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Plant cell walls provide physical strength, regulate the passage of bio-molecules, and act
as the first barrier of defense against biotic and abiotic stress. In addition to providing
structural integrity, plant cell walls serve an important function in connecting cells to
their extracellular environment by sensing and transducing signals to activate cellular
responses, such as those that occur during pathogen infection. This mini review will
summarize current experimental approaches used to study cell wall functions during
plant-pathogen interactions. Focus will be paid to cell imaging, spectroscopic analyses,
and metabolic profiling techniques.
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INTRODUCTION
The plant cell wall is a complex network consisting of diverse
polysaccharides, lignin, and proteins (Mutwil et al., 2008). It
provides physical strength, maintains cell shape, resists internal
turgor pressure, regulates cell differentiation and growth, medi-
ates bio-molecule transit, and serves as the first barrier of defense
against biotic and abiotic stress (Knox, 2008; Collinge, 2009;
Endler and Persson, 2011). Cell walls are highly dynamic and
are capable of modifying their structural and chemical compo-
sitions to maintain functionality during developmental growth
(Brewin, 2004; Somerville et al., 2004; Gorshkova et al., 2013;
Bellincampi et al., 2014). In addition to its structural roles, plant
cell walls serve an important function in connecting extracellu-
lar and intracellular environments by sensing and transducing
signals, and activating cellular responses (Pogorelko et al., 2013)
to environmental change and pathogen attack (Aziz et al., 2004;
Vorwerk et al., 2004; Hématy et al., 2009). At pathogen infection
sites plants generally accumulate callose, phenolic compounds,
and lignin (Underwood, 2012), and in some cases metabolites
and proteins that can directly inhibit the growth of pathogens
(Vorwerk et al., 2004; Haas et al., 2009). The importance of
plant cell wall integrity and cell wall-mediated resistance dur-
ing plant-microbial interaction has been demonstrated, but the
related components and signaling pathways have not been fully
elucidated (Mellersh and Heath, 2001; Collinge, 2009; Hématy
et al., 2009).

This mini review will summarize current experimental
approaches that may be used as tools to study the cell wall with
a focus on techniques that could be applied during the interac-
tion between a plant and an interacting microbe. In particular,
focus will be given to techniques for assessing changes in metabo-
lites during plant-microbe interaction as well as techniques for
imaging the cell wall. We are particularly interested in how the
phytobiome, including mutualistic endophytes, pathogens and

symbionts alike interact with the plants central architectural
framework, the cell wall, and how this information could be har-
nessed for isolation of new herbicides (Xia et al., 2014) and/or
plant defense systems.

METABOLIC PROFILING FOCUSED ON INTERACTIONS
BETWEEN PLANT AND MICROBE
Metabolic profiling is the characterization and quantification of
low-molecular weight metabolites and their intermediates in bio-
logical systems (Roessner and Bowne, 2009). This profiling aims
to capture metabolites involved in the dynamic plant response
to genetic modification, growth and developmental manipula-
tion, and biotic/abiotic stresses (Clarke and Haselden, 2008).
During plant-pathogen interaction, pathogens attempt to utilize
the metabolism of host plants to suppress plant defense and to
obtain nutrients (Dangl and Jones, 2001; Chisholm et al., 2006;
Collinge, 2009). Metabolites that are synthesized by a host plant
during a plant-microbe interaction can serve as signals, seda-
tives, or toxins to either aid the association with the microbe, or
to attempt to limit the proliferation of the microbe (Thomma
et al., 2002; Krishnan et al., 2005; Allwood et al., 2010, 2011;
Schwessinger et al., 2012). Ultimately, most metabolic profil-
ing will aim to capture in situ changes in cellular output in a
spatially or temporal discrete region (Sumner, 2006; Timischl
et al., 2008; Sumner et al., 2011; Khakimov et al., 2012). In the
case of plant-pathogen interactions, profiling generally focuses
on the plants metabolic response. Assaying microbial metabolites
that are involved in plant-microbe interaction remains challeng-
ing. Assigning signals produced by a microbe requires separating
them from those of the host plant and when grown in isola-
tion, their metabolic output may not reflect a pathogenic state.
When considering the plant cell wall, the relative predictability of
metabolites in specific tissues provides an excellent starting point
for looking at metabolic shifts associated with microbial ingress.

