4 EIN4 Enhanced – 10

ein6 EIN6 Enhanced ABA hypersensitivity 11

ctr1-1, ctr1-10 CTR1 Early germination Reduced ABA sensitivity 1, 3, 7, 9, 11, 12

acs7 ACS Early germination ABA hypersensitivity 5

eto3 Early germination Reduced ABA sensitivity 3, 11

amutant abbreviations: acs7 = ACC synthetase7; ctr1 = constitutive triple response1; ein2, ein4, ein6 = ethylene insensitive1, 4, 6; etr1 = ethylene resistant1;
eto3 = ethylene overproducer3.
breferences: (1) Beaudoin et al. (2000); (2) Bleecker et al. (1988); (3) Cheng et al. (2009); (4) Chiwocha et al. (2005); (5) Dong et al. (2011); (6) Ghassemian et al. (2000);
(7) Hall et al. (2001); (8) Leubner-Metzger et al. (1998); (9) Ouaked et al. (2003); (10) Siriwitayawan et al. (2003); (11) Subbiah and Reddy (2010); (12) Wang et al. (2007);
(13) Wilson et al. (2014a).
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in transgenic lines results in premature seed germination
(Pirrello et al., 2006).

Transcriptional arrays have been used to draw a global view of
gene expression in germinating and non-germinating seeds and
core sets of genes were analyzed with respect to hormone respon-
sive elements. The analysis of transcriptome data of dormant and
after-ripened states in Arabidopsis performed by Cadman et al.
(2006) showed that ACS2 gene expression was up-regulated in
the dormant state and AtERF5 was up-regulated in germinating
state. In lettuce, Argyris et al. (2008) have shown that ethylene
responsive genes are regulated by thermo-inhibition; ACO and
ACS gene expression is reduced while CTR1, EIN2, ETR1 expres-
sion is increased at high temperature. These results point out
the gap that exists between hormone metabolism and signal-
ing regulation at the level of gene expression. In wheat seeds,
78 probesets annotated as ethylene metabolism and signaling
genes have been differentially expressed between dormant and
after-ripened seeds (Chitnis et al., 2014). ACO is represented by
four probesets that are up-regulated in after-ripened wheat seeds
but no ACS corresponding probeset has been found. Ethylene
signaling element as reversion to ethylene sensitivity 1, ERS1,
EBF1 (EIN3 binding box protein1), prohibitin 3 or ERF have
been shown to be up-regulated in after-ripened seeds at 12 or
24 h of imbibition. The number of genes related to ethylene
involved in germination is underestimated since only direct known
ethylene signaling components are targeted for analysis in omic
studies. It has been shown that treatment with ACC of 7 days
germinated seedlings triggers change in expression of 544 genes,
among them 244 were common to seeds given an ABA treat-
ment (Nemhauser et al., 2006). These results have been used to
compare genes regulated in Lepidium seed tissues during germi-
nation (Linkies et al., 2009). Pectate Lyase 1, Argos-like, Expansin
A2, B-1,3-glucanase and chitinase B which play an important role
in endosperm weakening and/or radicle growth in germination
of Lepidium seeds, are proposed as putative ethylene response
down-stream genes. Cell wall loosening enzymes expressed in
endosperm are also controlled by both ABA and GA (Groot et al.,
1988; Toorop et al., 2000).

ETHYLENE CROSSTALK WITH ABA/GAs AND SEED
GERMINATION
INTERRELATIONSHIP BETWEEN ETHYLENE AND ABA
The antagonistic effects of ABA and ethylene in the regulation
of seed germination and dormancy have been extensively stud-
ied (Leubner-Metzger et al., 1998; Beaudoin et al., 2000; Kucera
et al., 2005; Matilla and Matilla-Vazquez, 2008; Linkies et al., 2009;
Arc et al., 2013). Ethylene overcomes the inhibitory action of ABA
on germination of numerous species among which are Amaran-
thus caudatus (Kepczynski, 1986), Chenopodium album (Karssen,
1976), cotton (Halloin, 1976), tobacco (Nicotiana tabacum), and
Arabidopsis (Leubner-Metzger et al., 1998). In Arabidopsis and Lep-
idium sativum, ethylene also counteracts the inhibition by ABA of
endosperm cap weakening and rupture (Linkies et al., 2009). On
the contrary, ABA increases the ethylene requirement in order
to release dormancy in sunflower (Corbineau and Côme, 1995,
2003) and Amaranthus caudatus (Kepczynski et al., 2003). The
negative interaction between ABA and ethylene is also supported

by data obtained with various mutants affected in the signaling
pathway of both hormones. Ethylene insensitive mutants (etr1,
ein2, and ein6) are hypersensitive to ABA, whereas seeds of ein3,
ein4, ein5, and ein7 germinate normally. Conversely, eto1, eto3,
and ctr1 mutants (characterized by an increase in C2H4 produc-
tion) exhibit a reduced sensitivity to ABA (Table 2; Beaudoin et al.,
2000; Ghassemian et al., 2000; Subbiah and Reddy, 2010). Loss of
function of CRT1 enhances the tolerance to ABA of abi1-1 seeds
(Beaudoin et al., 2000). Genetic approaches, using double mutants
obtained by crossing ethylene insensitive mutants (ctr1, ein1, ein3,
and ein6) with aba2 mutant, demonstrate that ABA and C2H4

may also act in parallel, since they exibit phenotypes resulting
from both ABA deficiency and altered ethylene sensitivity (Cheng
et al., 2009).

Although ACC and exogenous ethylene do not affect ABA con-
tent in Lepidium sativum (Linkies et al., 2009) and sugar beet
(Hermann et al., 2007), Arabidopsis seeds from ethylene insen-
sitive mutants, etr1 and ein2, have a higher ABA content than that
of wild type seeds (Kende et al., 1998; Beaudoin et al., 2000; Ghas-
semian et al., 2000; Chiwocha et al., 2005; Wang et al., 2007). For
example, mutation in ETR1 results in an 8-fold higher ABA con-
tent in mature seeds than in wild type, probably due to a decrease
in ABA conjugation (Chiwocha et al., 2005). Loss of function of
ACS7, one of type 3 ACS with a very short C-terminus and no
phosphorylation site, results in reduced C2H4 emission and hyper-
sensitivity to ABA, consequently conferring abiotic stress tolerance
to Arabidopsis seeds (Dong et al., 2011). ABA accumulation is also
associated with stimulation of ABA biosynthesis through an up-
regulation of NCED and a down-regulation of CYP707A2 in seeds
of the etr1 mutant (Cheng et al., 2009), or an up-regulation of
NCED3 associated with an up-regulation of ABA1 in ein2 seeds
(Wang et al., 2007).

Inhibition of germination by ABA is associated with an
inhibition of in vivo ACO activity and is correlated with a
reduction in ACO transcript accumulation (Bailly et al., 1992;
Petruzzelli et al., 2000, 2003; Linkies et al., 2009), leading to
a reduction of ethylene production (Kepczynski and Kepczyn-
ska, 1997; Matilla, 2000). In Arabidopsis, accumulation of
ACO1 and ACO2 transcripts during germination is inhibited by
ABA, and the high level of ACO1 transcript in ABA-insensitive
mutants suggest a tight regulation of ACO expression by ABA
(Penfield et al., 2006; Carrera et al., 2008; Linkies et al., 2009).
In Lepidium sativum, ABA inhibits expression of both ACO1
and ACO2 in the endosperm cap (Linkies et al., 2009). Up-
regulation of ACO transcript has also been detected by microar-
ray analysis in the aba2 mutant in Arabidopsis (Cheng et al.,
2009). In contrast, there is an ABA-mediated up-regulation of
ACC accumulation and ACO expression in sugar beet seeds
(Hermann et al., 2007).

INTERRELATIONSHIP BETWEEN ETHYLENE AND GAs
Gibberellins improve the germination of dormant seeds in numer-
ous species whose dormancy is broken by ethylene, ethephon,
or ACC (c.f. Table 1). Both hormones promote the germina-
tion of primary dormant seeds of Arabidopsis (Ogawa et al., 2003;
Siriwitayawan et al., 2003), Amaranthus retroflexus (Kepczynski
et al., 1996b; Kepczynski and Sznigir, 2014), beechnut (Calvo
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et al., 2004a,b), apple (Kepczynski et al., 1977; Sinska and Gladon,
1984; Sinska, 1989; Lewak, 2011), and Sisymbrium officinale
(Iglesias-Fernandez and Matilla, 2010). They also break secondary
dormancy in Rumex crispus (Samimy and Khan, 1983) and cock-
lebur seeds (Esashi et al., 1975), and thermodormancy in lettuce
achenes (Keys et al., 1975). In Arabidopsis, C2H4 restores the ger-
mination of the GA-deficient mutant ga1-3 (Karssen et al., 1989),
and GA3 stimulates that of the etr1 mutant (Bleecker et al., 1988),
while no stimulatory effect is noted on the germination of the GA-
deficient gib-1 mutant in tomato (Groot and Karssen, 1987). All
these data suggest that GAs and ethylene pathways interact (Brady
and McCourt, 2003; Feurtado and Kermode, 2007; Matilla and
Matilla-Vazquez, 2008; Miransari and Smith, 2014).