www.frontiersin.org October 2014 | Volume 5 | Article 540 | 1

http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/about
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/journal/10.3389/fpls.2014.00540/abstract
http://community.frontiersin.org/people/u/48960
http://community.frontiersin.org/people/u/185353
http://community.frontiersin.org/people/u/185708
mailto:sdebo2@uky.edu
http://www.frontiersin.org
http://www.frontiersin.org/Plant-Microbe_Interaction/archive


Xia et al. Plant cell wall function

ANALYSIS OF PLANT CELL WALL POLYSACCHARIDES THROUGH
METABOLIC PROFILING
At a broad scale, measurement of cell wall metabolites has
been well-defined for decades. Neutral and acidic polysaccha-
rides (Blakeney et al., 1983), acid insoluble and soluble glu-
cose (Updegraff, 1969), soluble and insoluble lignin fractions
(NREL, 2000) and the linkages between glycosyl units (Tong
and Gross, 1988) can be examined with spectrophotometric,
high performance liquid chromatography (HPLC), or gas chro-
matography (GC) coupled to mass spectroscopy (GC MS) to
obtain a snapshot of the cell wall composition (Kopka, 2006).
Similarly, at a much higher resolution, the structure of cell wall
polysaccharides can be examined by uniformly feeding the plant
with a isotope trace (13C-glucose and 15N-ammonia) and then
employing 13C-magic angle spinning solid state nuclear mag-
netic resonance spectroscopy (SS-NMR) (Dick-Pérez et al., 2011;
Fernandes et al., 2011; Harris et al., 2012). However, the capac-
ity to look at spatially discrete regions of cell wall composition,
which are linked to microbial association, can be difficult due
to the relatively large amount of material needed for many of
these techniques. To get around this limitation, combining sys-
tematic metabolite profiling with immunological approaches can
be effective. For example, immunological approaches have been
used to investigate the glycome profiling of wide array of plant
cell wall polysaccharides (Pattathil et al., 2010, 2012; DeMartini
et al., 2011; Fangel et al., 2012). Currently, around 150 antibodies
that can recognize diverse epitopes present on each of the major
classes of plant polysaccharides exist and are continuing to be
developed. These antibodies have been used for in situ localization
of epitopes to further our understanding of cell wall composi-
tion (Pattathil et al., 2012). Carbohydrate Microarray Polymer
Profiling (CoMPP) has been streamlined as a screening platform
to analyze cell wall polysaccharides by combining the specificity of
monoclonal antibodies with a high-throughput microarray sys-
tem (Alonso-Simón et al., 2009; Moller et al., 2012). In the context
of microbial ingress, antibody based polysaccharide visualiza-
tion has been utilized to observe altered xyloglucan arising from
infection by the fungal pathogen Botrytis cinerea (Nguema-Ona
et al., 2012, 2013). While difficulties arise in assigning quanti-
tative data for localized metabolite profiles via immunological
techniques, the capacity to gain unparalleled qualitative data is
emerging. Additionally, a versatile high-resolution oligosaccha-
ride microarray has been developed for cell wall analysis, which
aids in the validation and characterization of target oligosac-
charides produced via hydrolysis of polysaccharides or de novo
synthesis (Pedersen et al., 2012). This library of cell wall oligosac-
charides has been created by coupling target oligosaccharides with
cognate proteins to form neoglycoconjugates, which in turn can
be printed onto a microarray format (Pedersen et al., 2012).
One can imagine the importance of such techniques to iden-
tify and characterize oligosaccharides identified during metabolic
profiling.

Other techniques for assessing metabolites on a screening
scale include Oligosaccharide Mass Profiling (OLIMP) coupled
with Matrix-Assisted Laser Desorption/Ionization Time Of Flight
(MALDI-TOF)-MS (Obel et al., 2009), or using of a suite of 74
polysaccharide degrading enzymes (Bauer et al., 2006). Both tech-
niques were developed for the small-scale assessment of plant

cell wall polysaccharides and to examine the oligosaccharides
formed from polysaccharides that are digested by specific degrad-
ing enzymes (Bauer et al., 2006; Obel et al., 2009). OLIMP has
particularly high sensitivity, thus making it ideal for small sam-
ples. It needs short preparation time and is suitable for in situ
wall analysis at the cellular level. Importantly, OLIMP enables
the comparative analysis of the wall polymers in a Golgi-enriched
fraction vs. the apoplast fraction based on matrix polysaccharides,
which may extend information about cellular functions during
plant-pathogen interaction. OLIMP has been used to examine
microbial alterations of the cell wall (Lionetti et al., 2007; Manabe
et al., 2011), and allowed researchers to pinpoint that the alter-
ation in esterification of pectin and xylan influenced the outcome
of B. cinerea infection.