In beechnut, incubation of embryos in the presence of GA3

results in an accumulation of ACC and an increase in ACC
oxidase activity and C2H4 production, concomitant with an
increased expression of FsACO1 (Calvo et al., 2004a). Similarly,
the improving effect of GA4 on the germination of Arabidopsis
ga1-3 mutant seeds is associated with an increase in AtACO
(Ogawa et al., 2003). Decrease of the expression of FsACO1
in the presence of paclobutrazol, a GAs biosynthesis inhibitor,
confirms that GAs activates the ethylene biosynthesis pathway
(Calvo et al., 2004a,b). However, in Sisymbrium officinale, Iglesias-
Fernandez and Matilla (2010) demonstrate that expression of
SoACS7 and SoACO2 during germination is inhibited by paclobu-
trazol, but is not affected by application of either ethrel or
GA4+7. In addition, the up-regulation of AtERS1 (ETHYLENE
RESPONSE SENSOR encoding a member of ethylene receptor
family) in Arabidopsis in the presence of GA4 (Ogawa et al.,
2003) and of an EIN-3 like in beechnut in the presence of
GA3 (Lorenzo et al., 2000) suggest an effect of GAs on ethylene
response.

Numerous data also suggest that ethylene stimulates seed ger-
mination by affecting the GAs biosynthesis or signaling pathway.
GA1, GA4, and GA7 strongly accumulate in dry mature seeds
of the etr1-2 Arabidopsis mutant relative to wild type, and both
GA4 and GA7 contents remain higher than in wild type dur-
ing the two first days of imbibition (Chiwocha et al., 2005). The
changes in GA content during germination suggest that lack of
ETR1, i.e., of ethylene signaling pathway, results (i) in alter-
ation of GAs biosynthesis pathway, and (ii) in a requirement
for higher levels of GAs than wild type, to promote germination
(Chiwocha et al., 2005). In beechnut, expression of FsGA20ox1,
which is involved in the synthesis of active GAs, remains low
in stratified seeds (i.e., non-dormant seeds) and seeds treated
with GA3 or ethephon, but inhibition of ethylene biosynthesis
by AOA (2-aminoxyacetic acid) results in an increase in this tran-
script indicating the involvement of ethylene in the regulation of
GA biosynthesis (Calvo et al., 2004b). Studies of expression of
genes involved in GA synthesis (SoGA3ox2 and SoGA20ox2) and
degradation (SoGA2ox6) during imbibition of Sisymbrium offic-
inale seeds in the presence of GA4+7, ethylene, and inhibitors
of GA synthesis or ethylene synthesis and signaling, indicate
that GA biosynthesis is strongly regulated by GA and ethylene
(Iglesias-Fernandez and Matilla, 2010).

Gibberellin signaling pathways depend on DELLA proteins
including GAI (GA INSENSITIVE), RGA (REPRESSOR OF

ga1-3), RGL1 (RGA LIKE1), RGL2 and RGL3 (Sun and Gubler,
2004; Davière and Achard, 2013). GAs destabilizes the DELLA
proteins, which act as growth repressors by targeting GAs for
ubiquitination and degradation (Dill et al., 2004). In Arabidopsis,
Achard et al. (2003, 2007) reported that a part of ethylene action
on hypocotyl growth and floral transition was mediated via its
effects on the DELLA proteins. This may be true too in the control
of germination since DELLA proteins seem to play a key role in the
regulation of seed germination (Lee et al., 2002; Tyler et al., 2004;
Cao et al., 2006; Steber, 2007; Piskurewicz et al., 2008; Schwech-
heimer, 2008). Thus, the seed GA content and responsiveness may
result from a regulation of DELLA accumulation by ethylene.

ROS AND ETHYLENE INTERACT TO REGULATE SEED
GERMINATION
It has been shown in various seed species (Oracz et al., 2007;
Ishibashi et al., 2008, 2013; Müller et al., 2009; Bahin et al., 2011),
including Arabidopsis (Liu et al., 2010; Leymarie et al., 2012), that
radicle protrusion is associated with and/or required a controlled
accumulation of ROS. Regarding the role of plant hormones in
seed germination and dormancy, several studies have investi-
gated the possible relationship between metabolic and signaling
pathways of these hormones, mainly ABA and GAs, and ROS
homeostasis (Bailly et al., 2008). Up-to-date, however, the rela-
tionship between ROS and ethylene has been scarcely studied
within the context of seed germination, although this is well doc-
umented in other contexts such as plant pathogen interactions
(Mersmann et al., 2010) or cell death regulation (Overmyer et al.,
2003).

In sunflower embryos, whose dormancy is released by exoge-
nous ethylene (Corbineau et al., 1990), it has been recently
demonstrated that ethylene markedly enhanced ROS accumu-
lation within dormant embryonic axes, probably through the
activation of NADPH oxidase (El-Maarouf-Bouteau et al., 2014).
Whether ethylene produced in response to ROS has a direct effect
on cell wall properties and cell elongation or if it stimulates cell
signaling pathways related to germination, is however not known.
Contrasting results obtained by Lin et al. (2012, 2013) demon-
strates that ethylene decreases ROS content in Arabidopsis seeds
germinating under salinity stress. In the case of the former species,
ethylene has an antagonistic effect to ROS that are detrimental for
germination, probably because their production increases to exces-
sive levels in response to stress. This highlights the plasticity of seed
responses to ROS but also the complexity of their interaction with
ethylene (Bailly et al., 2008).

Several authors have also studied the effect of ROS on ethy-
lene production during seed germination. Dormant sunflower
embryos treated by methylviologen, a ROS generating compound,
germinate rapidly at temperatures that would otherwise prevent
their germination (Oracz et al., 2007). However, this improving
effect is not associated with an increase in ethylene production
which peaks at the time radicle elongates, and which therefore
must be considered as a post-germinative event (El-Maarouf-
Bouteau et al., 2014). These authors propose that ethylene might
participate in association with ROS to facilitate the initiation
of cell elongation, the first visible symptom of germination.
In dormant apple embryos, Gniazdowska et al. (2010) suggest
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that the improving effect of NO and HCN results from a tran-
sient ROS production leading to an ethylene production required
in termination of the sensu stricto germination process before
radicle elongation and propose that this might result from a non-
enzymatic oxidation of ACC. Ishibashi et al. (2013) have proposed
that ROS produced in soybean (Glycine max) embryonic axes dur-
ing imbibition induces ethylene production, which promotes cell
elongation in the radicle. However, in that case, ethylene was mea-
sured after the onset of radicle protrusion, and this production
was probably more related to the kinetics of seedling elongation
than on a direct effect of H2O2. In contrast, in pea, which ger-
mination is not strongly regulated by ethylene, Barba-Espin et al.
(2011) demonstrate that H2O2 treatment results in a reduction in
PsACS2 transcript abundance consistent with a decrease in ACC
content. These results suggest that ROS and ethylene probably
do not interact directly, but rather through a complex hormonal
network (Diaz-Vivancos et al., 2013).

All together these data suggest that the interaction between ROS
and ethylene in seeds can operate in both directions, depending
on the physiological context of germination, i.e., on the envi-
ronmental conditions prevailing during imbibition, and is highly
species related. One can predict that the use of seeds of the
plant model Arabidopsis will help decipher the molecular bases
of this interaction. In particular it will be interesting to deter-
mine whether ROS can trigger expression of the ethylene signaling
pathway components and vice versa. For example, Oracz et al.
(2009) has demonstrated the occurrence of such a cross talk, since
the treatment of dormant sunflower embryos by methylviologen
induced the expression of ETR2 and of the transcription fac-
tor ERF1. The involvement of ethylene transcription factors in
response to ROS appears to be worth investigating since studies
with other plant systems have also implicated such a relationship
(Sewelam et al., 2013).

CONCLUSION: NETWORK BETWEEN ETHYLENE, PLANT
HORMONES, AND ROS
Seed germination is regulated by ethylene in a complex signaling
network, which is also operational in numerous developmental
processes, including vegetative growth, flowering timing, fruit
ripening and organ senescence and abscission (Yoo et al., 2009;
Muday et al., 2012; Arc et al., 2013). As mentioned above, ethy-
lene interacts with ABA and GAs, both hormones being essential
regulators of germination and dormancy (Feurtado and Kermode,
2007; Nambara et al., 2010; Nonogaki et al., 2010; Miransari and
Smith, 2014). Thus, the improving effect of ethylene may occur
via the involvement of C2H4-GAs-ABA crosstalk but whether
its action is direct or indirect needs clarification. Research on
the effect of ABA and GAs on C2H4 biosynthesis and signal-
ing pathways, especially in seeds, would then require further
investigation, specifically in relation with ROS. Figure 2 sum-
marizes the current data concerning ABA-GAs-C2H4 networks
based on genetic analyses, microarray data, and physiologi-
cal studies. ABA inhibits the C2H4 biosynthesis pathway via
an inhibitory action on ACO activity and on the ACO tran-
script accumulation. On the contrary, C2H4 counteracts both
ABA synthesis and signaling, ETR1 having a key role. In addi-
tion, C2H4 affects the synthesis of GAs via modification of

FIGURE 2 | Interactions between ethylene, abscisic acid, gibberellins,

and ROS in the regulation of seed germination and dormancy. This
scheme is based on genetic analyses, microarray data, and physiological
studies on seed responsiveness to ethylene, ABA, GAs, or ROS cited in the
text. Ethylene down-regulates ABA accumulation by both inhibiting its
synthesis and promoting its inactivation or catabolism, and also negatively
regulates ABA signaling. ABA inhibits ethylene biosynthesis through ACS
and ACO activities. Ethylene also improves the GAs metabolism, and GAs
signaling, and vice versa. ROS enhance ABA catabolism and both C2H4
and GAs signaling. Whether ROS are signals induced by environmental
factors to modulate the hormonal network toward germination is to be
investigated. → and —• arrows indicate positive and negative interactions
between the different elements of the signaling cascade, respectively.

expression of genes (GA3ox and GA20ox) involved in GAs syn-
thesis. Ethylene also probably modifies the GAs signaling pathway
via a regulation of DELLA proteins, as demonstrated in growth
processes (Achard et al., 2003, 2007). To add to the complexity of
the ABA-GAs-C2H4 network, there are antagonistic interactions
between ABA and GAs, C2H4 and brassinosteroids, jasmonates
and auxins (Wang et al., 2002; Brady and McCourt, 2003; Weiss
and Ori,2007; Finkelstein et al., 2008; Matilla and Matilla-Vazquez,
2008; Cheng et al., 2009; Divi et al., 2010; Linkies and Leubner-
Metzger, 2012). ROS also regulate seed germination through
hormonal networks, in particular with ABA and GAs (Bethke
et al., 2007; Liu et al., 2010; Diaz-Vivancos et al., 2013). It would
be then important to discriminate the hierarchy of the differ-
ent signaling pathways, and their role as sensor of environmental
signals.

Omics studies are now available in the field of seed germination
but efforts to develop transcriptomic analysis of ethylene action
are required to understand ethylene involvement in seed germina-
tion. Analysis of the effects of ethylene on specific cellular processes
highlighted by dormancy and germination studies such as tran-
scription regulation, cell cycle activity and endosperm weakening
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should help to understand the regulatory network of germination
process in seeds. Moreover, although hormonal signaling network
share common components, they may work in specific territories
in seeds.

REFERENCES
Abeles, F. B. (1986). Role of ethylene in Lactuca sativa cv Grand Rapids seed

germination. Plant Physiol. 81, 780–787. doi: 10.1104/pp.81.3.780
Achard, P., Baghour, M., Chapple, A., Hedden, P., Van Der Straeten, D.,

Genschik, P., et al. (2007). The plant stress hormone ethylene controls flo-
ral transition via DELLA-dependent regulation of floral meristem-identity
genes. Proc. Natl. Acad. Sci. U.S.A. 104, 6484–6489. doi: 10.1073/pnas.061
0717104

Achard, P., Vriezen, W. H., Van Der Straeten, D., and Harberd, N. P. (2003). Ethylene
regulates Arabidopsis development via the modulation of DELLA protein growth
repressor function. Plant Cell 15, 2816–2825. doi: 10.1105/tpc.015685

Arc, E., Sechet, J., Corbineau, F., Rajjou, L., and Marion-Poll, A. (2013). ABA
crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front.
Plant Sci. 4:63. doi: 10.3389/fpls.2013.00063

Argyris, J., Dahal, P., Hayashi, E., Still, D. W., and Bradford, K. J. (2008). Genetic vari-
ation for lettuce seed thermoinhibition is associated with temperature-sensitive
expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism,
and response genes. Plant Physiol. 148, 926–947. doi: 10.1104/pp.108.
125807

Bahin, E., Bailly, C., Sotta, B., Kranner, I., Corbineau, F., and Leymarie, J.
(2011). Crosstalk between reactive oxygen species and hormonal signaling path-
ways regulates grain dormancy in barley. Plant Cell Environ. 34, 980–993. doi:
10.1111/j.1365-3040.2011.02298.x

Bailly, C., Corbineau, F., and Côme, D. (1992). The effects of abscisic acid and methyl
jasmonate on 1-aminocyclopropane 1-carboxylic acid conversion to ethylene in
hypocotyl segments of sunflower seedlings, and their control by calcium and
calmodulin. Plant Growth Regul. 11, 349–355. doi: 10.1007/BF00130641

Bailly, C., El-Maarouf-Bouteau, H., and Corbineau, F. (2008). From intracellular
signaling networks to cell death: the dual role of reactive oxygen species in seed
physiology. C. R. Biol. 331, 806–814. doi: 10.1016/j.crvi.2008.07.022

Barba-Espin, G., Diaz-Vivancos, P., Job, D., Belghazi, M., Job, C., and Hernandez,
J. A. (2011). Understanding the role of H2O2 during pea seed germination: a
combined proteomic and hormone profiling approach. Plant Cell Environ. 34,
1907–1919. doi: 10.1111/j.1365-3040.2011.02386.x

Beaudoin, N., Serizet, C., Gosti, F., and Giraudat, J. (2000). Interactions between
abscisic acid and ethylene signaling cascades. Plant Cell 12, 1103–1115. doi:
10.1105/tpc.12.7.1103

Bebawi, F. F., and Eplee, R. E. (1986). Efficacy of ethylene as a germination stimulant
of Striga hermonthica. Weed Sci. 34, 694–698.

Bethke, P. C., Libourel, I. G. L., and Jones, R. L. (2007). “Nitric oxide in seed
dormancy and germination,” in Annual Plant Reviews, Vol. 27, Seed Development,
Dormancy and Germination, eds K. Bradford and H. Nonogaki (Oxford: Blackwell
Publishing Ltd), 153–175.

Bewley, J. D. (1997). Seed germination and dormancy. Plant Cell 9, 1055–1066. doi:
10.1105/tpc.9.7.1055

Bewley, J. D., and Black, M. (1994). Seeds: Physiology of Development and
Germination. NewYork: Plenum Press. doi: 10.1007/978-1-4899-1002-8

Bleecker, A. B., Estelle, M. A., Somerville, C., and Kende, H. (1988). Insensitivity to
ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241,
1086–1089. doi: 10.1126/science.241.4869.1086

Bleecker, A. B., and Kende, H. (2000). Ethylene: a gaseous signal molecule in plants.
Annu. Rev. Cell Dev. Biol. 16, 1–18. doi: 10.1146/annurev.cellbio.16.1.1

Brady, S. M., and McCourt, P. (2003). Hormone cross-talk in seed dormancy. J. Plant
Growth 22, 25–31. doi: 10.1007/s00344-003-0018-7

Brown, N. A. C., and van Staden, J. (1997). Smoke as a germination cue: a review.
Plant Growth Regul. 22, 115–124. doi: 10.1023/A:1005852018644

Burdett, A. N., and Vidaver, W. (1971). Synergistic action of ethylene with gib-
berellin or red light in germinating lettuce seeds. Plant Physiol. 48, 656–657. doi:
10.1104/pp.48.5.656

Cadman, C. S. C., Toorop, P. E., Hilhorst, H. W. M., and Finch-Savage, W. E.
(2006). Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling
indicate a common underlying dormancy control mechanism. Plant J. 46, 805–
822. doi: 10.1111/j.1365-313X.2006.02738.x

Calvo, A. P., Nicolas, C., Lorenzo, O., Nicolas, G., and Rodriguez, D. (2004a).
Evidence for positive regulation by gibberellins and ethylene of ACC oxidase
expression and activity during transition from dormancy to germination in Fagus
sylvatica L. seeds. J. Plant Growth Regul. 23, 44–53. doi: 10.1007/s00344-004-
0074-7

Calvo, A. P., Nicolas, C., Nicolas, G., and Rodriguez, D. (2004b). Evidence of a cross-
talk regulation of a GA 20-oxidase (FsGA20ox1) by gibberellins and ethylene
during the breaking of dormancy in Fagus sylvatica seeds. Physiol. Plant. 120,
623–630. doi: 10.1111/j.0031-9317.2004.0270.x

Cao, D., Cheng, H., Wu, W., Soo, H. M., and Peng, J. (2006). Gibberellin
mobilizes distinct DELLA-dependent transcriptomes to regulate seed germina-
tion and floral development in Arabidopsis. Plant Physiol. 142, 509–525. doi:
10.1104/pp.106.082289

Carrera, E., Holman, T., Medhurst, A., Dietrich, D., Footitt, S., Theodoulou,
F. L., et al. (2008). Seed after-ripening is a discrete developmental path-
way associated with specific gene networks in Arabidopsis. Plant J. 142,
1493–1510.