CELL IMAGING AND SPETROSCOPIC TECHNIQUES
Advanced cellular imaging can be useful to investigate phenotypes
linked to plant-microbe associations. Cellular imaging can be par-
ticularly important when applying a quantitative methodology
to imaging techniques. Many microscopic techniques are avail-
able, including light (Wilt et al., 2009), fluorescence (Lichtman
and Conchello, 2005), and confocal microscopy (Nwaneshiudu
et al., 2012). However, the outcomes of cell imaging can be influ-
enced by many factors, such as microscope resolution, the rate at
which images can be acquired, cell type being examined and the
abundance/size of the tagged protein or structure being observed
(Stephens and Allan, 2003; Shaw, 2006; Table 1 for more details).
Live cell imaging techniques (Table 1) have facilitated our under-
standing of plant cell wall dynamics in several different applica-
tions (Lee et al., 2011; Sappl and Heisler, 2013), and have been
broadly applied when studying specific aspects of cell wall alter-
ation during the interaction between a host plant and microbe.

ANALYSIS OF CELL WALL STRUCTURE AND FUNCTION WITH CELL
IMAGING TECHNIQUES
There are several techniques that may be used to investigate
structural and functional changes of plant cell walls during
plant-microbe interactions. Aside from examining the pheno-
type, actually pinpointing defects in the cell wall often requires
the merger to two or more techniques, including profiling cell wall
structure as described above. Electron microscopy, both scan-
ning (SEM) and transmission (TEM), along with fluorescence
microscopy (FM) in the form of laser scanning or spinning disk
confocal microscopy are of particularly interest. These techniques
have been used together to examine plant-microbe interaction
through alterations in the cell wall. Here, FM and TEM (Table 1)
revealed that multi-vesicular bodies participated in cell wall-
associated defense to powdery mildew in barley (An et al., 2006).
As individual techniques, neither could ascertain mechanistic
association, but together these techniques allowed a snapshot
of inter and intracellular occurrences. Further, the relevance
of plasma membrane–cell wall adhesion for cowpea resistance
to rust fungi penetration was pinpointed by an integrated use
of light and confocal microscopy (Mellersh and Heath, 2001).
Laser scanning confocal microscopy can be used to track both
plant and microbial proteins in live tissue. For example, confo-
cal microscopy was used to track the dynamics of a Xanthomonas
outer protein J (XopJ) in tobacco plants (Table 1), and revealed

Frontiers in Plant Science | Plant-Microbe Interaction October 2014 | Volume 5 | Article 540 | 2

http://www.frontiersin.org/Plant-Microbe_Interaction
http://www.frontiersin.org/Plant-Microbe_Interaction
http://www.frontiersin.org/Plant-Microbe_Interaction/archive


Xia et al. Plant cell wall function

T
a
b

le
1

|
C

o
m

p
a
ri

s
o

n
o

f
d

if
fe

re
n

t
c
e
ll

im
a
g

in
g

/s
p

e
c
tr

o
s
c
o

p
y

m
e

th
o

d
s

fo
r

p
la

n
t

c
e

ll
w

a
ll

s
tu

d
y
.

T
e
c
h

n
iq

u
e

A
c
q

u
is

it
io

n

s
p

e
e
d

C
e
ll

d
a
m

a
g

e

L
a
b

e
li
n

g

(F
lu

o
re

s
c
e
n

c
e
/

C
o

a
ti

n
g

/S
ta

in
in

g
)