Cheng, W. H., Chiang, M. H., Hwang, S. G., and Lin, P. C. (2009). Antagonism
between abscisic acid and ethylene in Arabidopsis acts in parallel with the recip-
rocal regulation of their metabolism and signaling pathways. Plant Mol. Biol. 71,
61–80. doi: 10.1007/s11103-009-9509-7

Chitnis, V. R., Gao, F., Yao, Z., Jordan, M. C., Park, S., and Ayele, B. T. (2014).
After-ripening induced transcriptional changes of hormonal genes in wheat seeds:
the cases of brassinosteroids, ethylene, cytokinin and salicylic acid. PLoS ONE
9:e87543. doi: 10.1371/journal.pone.0087543

Chiwocha, S. D. S., Cutler, A. J., Abrams, S. R., Ambrose, S. J., Yang, J., and
Kermode, A. R. (2005). The ert1-2 mutation in Arabidopsis thaliana affects the
abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during main-
tenance of seed dormancy, moist-chilling and germination. Plant J. 42, 35–48.
doi: 10.1111/j.1365-313X.2005.02359.x

Chonowski, M., Corbineau, F., and Côme, D. (1997). Physiological and bio-
chemical changes induced in sunflower seeds by osmopriming and subsequent
drying, storage and aging. Seed Sci. Res. 7, 323–332. doi: 10.1017/S0960258500
00372X

Corbineau, F. (2012). Markers of seed quality: from present to future. Seed Sci. Res.
22, S61–S68. doi: 10.1017/S0960258511000419

Corbineau, F., Bagniol, S., and Côme, D. (1990). Sunflower (Helianthus annuus L.)
seed dormancy and its regulation by ethylene. Isr. J. Bot. 39, 313–325.

Corbineau, F., and Côme, D. (1992). “Germination of sunflower seeds and its
regulation by ethylene,” in Advances in the Science and Technology of Seeds, eds F.
Jiarui and A. A. Khan (Beijing, NY: Science Press), 277–287.

Corbineau, F., and Côme, D. (1995). “Control of seed germination and dormancy
by gaseous environment,” in Seed Development and Germination, eds J. Kigel and
G. Galili (New York: Marcel Dekker), 397–424.

Corbineau, F., and Côme, D. (2003). “Germination of sunflower seeds as related
to ethylene synthesis and sensitivity – an overview,” in Biology and Biotechnology
of the Plant Hormone Ethylene III, eds M. Vendrell, H. Klee, J. C. Pech, and F.
Romojaro (Amsterdam: IOS Press), 216–221.

Corbineau, F., Rudnicki, R. M., and Côme, D. (1988). Induction of sec-
ondary dormancy in sunflower seeds by high temperature. Possible involvement
of ethylene biosynthesis. Physiol. Plant. 73, 368–373. doi: 10.1111/j.1399-
3054.1988.tb00612.x

Cristescu, S. M., Persijn, S. T., Lintel Hekkert, S., and Harren, F. J. M. (2008). Laser-
based systems for trace gas detection in life sciences. Appl. Phys. B 92, 343–349.
doi: 10.1007/s00340-008-3127-y

Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., and Abrams, S. R. (2010). Abscisic
acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61, 651–679.
doi: 10.1146/annurev-arplant-042809-112122

Davière, J.-M., and Achard, P. (2013). Gibberellin signalling in plants. Development
140, 1147–1151. doi: 10.1242/dev.087650

Diaz-Vivancos, P., Barba-Espin, G., and Hernandez, J. A. (2013). Elucidating hor-
monal/ROS networks during germination: insights and perspectives. Plant Cell
Rep. 32, 1491–1502. doi: 10.1007/s00299-013-1473-7

Dill, A., Thomas, S. G., Steber, C. M., and Sun, T.-p. (2004). The Arabidopsis F-box
protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced
degradation. Plant Cell 16, 1392–1405. doi: 10.1105/tpc.020958

Divi, U. K., Rahman, T., and Krishna, P. (2010). Brassinosteroid-mediated stress tol-
erance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic
acid pathways. BMC Plant Biol. 10:151. doi: 10.1186/1471-2229-10-151

www.frontiersin.org October 2014 | Volume 5 | Article 539 | 9

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Physiology/archive


Corbineau et al. Ethylene in seed germination

Dong, H., Zhen, Z., Peng, J., Chang, L., Gong, Q., and Wang, N. N. (2011).
Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity
and accumulation in Arabidopsis. J. Exp. Bot. 62, 4875–4887. doi: 10.1093/jxb/
err143

Egley, G. H., and Dale, J. E. (1970). Ethylene, 2-chloroethylphosphonic acid and
witchweed germination. Weed Sci. 18, 586–589.

El-Maarouf-Bouteau, H., Sajjad, Y., Bazin, J., Langlade, N., Cristescu, S. M., Balzer-
gue, S., et al. (2014). Reactive oxygen species, abscisic acid and ethylene interact to
regulate sunflower seed germination. Plant Cell Environ. doi: 10.1111/pce.12371
[Epub ahead of print].

Esashi, Y. (1991). “Ethylene and seed germination,” in The Plant Hormone Ethylene,
eds A. K. Mattoo and J. C. Suttle (Boca Raton, FL: CRC Press), 133–157.

Esashi, Y., Abe, Y., Ashino, H., Ishizawa, K., and Saitoh, K. (1989). Germination of
cocklebur seeds and growth of their axial and cotyledonary tissues in response to
C2H4, CO2 and/or O2 under water stress. Plant Cell Environ. 12, 183–190. doi:
10.1111/j.1365-3040.1989.tb01931.x

Esashi, Y., Hata, Y., and Katoh, H. (1975). Germination of cocklebur seeds: inter-
actions between gibberellic acid, benzyladenine, thiourea, KNO3 and gaseous
factors. Aust. J. Plant Physiol. 2, 569–579. doi: 10.1071/PP9750569

Esashi, Y., and Leopold, A. C. (1969). Dormancy regulation in subterranean clover
seeds by ethylene. Plant Physiol. 44, 1470–1472. doi: 10.1104/pp.44.10.1470

Esashi, Y., Okazaki, M., Yanai, N., and Hishinuma, K. (1978). Control of the germi-
nation of secondary dormant cocklebur seeds by various germination stimulants.
Plant Cell Physiol. 19, 1497–1506.

Esashi, Y., Ooshima, Y., Abe, M., Kurota, A., and Satoh, S. (1986). CO2-enhanced
C2H4 production in tissues of imbibed cocklebur seeds. Aust. J. Plant Physiol. 13,
417–429. doi: 10.1071/PP9860417

Feurtado, J. A., and Kermode, A. R. (2007). “A merging of paths: abscisic acid
and hormonal cross-talk in the control of seed dormancy maintenance and alle-
viation,” in Annual Plant Reviews, Vol. 27, Seed Development, Dormancy and
Germination, eds K. Bradford and H. Nonogaki (Oxford: Blackwell Publishing
Ltd), 176–223. doi: 10.1002/9780470988848.ch8

Finkelstein, R. R., Reeves, W., Ariizumi, T., and Steber, C. (2008). Molec-
ular aspects of seed dormancy. Annu. Rev. Plant Biol. 59, 387–415. doi:
10.1146/annurev.arplant.59.032607.092740

Fu, J. R., and Yang, S. F. (1983). Release of heat pretreatment-induced dormancy in
lettuce seeds by ethylene or cytokinin in relation to the production of ethylene
and the synthesis of 1-aminocyclopropane-1-carboxylic acid during germination.
J. Plant Growth Regul. 2, 185–192. doi: 10.1007/BF02042247

Gallardo, M., Del Mar Delgado, M., Sanchez-Calle, I. M., and Matilla, A. J. (1991).
Ethylene production and 1-aminocyclopropane-1-carboxylic acid conjugation
in thermoinhibited Cicer arietinum L. seeds. Plant Physiol. 97, 122–127. doi:
10.1104/pp.97.1.122

Gallardo, M., Gallardi, M. E., Matilla, A., Munoz de Ruedo, P., and Sanchez-Calle,
I. M. (1994). Inhibition of polyamine synthesis by cyclohexylamine stimulates
the ethylene pathway and accelerates the germination of Cicer arietinum seeds.
Physiol. Plant. 91, 9–16. doi: 10.1111/j.1399-3054.1994.tb00652.x

Ghassemian, M., Nambara, E., Cutler, S., Kawaide, H., Kamiya, Y., and McCourt, P.
(2000). Regulation of abscisic acid signaling by the ethylene response pathway in
Arabidopsis. Plant Cell 12, 1117–1126. doi: 10.1105/tpc.12.7.1117

Gniazdowska, A., Krasuska, U., and Bogatek, R. (2010). Dormancy removal in apple
embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic
pathway. Planta 232, 1397–1407. doi: 10.1007/s00425-010-1262-2

Gomez-Jimenez, M. C., Matilla, A. J., and Garrido, D. (1998). Isolation and char-
acterization of a cDNA encoding an ACC oxidase from Cicer arietinum and its
expression during embryogenesis and seed germination. Aust. J. Plant Physiol. 25,
765–773. doi: 10.1071/PP97166