L
iv

e
c
e
ll
s

S
in

g
le

c
e
ll

d
e
te

c
ti

o
n

S
p

a
ti

a
l/

T
e
m

p
o

ra
l

re
s
o

lu
ti

o
n

S
a
m

p
le

p
re

p
a
ra

ti
o

n

C
h

e
m

ic
a
l

c
o

m
p

o
s
it

io
n

a
n

a
ly

s
is

M
e
a
s
u

re
d

p
a
ra

m
e
te

r/
in

fo
rm

a
ti

o
n

p
ro

v
id

e
d

/l
im

it
a
ti

o
n

o
r

p
o

s
s
ib

le

p
ro

b
le

m
c
a
u

s
e
d

R
e
fe

re
n

c
e
s

B
rig

ht
-fi

el
d

m
ic

ro
sc

op
y

(B
FM

)
S

lo
w

Ye
s

N
o

Ye
s

Ye
s

Lo
w

∼2
–3

μ
m

O
ft

en
co

m
pl

ex
N

ot
av

ai
la

bl
e

Pa
rt

ic
le

sh
ap

e
an

d
si

ze
,c

el
l-w

al
l

su
rf

ac
es

,a
nd

m
ul

til
am

el
la

r
ar

ch
ite

ct
ur

e

La
ca

yo
et

al
.,

20
10

;
M

or
an

-M
ira

ba
l,

20
13

Fl
uo

re
sc

en
ce

m
ic

ro
sc

op
y

(F
M

)
Fa

st
N

o
Ye

s
Ye

s
Ye

s
H

ig
h

∼1
0–

25
5

nm
E

as
ie

r
N

ot
av

ai
la

bl
e

3D
-c

el
lw

al
ls

tr
uc

tu
re

,r
el

at
iv

e
am

ou
nt

of
ce

ll
w

al
lp

ol
ym

er
s

am
on

g
di

ffe
re

nt
ce

lls
,l

oc
al

iz
at

io
n

an
d

in
te

ra
ct

io
ns

of
di

ffe
re

nt
w

al
l

co
m

po
ne

nt
s;

ph
ot

ob
le

ac
hi

ng

S
ha

w
,2

00
6;

Fr
ig

au
lt

et
al

.,
20

09
;L

ac
ay

o
et

al
.,

20
10

C
on

fo
ca

ll
as

er
sc

an
ni

ng
m

ic
ro

sc
op

y
(C

LS
M

)

S
lo

w
N

o
Ye

s
Ye

s
Ye

s
H

ig
h

∼0
.2

–0
.8

μ
m

E
as

ie
r

N
ot

av
ai

la
bl

e
3D

-c
el

lw
al

ls
tr

uc
tu

re
,l

oc
al

iz
at

io
n

an
d

in
te

ra
ct

io
ns

of
di

ffe
re

nt
w

al
l

co
m

po
ne

nt
s,

m
ul

tip
le

la
be

ls
us

ag
e,

fo
cu

s
to

sm
al

lr
eg

io
ns

;S
ca

nn
in

g
sp

ee
d

lim
its

M
cC

an
n

et
al

.,
20

01
;

S
te

ph
en

s
an

d
A

lla
n,

20
03

;
M

a
et

al
.,

20
13

S
pi

nn
in

g
di

sk
co

nf
oc

al
m

ic
ro

sc
op

y
(S

D
C

M
)

Ve
ry

fa
st

fo
r

si
ng

le
co

lo
r

ac
qu

is
iti

on

N
o

Ye
s

Ye
s

Ye
s

H
ig

h
∼0

.2
–0

.8
μ

m
E

as
ie

r
N

ot
av

ai
la

bl
e

3D
-c

el
lw

al
ls

tr
uc

tu
re

,b
ro

ad
la

se
r

fo
cu

s,
qu

an
tit

at
iv

e
an

al
ys

is
of

po
ly

m
er

dy
na

m
ic

s;
sw

itc
hi

ng
be

tw
ee

n
la

se
r

lin
es

lim
it

th
e

ac
qu

is
iti

on
sp

ee
d

S
te

ph
en

s
an

d
A

lla
n,

20
03

;
Pa

re
de

z
et

al
.,

20
06

;
B

is
ch

of
f

et
al

.,
20

09

Tr
an

sm
is

si
on

el
ec

tr
on

m
ic

ro
sc

op
y

(T
E

M
)