Gorecki, R. J., Ashino, H., Satoh, S., and Esashi, Y. (1991). Ethylene production
in pea and cocklebur seeds of differing vigour. J. Exp. Bot. 42, 407–414. doi:
10.1093/jxb/42.3.407

Graeber, K., Nakabayashi, K., Miatton, E., Leubner-Metzger, G., and Soppe, W. J.
(2012). Molecular mechanisms of seed dormancy. Plant Cell Environ. 35, 1769–
1786. doi: 10.1111/j.1365-3040.2012.02542.x

Groot, S. P., and Karssen, C. M. (1987). Gibberellins regulate seed germination
in tomato by endosperm weakening: a study with gibberellin-deficient mutants.
Planta 171, 525–531. doi: 10.1007/BF00392302

Groot, S. P., Kieliszewska-Rokicka, B., Vermeer, E., and Karssen, C. M.
(1988). Gibberellin-induced hydrolysis of endosperm cell walls in gibberellin-

deficient tomato seeds prior to radicle protrusion. Planta 174, 500–504. doi:
10.1007/BF00634479

Hall, B., Shakeel, S., and Schaller, G. (2007). Ethylene receptors: ethylene perception
and signal transduction. J. Plant Growth Regul. 26, 118–130. doi: 10.1007/s00344-
007-9000-0

Hall, M. A., Moshkov, I. E., Novikova, G. V., Mur, L. A. J., and Smith, A. R. (2001).
Ethylene signal perception and transduction: multiple paradigms? Biol. Rev. 76,
103–128. doi: 10.1017/S1464793100005649

Halloin, J. M. (1976). Inhibition of cotton seed germination with abscisic acid and
its reversal. Plant Physiol. 57, 454–455. doi: 10.1104/pp.57.3.454

Hermann, K., Meinhard, J., Dobrev, P., Linkies, A., Pesek, B., Hess, B., et al. (2007).
1-amynocyclopropane-1-carboxylic acid and abscisic acid during the germination
of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. J. Exp.
Bot. 58, 3047–3060. doi: 10.1093/jxb/erm162

Hilhorst, H. W. M. (2007). “Definitions and hypotheses of seed dormancy,” in
Annual Plant Reviews, Vol. 27, Seed Development, Dormancy and Germination,
eds K. Bradford and H. Nonogaki (Oxford: Blackwell Publishing Ltd), 50–71.
doi: 10.1002/9780470988848.ch3

Hilhorst, H. W. M., Finch-Savage, W. E., Buitink, J., Bolingue, W., and Leubner-
Metzger, G. (2010). “Dormancy in plant seeds,” in Dormancy and Resistance in
Harsh Environment, eds E. Lubzens, J. Cerdà, and M. Clarck (Berlin: Springer),
43–67. doi: 10.1007/978-3-642-12422-8_4

Iglesias-Fernandez, R., and Matilla, A. (2009). After-ripening alters the gene expres-
sion pattern of oxidases involved in the ethylene and gibberellin pathways during
early imbibition of Sisymbrium officinale L. seeds. J. Exp. Bot. 60, 1645–1661. doi:
10.1093/jxb/erp029

Iglesias-Fernandez, R., and Matilla, A. (2010). Genes involved in ethylene and
gibberellins metabolism are required for endosperm-limited germination of
Sisymbrium officinale L. seeds. Planta 231, 653–664. doi: 10.1007/s00425-009-
1073-5

Ishibashi, Y., Koda, Y., Zheng, S.-H., Yuasa, T., and Iwaya-Inoue, M. (2013).
Regulation of soybean seed germination through ethylene production in
response to reactive oxygen species. Ann. Bot. 111, 95–102. doi: 10.1093/aob/
mcs240

Ishibashi, Y., Yamamoto, K., Tawaratsumida, T., Yuasa, T., and Iwaya-Inoue, M.
(2008). Hydrogen peroxide scavenging regulates germination ability during wheat
(Triticum aestivum L.) seed maturation. Plant Signal. Behav. 3, 183–188. doi:
10.4161/psb.3.3.5540

Jimenez, J. A., Rodriguez, D., Calvo, A. P., Mortensen, L. C., Nicolas, G., and Nicolas,
C. (2005). Expression of a transcription factor (FsERF1) involved in ethylene
signaling during the breaking of dormancy in Fagus sylvatica seeds. Physiol. Plant.
125, 373–380. doi: 10.1111/j.1399-3054.2005.00571.x

Jones, J. F., and Hall, M. A. (1984). Studies on the requirement for carbon dioxide
and ethylene for germination of Spergula arvensis L. seeds. Plant Sci. Lett. 16,
87–93. doi: 10.1016/0304-4211(79)90012-9

Ju, C., Yoon, G. M., Shemansky, J. M., Lin, D. Y., Ying, Z. I., Chang, J., et al. (2012).
CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone
signaling from the ER membrane to the nucleus in Arabidopsis. Proc. Natl. Acad.
Sci. U.S.A. 109, 19486–19491. doi: 10.1073/pnas.1214848109

Karssen, C. M. (1976). Two sites of hormonal action during germination of
Chenopodium album seeds. Physiol. Plant. 36, 264–270. doi: 10.1111/j.1399-
3054.1976.tb04426.x

Karssen, C. M., Zagórsky, S., Kepczynski, J., and Groot, S. P. C. (1989). Key role for
endogenous gibberellins in the control of seed germination. Ann. Bot. 63, 71–80.

Katoh, H., and Esashi, Y. (1975). Dormancy and impotency of cocklebur seeds.
I. CO2, C2H4, O2 and high temperature. Plant Cell Physiol. 16, 687–696. doi:
10.1093/jxb/35.10.1515

Kende, H. (1993). Ethylene biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol.
44, 283–307. doi: 10.1146/annurev.pp.44.060193.001435

Kende, H., van der Knaap, E., and Cho, H. T. (1998). Deepwater rice: a model plant to
study stem elongation. Plant Physiol. 118, 1105–1110. doi: 10.1104/pp.118.4.1105

Kendrick, M. D., and Chang, C. (2008). Ethylene signaling: new levels
of complexity and regulation. Curr. Opin. Plant Biol. 11, 479–485. doi:
10.1016/j.pbi.2008.06.011

Kepczynski, J. (1986). Inhibition of Amaranthus caudatus seed germination
by polyethylene glycol-6000 and abscisic acid and its reversal by ethephon
or aminocyclopropane-1-carboxylic acid. Physiol. Plant. 67, 588–591. doi:
10.1111/j.1399-3054.1986.tb05060.x

Frontiers in Plant Science | Plant Physiology October 2014 | Volume 5 | Article 539 | 10

http://www.frontiersin.org/Plant_Physiology/
http://www.frontiersin.org/Plant_Physiology/archive


Corbineau et al. Ethylene in seed germination

Kepczynski, J., Bihun, M., and Kepczynska, E. (1996a). Induction and release of
secondary dormancy in Amaranthus caudatus L. seeds. Plant Physiol. Biochem.
Special Issue S03–S50, 42.

Kepczynski, J., Corbineau, F., and Côme, D. (1996b). Responsiveness of Amaran-
thus retroflexus seeds to ethephon, 1-aminocyclopropane-1-carboxylic acid and
gibberellic acid in relation to temperature and dormancy. Plant Growth Regul. 20,
259–265. doi: 10.1007/BF00043316

Kepczynski, J., Bihun, M., and Kepczynska, E. (2003). The release of secondary
dormancy by ethylene in Amaranthus caudatus L. seeds. Seed Sci. Res. 13, 69–74.
doi: 10.1079/SSR2002125

Kepczynski, J., and Karssen, C. M. (1985). Requirement for the action of endogenous
ethylene during germination of non-dormant seeds of Amaranthus caudatus.
Physiol. Plant. 63, 49–52. doi: 10.1111/j.1399-3054.1985.tb02816.x

Kepczynski, J., and Kepczynska, E. (1993). “The effect of putrescine, ethephon and
ACC on germination of thermodormant Amaranthus paniculatus L. seed,” in Basic
and Applied Aspects of Seed Biology, Fourth International Workshop on Seeds, eds
D. Côme and F. Corbineau (Paris: ASFIS), 537–554.

Kepczynski, J., and Kepczynska, E. (1997). Ethylene in seed dormancy and germi-
nation. Physiol. Plant. 101, 720–726. doi: 10.1034/j.1399-3054.1997.1010407.x

Kepczynski, J., Rudnicki, R. M., and Khan, A. A. (1977). Ethylene requirement for
germination of partly after-ripened apple embryo. Physiol. Plant. 40, 292–295.
doi: 10.1111/j.1399-3054.1977.tb04075.x

Kepczynski, J., and Sznigir, P. (2014). Participation of GA3, ethylene, NO and HCN
in germination of Amaranthus retroflexus L. seeds with various dormancy levels.
Acta Physiol. Plant. 36, 1463–1472. doi: 10.1007/s11738-014-1524-x

Ketring, D. L., and Morgan, P. W. (1969). Ethylene as a component of the emanations
from germinating peanut seeds and its effect on dormant Virginia-type seeds.
Plant Physiol. 44, 326–330. doi: 10.1104/pp.44.3.326

Ketring, D. L., and Morgan, P. W. (1972). Physiology of oil seeds. IV. Role of
endogenous ethylene and inhibitory regulators during natural and induced after-
ripening of dormant Virginia-type peanut seeds. Plant Physiol. 50, 382–387. doi:
10.1104/pp.50.3.382

Ketring, D. L., Morgan, P. W., and Powell, R. D. (1974). “Relations of ethylene
production to germinability and growth of two oil seeds, cotton and peanuts,” in
Plant growth substances 1973, ed. Y. Sumiki (Tokyo: Hirokawa), 891–899.