Fa
st

Ye
s

Ye
s

N
o

Ye
s

H
ig

h
∼0

.2
–1

0
nm

Ti
m

e
an

d
sk

ill
de

m
an

di
ng

N
ot

av
ai

la
bl

e
C

el
l-w

al
ls

ur
fa

ce
s

an
d

m
ul

til
am

el
la

r
ar

ch
ite

ct
ur

e,
ce

ll
w

al
lu

ltr
as

tr
uc

tu
ra

l
or

ga
ni

za
tio

n;
S

m
al

ls
am

pl
e

ar
ea

s,
hi

gh
re

so
lu

tio
n

K
ris

te
ns

en
et

al
.,

20
08

;
S

an
t’A

nn
a

et
al

.,
20

13

S
ca

nn
in

g
el

ec
tr

on
m

ic
ro

sc
op

y
(S

E
M

)
Fa

st
Ye

s
Ye

s
N

o
Ye

s
H

ig
h

∼1
–4

nm
Ti

m
e

an
d

sk
ill

de
m

an
di

ng
N

ot
av

ai
la

bl
e

C
el

l-w
al

ls
ur

fa
ce

s
an

d
m

ul
til

am
el

la
r

ar
ch

ite
ct

ur
e,

us
es

at
om

-c
oa

te
d

su
rf

ac
es

to
de

te
rm

in
e

to
po

lo
gi

es

S
ar

ka
r

et
al

.,
20

09
;

D
on

oh
oe

et
al

.,
20

11

Lo
ca

liz
at

io
n

m
ic

ro
sc

op
y

(L
M

)
Fa

st
Ye

s
Ye

s
Ye

s
Ye

s
H

ig
h

∼2
–2

5
nm

E
as

ie
r

N
ot

av
ai

la
bl

e
3D

-c
el

lw
al

ls
tr

uc
tu

re
,

si
ng

le
-m

ol
ec

ul
e

lo
ca

liz
at

io
n,

su
pe

r
re

so
lu

tio
n

te
ch

ni
qu

es
,n

an
os

ca
le

gl
uc

an
po

ly
m

er
an

al
ys

is

B
et

zi
g

et
al

.,
20

06
;E

gg
er

t
et

al
.,

20
14

Fo
ur

ie
r

tr
an

sf
or

m
in

fr
a-

re
d

(F
TI

R
)

m
ic

ro
sp

ec
-

tr
os

co
py

/R
am

an
m

ic
ro

sp
ec

-
tr

os
co

py

S
lo

w
N

o
N

o
Ye

s
Ye

s
H

ig
h

∼2
50

nm
Ti

m
e

an
d

sk
ill

de
m

an
di

ng
A

va
ila

bl
e

M
ul

tip
le

co
m

po
ne

nt
s

ch
em

ic
al

an
al

ys
is

,a
nd

or
ie

nt
at

io
n

of
th

e
ce

llu
lo

se
m

ic
ro

fib
ril

s.
Th

e
re

su
lts

ar
e

si
gn

ifi
ca

nt
ly

in
flu

en
ce

d
by

th
e

en
vi

ro
nm

en
t

an
d

w
at

er
.S

pe
ct

ra
ar

e
di

ffi
cu

lt
to

an
al

yz
e

an
d

in
te

rp
re

t

C
he

n
et

al
.,

19
97

b;
A

ga
rw

al
et

al
.,

20
10

;
G

ie
rli

ng
er

et
al

.,
20

12

A
to

m
ic

fo
rc

e
m

ic
ro

sc
op

y
(A

FM
)

Fa
st

N
o

N
o

Ye
s

Ye
s

H
ig

h
∼0

.1
–3

0
nm

E
as

ie
r

A
va

ila
bl

e
3D

-c
el

lw
al

ls
tr

uc
tu

re
,t

op
ol

og
y

of
th

e
ce

ll
w

al
ls

ur
fa

ce
;p

oo
r

ch
em

ic
al

re
so

lu
tio

n

K
irb

y
et

al
.,

19
96

;Z
ha

ng
et

al
.,

20
12

(C
on

tin
ue

d)

www.frontiersin.org October 2014 | Volume 5 | Article 540 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Plant-Microbe_Interaction/archive


Xia et al. Plant cell wall function

T
a
b

le
1

|
C

o
n

ti
n

u
e
d

T
e
c
h

n
iq

u
e

A
c
q

u
is

it
io

n

s
p

e
e
d

C
e
ll

d
a
m

a
g

e

L
a
b

e
li
n

g

(F
lu

o
re

s
c
e
n

c
e
/

C
o

a
ti

n
g

/S
ta

in
in

g
)

L
iv

e
c
e
ll
s

S
in

g
le

c
e
ll

d
e
te

c
ti

o
n

S
p

a
ti

a
l/

T
e
m

p
o

ra
l

re
s
o

lu
ti

o
n

S
a
m

p
le

p
re

p
a
ra

ti
o

n

C
h

e
m

ic
a
l

c
o

m
p

o
s
it

io
n

a
n

a
ly

s
is

M
e
a
s
u

re
d

p
a
ra

m
e
te

r/
in

fo
rm

a
ti

o
n

p
ro

v
id

e
d

/l
im

it
a
ti

o
n

o
r

p
o

s
s
ib

le

p
ro

b
le

m
c
a
u

s
e
d

R
e
fe

re
n

c
e
s

X
-R

AY
di

ff
ra

ct
io

n
/n

eu
tr

on
di

ff
ra

ct
om

et
ry

Fa
st

N
o

N
o

Ye
s

Ye
s

H
ig

h
∼0

.0
5–

0.
4

nm

Ti
m

e
an

d
sk

ill
de

m
an

di
ng

A
va

ila
bl

e
3D

ce
ll

w
al

ls
tr

uc
tu

re
,d

eg
re

e
of

cr
ys

ta
lli

ni
ty

,c
ry

st
al

si
ze

,c
ha

in
or

ie
nt

at
io

n;
on

ly
us

e
fo

r
or

ie
nt

ed
cr

ys
ta

lp
ol

ym
er

s

B
ur

ge
rt

,2
00

6;
La

ca
yo

et
al

.,
20

10
;P

ar
k

et
al

.,
20

14

N
uc

le
ar

m
ag

ne
tic

re
so

na
nc

e
(N

M
R

)
sp

ec
tr

os
co

py

Fa
st

N
o

N
o

Ye
s

Ye
s

H
ig

h
∼1

0–
90

nm
Ti

m
e

de
m

an
di

ng
A

va
ila

bl
e

M
ol

ec
ul

ar
dy

na
m

ic
s,

cr
ys

ta
l

st
ru

ct
ur

e,
ce

llu
lo

se
or

ie
nt

at
io

n;
In

te
rf

er
en

ce
co

ul
d

be
ca

us
ed

by
hi

gh
m

ol
ec

ul
ar

w
ei

gh
t

po
ly

m
er

s,
ra

ng
e

of
te

m
pe

ra
tu

re
s

an
d

fr
eq

ue
nc

ie
s

ar
e

lim
ite

d

C
hy

lla
et

al
.,

20
13

;W
an

g
et

al
.,

20
13

its interference (alteration of intracellular vesicle trafficking and
polarized protein secretion) with cell wall-associated defense
responses (Bartetzko et al., 2009). Similarly, but for a plant pro-
tein, the application of spinning disk confocal microscopy allowed
the visualization of the CELLULOSE SYNTHASE (CeSA) com-
plexes after exposure to the dinitrite-peptide Thaxtomin-A, which
is a phytotoxin produced by Streptomyces scabies and S. eubacte-
ria (Bischoff et al., 2009). Confocal microscopy allows the user to
observe the microbial effector while it influences the target plant
protein or cellular process. We recently utilized a screen of micro-
bial endophytes (Xia et al., 2013) to identify microbial factors that
induce cellulose inhibition and identified the compound aceto-
bixan from a Bacillus sp. (Xia et al., 2014). Confocal microscopy
allowed us to validate that the target process that the microbe
was altering in the host plant was cellulose biosynthesis, which
revealed a specific mechanism for this association.

The mechanisms of plant cell wall organization and dynamics
have been extensively studied, and the use of suitable chemi-
cal probes to examine cell wall polysaccharide organization is
expanding (Vorwerk et al., 2004; Lee et al., 2011). Recently, small
molecule probes that bind to polysaccharides with high resolu-
tion and sensitivity have been developed (Knox, 2008; Pattathil
et al., 2010; Lee et al., 2011), particularly in the form of click
chemistry (Wallace and Anderson, 2012). An example of this
approach was the utilization of an alkynylated fucose analog
(FucAl) incorporated into the cell wall pectin fraction to eluci-
date pectin delivery, architecture, and dynamics in Arabidopsis
(Anderson et al., 2012). Ultimately, the development of small
molecule probes compatible with live-cell imaging can further
enhance the understanding of fundamental biological questions
pertinent to the cell wall during plant-microbe interaction, and
can even be targeted to specific events.