Keys, R. D., Smith, O. E., Kumamoto, J., and Lyon, J. J. (1975). Effect of gibberel-
lic acid, kinetin, and ethylene plus carbon dioxide on the thermodormancy of
lettuce seed (Lactuca sativa L. cv Mesa 659). Plant Physiol. 56, 826–829. doi:
10.1104/pp.56.6.826

Khan, A. A. (1994). ACC-derived ethylene production, a sensitive test for seed vigor.
J. Am. Soc. Hort. Sci. 119, 1083–1090.

Khan, M. A., Ansari, R., Gul, B., and Li, W. Q. (2009). Dormancy and germination
responses of halophyte seeds to the application of ethylene. C. R. Biol. 332, 806–
815. doi: 10.1016/j.crvi.2009.05.002

Kucera, B., Cohn, M. A., and Leubner-Metzger, G. (2005). Plant hormone interac-
tions during seed dormancy release and germination. Seed Sci. Res. 15, 281–307.
doi: 10.1079/SSR2005218

Krasuska, U., Ciacka, K., Debska, K., Bogatek, R., and Gniazdowska, A. (2014).
Dormancy alleviation by NO or HCN leading to decline of protein carbonylation
levels in apple (Malus domestica Borkh.) embryos. J. Plant Physiol. 171, 1132–
1141. doi: 10.1016/j.jplph.2014.04.015

Krasuska, U., and Gniazdowska, A. (2012). Nitric oxide and hydrogen cyanide as
regulating factors of enzymatic antioxidant system in germinating apple embryos.
Acta Physiol. Plant. 34, 683–692. doi: 10.1007/s11738-011-0868-8

Lee, S., Cheng, H., King, K. E., King, K. E., Wang, W., He, Y., et al. (2002). Gibberellin
regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose
expression is up-regulated following imbibition. Genes Dev. 16, 646–658. doi:
10.1101/gad.969002

Leubner-Metzger, G., Petruzzelli, L., Waldvogel, R., Vogeli-Lange, R., and Meins,
F. (1998). Ethylene-responsive element binding protein (EREBP) expression and
the transcriptional regulation of class I beta-1,3-glucanase during tobacco seed
germination. Plant Mol. Biol. 38, 785–795. doi: 10.1023/A:1006040425383

Lewak, S. (2011). Metabolic control of embryonic dormancy in apple seed: seven
decades of research. Acta Physiol. Plant. 33, 1–24. doi: 10.1007/s11738-010-
0524-8

Leymarie, J., Vitkauskaite, G., Hoang, H. H., Gendreau, E., Chazoule, V., Meimoun,
P., et al. (2012). Role of reactive oxygen species in the regulation of Arabidopsis
seed dormancy. Plant Cell Physiol. 53, 96–106. doi: 10.1093/pcp/pcr129

Lin,Y.,Yang, L., Paul, M., Zu,Y., and Tang, Z. (2013). Ethylene promotes germination
of Arabidopsis seed under salinity by decreasing reactive oxygen species: evidence
for the involvement of nitric oxide simulated by sodium niroprusside. Plant
Physiol. Biochem. 73, 211–218. doi: 10.1016/j.plaphy.2013.10.003

Lin, Y. C., Wang, J. J., Zu, Y. G., and Tang, Z. H. (2012). Ethylene antagonizes
the inhibition of germination in Arabidopsis induced by salinity by modulating
the concentration of hydrogen peroxide. Acta Physiol. Plant. 34, 1895–1904. doi:
10.1007/s11738-012-0989-8

Lin, Z., Zhong, S., and Grierson, D. (2009). Recent advances in ethylene research. J.
Exp. Bot. 60, 3311–3336. doi: 10.1093/jxb/erp204

Linkies, A., and Leubner-Metzger, G. (2012). Beyond gibberellins and abscisic acid:
how ethylene and jasmonates control seed germination. Plant Cell Rep. 31, 253–
270. doi: 10.1007/s00299-011-1180-1

Linkies, A., Muller, K., Morris, K., Tureckova, V., Wenk, M., Cadman, C. S., et al.
(2009). Ethylene interacts with abscisic acid to regulate endosperm rupture during
germination: a comparative approach using Lepidium sativum and Arabidopsis
thaliana. Plant Cell 21, 3803–3822. doi: 10.1105/tpc.109.070201

Liu, Q., Zhou, G. Y., and Wen, C. K. (2004). Ethylene signal transduction in
Arabidopsis. J. Plant Physiol. Mol. Biol. 30, 241–250.

Liu, Y., Ye, N., Liu, R., Chen, M., and Zhang, J. (2010). H2O2 mediates the regula-
tion of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and
germination. J. Exp. Bot. 61, 2979–2990. doi: 10.1093/jxb/erq125

Longan, D. C., and Stewart, G. R. (1992). Germination of the seeds of parasitic
angiosperms. Seed Sci. Res. 2, 179–190.

Lorenzo,O., Rodriguez, D., Nicolas, C., and Nicolas, G. (2000). “Characterization
and expression of two protein kinase and an EIN3-like genes, which are regulated
by ABA and GA3 in dormant Fagus sylvatica seeds,” in Seed Biology: Advances and
Applications, eds M. Black, K. J. Bradford, and J. Vazquez-Ramos (Wallingford:
CAB International), 329–340.

Machabée, S., and Saini, H. S. (1991). Differences in requirement for endoge-
nous ethylene during germination of dormant and non-dormant seeds of
Chenopodium album L. J. Plant Physiol. 138, 97–101. doi: 10.1016/S0176-
1617(11)80737-6

Martinez-Reina, G., Matilla, A. J., Martin-Remesal, C., Gallardo, M., and Munoz De
Rueda, P. (1996). Biochemical properties of 1-aminocyclopropane-1-carboxylate
N-malonyl transferase activity from early growing embryonic axes of chick-
pea (Cicer arietinum L.) seeds. J. Exp. Bot. 47, 1771–1778. doi: 10.1093/jxb/47.
11.1771

Matilla, A. J. (1996). Polyamines and seed germination. Seed Sci. Res. 6, 81–93. doi:
10.1017/S096025850000310X

Matilla, A. J. (2000). Ethylene in seed formation and germination. Seed Sci. Res. 10,
111–126. doi: 10.1017/S096025850000012X

Matilla, A. J., and Matilla-Vazquez, M. A. (2008). Involvement of ethylene in seed
physiology. Plant Sci. 175, 87–97. doi: 10.1016/j.plantsci.2008.01.014

Mersmann, S., Bourdais, G., Rietz, S., and Robatzek, S. (2010). Ethylene signaling
regulates accumulation of the FLS2 receptor and is required for the oxida-
tive burst contributing to plant immunity. Plant Physiol. 154, 391–400. doi:
10.1104/pp.110.154567

Miransari, M., and Smith, D. L. (2014). Plant hormones and seed germination.
Environ. Exp. Bot. 99, 110–121. doi: 10.1016/j.envexpbot.2013.11.005

Muday, G. K., Rahman, A., and Binder, B. M. (2012). Auxin and ethy-
lene: collaborators or competitors? Trends Plant Sci. 17, 181–195. doi:
10.1016/j.tplants.2012.02.001

Müller, K., Linkies, A., Vreeburg, R. A. M., Fry, S. C., Krieger-Liszkay,
A., and Leubner-Metzger, G. (2009). In vivo cell wall loosening by
hydroxyl radicals during cress (Lepidium sativum L.) seed germination and
elongation growth. Plant Physiol. 150, 1855–1865. doi: 10.1104/pp.109.
139204

Nambara, E., Okamoto, M., Tatematsu, K., Yano, R., Seo, M., and Kamiya, Y. (2010).
Abscisic acid and the control of seed dormancy and germination. Seed Sci. Res.
20, 55–67. doi: 10.1017/S0960258510000012

Narsai, R., Law, S. R., Carrie, C., Xu, L., and Whelan, J. (2011). In depth tempo-
ral transcriptome profiling reveals a crucial developmental switch with roles for
RNA processing and organelle metabolism that are essential for germination in
Arabidopsis thaliana. Plant Physiol. 157, 1342–1362. doi: 10.1104/pp.111.183129