ADDITIONAL IMAGING TECHNIQUES OF NOTE
Atomic force microscopy (AFM) is a technique with expanding
use and potential. The extremely high resolution of AFM can
allow the examination of events occurring within the nm scale.
AFM has recently been used to detect the interaction of a synthetic
carbohydrate-binding module with plant cellulose, and the struc-
tural changes of crystalline cellulose at a cell-wall surface (Zhang
et al., 2012, 2013). In terms of plant microbe interactions, AFM
recently provided nanoscale imaging of cell surfaces in their native
state and revealed cell wall dynamics and modification during
Arabidopsis and Fusarium oxysporum interaction (Adams et al.,
2012). These selected studies underline the necessity to utilize the
ever-expanding technological advances in imaging systems, often
in concert with metabolic profiling, to maximize the detail of the
investigation.

Localization microscopy, which is a form of super-resolution
microscopy, focuses on the localization of single fluorescent
molecule. Such super-resolution microscopy has been used to
analyze the infection site of the fungal pathogen powdery mildew
on Arabidopsis plants at a nanoscale level (Eggert et al., 2014).
The technique was sensitive enough to show that the micro-
bial pathogen induced the synthesis of the (1,3)-β-glucan cell
wall polymer callose, which interacted with the (1,4)-β-glucan
cellulose to form a three-dimensional network for preventing
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pathogen infection. The formation of callose associated with
pathogen ingress has been well-studied, but such inter-polymer
associations could not have been proven without technical break-
throughs. It will be interesting to see whether such techniques are
combined with click-chemistry to observe an increasing number
of interactions simultaneously.

The combined approaches of microscopy with spectroscopy
can also facilitate the investigation of wall associated ultra-
structure modifications, and the chemical compositions of the
plant cell wall during plant-pathogen interaction (Table 1 for
more details). Fourier Transform Infrared (FT-IR) spectromi-
croscopy has been used to determine the presence and orientation
of functional groups of cellulose and pectin in plant cell walls for
well over a decade (Chen et al., 1997a,b; Kaèuráková et al., 2000;
Wilson et al., 2000). This technique was used to show that a muta-
tion in Arabidopsis PMR6, which encodes a pectate lyase-like
protein and is required for the growth and reproduction of plant
fungal powdery mildew pathogen-Erysiphe cichoracearum, altered
plant cell wall composition by increasing pectin accumulation.
Both absorbance peaks attributed to cellulose and xyloglucan
shifted down in energy and broadened in the spectra of pmr6-1
cell walls, which indicated that either the –CH2OH group or the
hydrogen bond of cellulose in pmr6-1 had been changed (Vogel
et al., 2002).

Raman microscopy (Inelastic scattering with a photon from
a laser light source) combined with FT-IR spectromicroscopy
(Photon absorption) can facilitate the observation of ultra-
structure, such as cellulosic crystals on the micro-scale (<0.5 μm)
level (Agarwal et al., 2010), as well as the alignment and ori-
entation of cellulose microfibrils with respect to the fiber axis
between different cell wall layers (Gierlinger et al., 2012). This
combined approach also improves our ability to visualize and
analyze the chemical composition of plant cell walls. For instance,
the spectra of the two wall-matrix polymers: lignin and pectin
display discernable marker bands, which do not overlap with the
cellulose signature, so their distribution in the plant cell wall
can be easily visualized, imaged, and analyzed using these tech-
niques (Gierlinger and Schwanninger, 2006; Richter et al., 2011;
Gierlinger et al., 2012).

PROSPECTS
Recent technical breakthroughs in combining higher resolution
imaging and metabolic profiling techniques have yielded numer-
ous discoveries in how plant cell wall function is modulated
during microbial interaction. Although much effort was spent
to be inclusive in this mini-review, due to space constraints we
apologize for excluding numerous developing techniques not
limited to but including those associated with biochemical pull
downs, protein-protein interaction arrays and more. Although
advanced cell imaging and spectroscopic techniques have facil-
itated such studies, the recent identification of the enormously
complex phytobiome (Bulgarelli et al., 2012; Lundberg et al.,
2012, 2013) reveals an outstanding question of the function of
the phytobiome in plant-microbe associations. The use of next
generation sequencing has revealed that many more microbes
are present within plant tissue than those previously identified
as obligate endophytes. It remains unclear how these microbial
mutualists are associating with (or avoiding) the plant cell wall

and associated defense pathways, and whether under pathogen
interaction, they matter?
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