Ne’eman, G., Henig-Sever, N., and Eshel, A. (1999). Regulation of the germination
of Rhus coriaria, a post-fire pioneer, by heat, ash, pH, waterpotential and ethylene.
Physiol. Plant. 106, 47–52. doi: 10.1034/j.1399-3054.1999.106107.x

www.frontiersin.org October 2014 | Volume 5 | Article 539 | 11

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Physiology/archive


Corbineau et al. Ethylene in seed germination

Negm, F. B., and Smith, O. E. (1978). Effects of ethylene and carbon dioxide on the
germination of osmotically inhibited lettuce seeds. Plant Physiol. 49, 869–872.
doi: 10.1104/pp.49.6.869

Negm, F. B., Smith, O. E., and Kumamoto, J. (1973). The role of phytochrome
in an interaction with ethylene and carbon dioxide in overcoming lettuce seed
thermodormancy. Plant Physiol. 51, 1089–1094. doi: 10.1104/pp.51.6.1089

Nemhauser, J. L., Hong, F., and Chory, J. (2006). Different plant hormones regulate
similar processes through largely nonoverlapping transcriptional responses. Cell
126, 467–475. doi: 10.1016/j.cell.2006.05.050

Nonogaki, H., Bassel, G. W., and Bewley, J. D. (2010). Germination – Still a mystery.
Plant Sci. 179, 574–581. doi: 10.1016/j.plantsci.2010.02.010

Ogawa, M., Hanada, A., Yamauchi, Y., Kuwahara, A., Kamiya, Y., and Yam-
aguchi, S. (2003). Gibberellin biosynthesis and response during Arabidopsis seed
germination. Plant Cell 15, 1591–1604. doi: 10.1105/tpc.011650

Olatoye, S. T., and Hall, M. A. (1973). “Interaction of ethylene and light on dormant
weed seeds,” in Seed Ecology, ed. W. Heydecker (London: Butterworths), 233–240.

Oracz, K., El-Maarouf-Bouteau, H., Bogatek, R., Corbineau, F., and Bailly, C. (2008).
Release of sunflower seed dormancy by cyanide: cross-talk with ethylene signaling
pathway. J. Exp. Bot. 59, 2241–2251. doi: 10.1093/jxb/ern089

Oracz, K., El-Maarouf-Bouteau, H., Farrant, J. M., Cooper, K., Belghazi, M., Job,
C., et al. (2007). ROS production and protein oxidation as a novel mechanism
for seed dormancy alleviation. Plant J. 50, 452–465. doi: 10.1111/j.1365-
313X.2007.03063.x

Oracz, K., El-Maarouf-Bouteau, H., Kranner, I., Bogatek, R., Corbineau, F.,
and Bailly, C. (2009). The mechanisms involved in seed dormancy alleviation
by hydrogen cyanide unravel the role of reactive oxygen species as key fac-
tors of cellular signaling during germination. Plant Physiol. 150, 494–505. doi:
10.1104/pp.109.138107

Ouaked, F., Rozhon, W., Lecourieux, D., and Hirt, H. (2003). A MAPK path-
way mediates ethylene signaling in plants. EMBO J. 22, 1282–1288. doi:
10.1093/emboj/cdg131

Overmyer, K., Brosche, M., and Kangasjarvi, J. (2003). Reactive oxygen species and
hormonal control of cell death. Trends Plant Sci. 8, 335–342. doi: 10.1016/S1360-
1385(03)00135-3

Penfield, S., Li, Y., Gilday, A. D., Graham, S., and Graham, I. A. (2006). Arabidop-
sis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals
repression of seed germination by the endosperm. Plant Cell 18, 1887–1899. doi:
10.1105/tpc.106.041277

Perino, C., Simond-Côte, E., and Côme, D. (1984). Effets du cyanure de potassium et
de l’acide salicylhydroxamique sur la levée de dormance et l’activité respiratoire
des embryons de Pommier (Pirus malus L.). C. R. Acad. Sci. Paris III 299,
249–251.

Petruzzelli, L., Coraggio, I., and Leubner-Metzger, G. (2000). Ethylene promotes
ethylene biosynthesis during pea seed germination by positive feedback regulation
of 1-amonocyclopropane-1-carboxylic acid oxidase. Planta 211, 144–149. doi:
10.1007/s004250000274

Petruzzelli, L., Sturaro, M., Mainieri, D., and Leubner-Metzger, G. (2003). Calcium
requirement for ethylene-dependent responses involving 1-aminocyclopropane-
1-carboxylic acid oxidase in radicle tissues of germinated pea seeds. Plant Cell
Environ. 26, 661–671. doi: 10.1046/j.1365-3040.2003.01001.x

Pirrello, J., Jaimes-Miranda, F., Sanchez-Ballesta, M. T., Tournier, B., Khalil-Ahmad,
Q., Regad, F., et al. (2006). Sl-ERF2, a tomato ethylene response factor involved in
ethylene response and seed germination. Plant Cell Physiol. 47, 1195–1205. doi:
10.1093/pcp/pcj084

Piskurewicz, U., Jikumaru, Y., Kinoshita, N., Nambara, E., Kamiya, Y., and
Lopez-Molina, L. (2008). The gibberellic acid signaling repressor RGL2 inhibits
Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5
activity. Plant Cell 20, 2729–2745. doi: 10.1105/tpc.108.061515

Prusinski, J., and Khan, A. A. (1990). Relationship of ethylene production to stress
alleviation in seeds of lettuce cultivars. J. Am. Soc. Hort. Sci. 115, 294–298.

Puga-Hermida, M. I., Gallardo, M., Rodroguez-Gacio, M. D., and Matilla, A.
J. (2003). The heterogeneity of turnip-tops (Brassica rapa) seeds inside the
silique affects germination, the activity of the final step of the ethylene path-
way, and abscisic acid and polyamine content. Funct. Plant Biol. 30, 767–775. doi:
10.1071/FP03053

Qiao, H., Chang, K. N., Yazaki, J., and Ecker, J. R. (2009). Interplay between ethylene,
ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses
in Arabidopsis. Genes Dev. 23, 512–521. doi: 10.1101/gad.1765709

Qiao, H, Shen, Z., Huand, S.-S. C., Schmitz, R. J., Urich, M. A., Briggs, S. P.,
et al. (2012). Processing and subcellular trafficking of ER-tethered EIN2 control
response to ethylene gas. Science 338, 390–393. doi: 10.1126/science.1225974

Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., et al. (2012). Seed
germination and vigor. Annu. Rev. Plant Biol. 63, 507–533. doi: 10.1146/annurev-
arplant-042811-105550

Rao, V. S., Sankhla, N., and Khan, A. A. (1975). Additive and synergistic effects
of kinetin and ethrel on germination, thermodormancy, and polyribosome
formation in lettuce seeds. Plant Physiol. 56, 263–266. doi: 10.1104/pp.56.2.263

Ribeiro, D. M., and Barros, R. S. (2006). Sensitivity to ethylene as a major component
in the germination of seeds of Stylosanthes humilis. Seed Sci. Res. 16, 37–45. doi:
10.1079/SSR2005233

Rzewuski, G., and Sauter, M. (2008). Ethylene biosynthesis and signaling in rice.
Plant Sci. 175, 32–42. doi: 10.1016/j.plantsci.2008.01.012

Saini, H. S., Consolacion, E. D., Bassi, P. K., and Spencer, M. S. (1986). Requirement
for ethylene synthesis and action during relief of thermoinhibition of lettuce seed
germination by combinations of gibberellic acid, kinetin, and carbon dioxide.
Plant Physiol. 81, 950–953. doi: 10.1104/pp.81.4.950

Samimy, C., and Khan, A. A. (1983). Secondary dormancy, growth-regulator effects,
and embryo growth potential in curly dock (Rumex crispus) seeds. Weed Sci. 31,
153–158.

Samimy, C., and Taylor, A. G. (1983). Influence of seed quality on ethylene
production of germinating snap bean seeds. J. Am. Soc. Hort. Sci. 108, 767–769.

Satoh, S., and Esashi, Y. (1983). Ethylene production, 1-aminocyclopropane-1-
carboxylic acid content and its conversion to ethylene in axial segments of
dormant and nondormant cocklebur seeds. Plant Cell Physiol. 24, 883–887.

Satoh, S., Takeda, Y., and Esashi, Y. (1984). Dormancy and impotency of cocklebur
seeds. IX. Changes in ACC-ethylene conversion activity and ACC content of
dormant and non-dormant seeds during soaking. J. Exp. Bot. 35, 1515–1524. doi:
10.1093/jxb/35.10.1515

Schönbeck, M. W., and Egley, G. H. (1981). Phase-sequence of redroot pigweed seed
germination responses to ethylene and other stimuli. Plant Physiol. 68, 175–179.
doi: 10.1104/pp.68.1.175

Schwechheimer, C. (2008). Understanding gibberellic acid signaling-are we there
yet? Curr. Opin. Plant Biol. 11, 9–15. doi: 10.1016/j.pbi.2007.10.011

Sewelam, N., Kazan, K., Thomas-Hall, S. R., Kidd, B. N., Manners, J. M., and Schenk,
P. M. (2013). Ethylene response factor 6 is a regulator of reactive oxygen species
signaling in Arabidopsis. PLoS ONE 8:e70289. doi: 10.1371/journal.pone.0070289

Silva, P. O., Medina, E. F., Barros, R. S., and Ribeiro, D. M. (2014). Germina-
tion of salt-stressed seeds as related to ethylene biosynthesis ability in three
Stylosanthes species. J. Plant Physiol. 171, 14–22. doi: 10.1016/j.jplph.2013.
09.004

Sinska, I. (1989). Interaction of ethephon with cytokinin and gib-
berellin during the removal of apple seed dormancy and germina-
tion of embryos. Plant Sci. 64, 39–44. doi: 10.1016/0168-9452(89)
90149-0

Sinska, I., and Gladon, R. (1984). Ethylene and the removal of embryonal apple seed
dormancy. HortScience 19, 73–75.

Sinska, I., and Gladon, R. (1989). Effects of inhibitors of synthesis and action of
ethylene on apple seed stratification and embryo germination. Acta Physiol. Plant.
11, 307–316.

Sinska, I., and Lewandowska, U. (1991). Polyamines and ethylene in the removal
of embryonal dormancy in apple seeds. Physiol. Plant. 81, 59–64. doi:
10.1111/j.1399-3054.1991.tb01713.x

Siriwitayawan, G., Geneve, R. L., and Downie, A. B. (2003). Seed germination of
ethylene perception mutants of tomato and Arabidopsis. Seed Sci. Res. 13, 303–314.
doi: 10.1079/SSR2003147

Speer, H. L., Hsiao, A. I., and Vidaver, W. (1974). Effects of germination promoting
substances given in conjunction with red light on the phytochrome-mediated
germination of dormant lettuce seeds (Lactuca sativa L.). Plant Physiol. 54, 852–
854. doi: 10.1104/pp.54.6.852

Steber, C. M. (2007). “De-repression of seed germination by GA signaling,” in
Annual Plant Reviews, Vol. 27, Seed Development, Dormancy and Germination,
eds K. Bradford and H. Nonogaki (Oxford: Blackwell Publishing Ltd), 248–263.
doi: 10.1002/9780470988848.ch10

Stepanova, A. N., and Alonso, J. M. (2009). Ethylene signaling and response: where
different regulatory modules meet. Curr. Opin. Plant Biol. 12, 548–555. doi:
10.1016/j.pbi.2009.07.009

Frontiers in Plant Science | Plant Physiology October 2014 | Volume 5 | Article 539 | 12

http://www.frontiersin.org/Plant_Physiology/
http://www.frontiersin.org/Plant_Physiology/archive


Corbineau et al. Ethylene in seed germination

Subbiah, V., and Reddy, K. J. (2010). Interactions between ethylene, abscisisc acid
and cytokinin during germination and seedling establishment in Arabidopsis. J.
Biosci. 35, 451–458. doi: 10.1007/s12038-010-0050-2

Sun, T. P., and Gubler, F. (2004). Molecular mechanism of gibberellin in plants.
Annu. Rev. Plant Biol. 7, 847–859. doi: 10.1146/annurev.arplant.55.031903.141753

Takayanagi, K., and Harrington, J. F. (1971). Enhancement of germination rate of
aged seeds by ethylene. Plant Physiol. 47, 521–524. doi: 10.1104/pp.47.4.521

Taylorson, R. B. (1979). Response of weed seeds to ethylene and related hydrocar-
bons. Weed Sci. 27, 7–10.

Thomas, T. H., Palevitch, D., Biddington, N. L., and Austin, R. B.
(1975). Growth regulators and the phytochrome-mediated dormancy of
celery seeds. Physiol. Plant. 35, 101–106. doi: 10.1111/j.1399-3054.1975.
tb03876.x

Toorop, P. E., van Aelst, A. C., and Hilhorst, H. W. (2000). The second step of the
biphasic endosperm cap weakening that mediates tomato (Lycopersicon esculen-
tum) seed germination is under control of ABA. J. Exp. Bot. 51, 371–379. doi:
10.1093/jexbot/51.349.1371

Tyler, L., Thomas, S. G., Hu, J., Dill, A., Alonso, J. M., Ecker, J. R., et al. (2004).
DELLA proteins and gibberellin-regulated seed germination and floral devel-
opment in Arabidopsis. Plant Physiol. 135, 1008–1019. doi: 10.1104/pp.104.
039578

Wang, B., Zhang, J., Xia, X., and Zhang, W. H. (2011). Ameliorative effect of
brassinosteroid and ethylene on germination of cucumber seeds in the presence
of sodium chloride. Plant Growth Regul. 65, 407–413. doi: 10.1007/s10725-011-
9595-9

Wang, K. L. C., Li, H., and Ecker, J. R. (2002). Ethylene biosynthesis and signaling
networks. Plant Cell 14(Suppl. ), S131–S151.

Wang, N. N., Shih, M. C., and Li, N. (2005). The GUS reporter-aided analysis
of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5,
and AtACS7 induced by hormones and stresses. J. Exp. Bot. 56, 909–920. doi:
10.1093/jxb/eri083

Wang, W., Esch, J. J., Shiu, S.-H., Agula, H., Binder, B. M., Chang, C., et al. (2006).
Identification of important regions for ethylene binding and signaling in the
transmembrane domain of the ETR1 ethylene receptor of Arabidopsis. Plant Cell
18, 3429–3442. doi: 10.1105/tpc.106.044537

Wang, Y., Liu, C., Li, K., Sun, F., Hu, H., Li, X., et al. (2007). Arabidopsis EIN2
modulates stress response through abscisic acid response pathway. Plant Mol.
Biol. 64, 633–644. doi: 10.1007/s11103-007-9182-7

Weiss, D., and Ori, N. (2007). Mechanisms of cross talk between gibberellin
and other hormones. Plant Physiol. 144, 1240–1246. doi: 10.1104/pp.107.
100370

Weitbrecht, K., Müller, K., and Leubner-Metzger, G. (2011). First of the mark: early
seed germination. J. Exp. Bot. 62, 3289–3309. doi: 10.1093/jxb/err030

Wilson, R. L., Kim, H., Bakshi, A., and Binder, B. M. (2014a). The ethylene receptors
ETHYLENE RESPONSE1 and ETHYLENE RESPONES2 have contrasting roles in
seed germination of Arabidopsis during salt stress. Plant Physiol. 165, 1353–1366.
doi: 10.1104/pp.114.241695

Wilson, R. L., Bakshi, A., and Binder, B. M. (2014b). Loss of the ETR1 ethy-
lene receptor reduces the inhibitory effect of far-red light and darkness on seed
germination of Arabidopsis thaliana. Front. Plant Sci. 5:433. doi: 10.3389/fpls.
2014.00433

Yamagami, T., Tsuchisaka, A., Yamada, K., Haddon, W. F., Harden,
L. A., and Theologis, A. (2003). Biochemical diversity among the 1-
aminocyclopropane-1-carboxylate synthase isozymes encoded by the Arabidop-
sis gene family. J. Biol. Chem. 278, 49102–49112. doi: 10.1074/jbc.M308
297200

Yang, S. F., and Hoffman, N. E. (1984). Ethylene biosynthesis and its regulation
in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 35, 155–189. doi:
10.1146/annurev.arplant.35.1.155

Yoo, S. D., Cho, Y. H., and Sheen, J. (2009). Emerging connections in the ethylene sig-
naling network. Trends Plant Sci. 14, 270–279. doi: 10.1016/j.tplants.2009.02.007

Yoo, S. D., Cho, Y. H., Tena, G., Xiong, Y., and Sheen, J. (2008). Dual control
of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451,
789–795. doi: 10.1038/nature06543

Zapata, H., P. J., Serrano, M., Pretel, M. T., Amoros, A., and Botella, M. A. (2003).
Changes in ethylene evolution and polyamine profiles of seedlings of nine culti-
vars of Lactuca sativa L. in response to salt stress during germination. Plant Sci.
164, 557–563. doi: 10.1016/S0168-9452(03)00005-0

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 14 August 2014; accepted: 22 September 2014; published online: 10 October
2014.
Citation: Corbineau F, Xia Q, Bailly C and El-Maarouf-Bouteau H (2014) Ethy-
lene, a key factor in the regulation of seed dormancy. Front. Plant Sci. 5:539. doi:
10.3389/fpls.2014.00539
This article was submitted to Plant Physiology, a section of the journal Frontiers in
Plant Science.
Copyright © 2014 Corbineau, Xia, Bailly and El-Maarouf-Bouteau. This is an open-
access article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

www.frontiersin.org October 2014 | Volume 5 | Article 539 | 13

http://dx.doi.org/10.3389/fpls.2014.00539
http://dx.doi.org/10.3389/fpls.2014.00539
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Physiology/archive

	Ethylene, a key factor in the regulation of seed dormancy
	Introduction
	Ethylene biosynthesis during germination
	Seed responsiveness to exogenous ethylene
	Involvement of ethylene in seed germination and dormancy
	Ethylene crosstalk with ABA/GAs and seed germination
	Interrelationship between ethylene and ABA
	Interrelationship between ethylene and GAs

	ROS and ethylene interact to regulate seed germination
	Conclusion: network between ethylene, plant hormones, and ROS
	References


