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In plants, fatty acids are primarily synthesized in plastids and then transported to the
endoplasmic reticulum (ER) for synthesis of most of the complex membrane lipids,
including glycerolipids and sphingolipids. The first step of sphingolipid synthesis, which
uses a fatty acid and a serine as substrates, is critical for sphingolipid homeostasis;
its disruption leads to an altered plant growth. Phospholipase As have been implicated
in the trafficking of fatty acids from plastids to the ER. Previously, we found that
overexpression of a patatin-related phospholipase, pPLAIIIβ, resulted in a smaller plant size
and altered anisotropic cell expansion. Here, we determined the content and composition
of sphingolipids in pPLAIIIβ-knockout and overexpression plants (pPLAIIIβ-KO and -OE ).
3-keto-sphinganine, the product of the first step of sphingolipid synthesis, had a 26%
decrease in leaves of pPLAIIIβ-KO while a 52% increase in pPLAIIIβ-OE compared to
wild type (WT). The levels of free long-chain base species, dihydroxy-C18:0 and trihydroxy-
18:0 (d18:0 and t18:0), were 38 and 97% higher, respectively, in pPLAIIIβ-OE than
in WT. The level of complex sphingolipids ceramide d18:0–16:0 and t18:1–16:0 had a
twofold increase in pPLAIIIβ-OE. The level of hydroxy ceramide d18:0–h16:0 was 72%
higher in pPLAIIIβ-OE compared to WT. The levels of several species of glucosylceramide
and glycosylinositolphosphoceramide tended to be higher in pPLAIIIβ-OE than in WT. The
total content of the complex sphingolipids showed a slightly higher in pPLAIIIβ-OE than
in WT.These results revealed an involvement of phospholipase-mediated lipid homeostasis
in plant growth.
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INTRODUCTION
Lipids are structural components of membrane bilayers and
play important metabolic and regulatory roles in plant growth,
development, and stress responses. Phospholipases are major
enzyme families that catalyze many of the reactions in lipid
metabolism and signaling. Recently, multiple biological func-
tions have been revealed for patatin-related phospholipase As
(pPLAs; Li and Wang, 2014). Patatin-related PLAs in Arabidop-
sis comprise pPLAI, pPLAII (α,β,γ,δ,ε), and pPLAIII (α,β,γ,δ;
Scherer et al., 2010). pPLAI has a positive role in plant resis-
tance to the fungus pathogen Botrytis cinerea, possibly by
mediating the production of jasmonates (Yang et al., 2007). Defi-
ciency of pPLAIIα decreases resistance to bacterial pathogens
and impedes oxylipin production under drought stress (La Cam-
era et al., 2005; Yang et al., 2012). pPLAIIγ, pPLAIIδ, and
pPLAIIε are involved in the response to phosphorus deficiency
and auxin treatment in terms of root elongation (Rietz et al., 2004,
2010).

pPLAIIIs possess a distinctive non-canonical esterase motif
GxGxG, instead of GxSxG, which is present in pPLAI and
pPLAIIs (Scherer et al., 2010). Overexpression of pPLAIIIδ leads
to a stunted plant statue (Huang et al., 2001). Overexpression

of pPLAIIIβ results in smaller plant size and reduced cellulose
content in stems (Li et al., 2011). Disruption of rice DEP3, a
homolog of pPLAIIIδ, results in taller rice plants (Qiao et al.,
2011). Heterogeneous overexpression of an Oncidium OSAG78,
another homolog of pPLAIIIδ, results in a smaller plant size and a
delayed flowering time in Arabidopsis (Lin et al., 2011). These lines
of evidence indicate pPLAIIIs are important for plant growth and
development.

In plants, sphingolipids are major components of cellu-
lar membranes and determine the membrane physical prop-
erties. They have functions on environmental stress tolerance
(Chao et al., 2011; Chen et al., 2012), programmed cell death
(Alden et al., 2011), and polar auxin transport (Markham et al.,
2011; Yang et al., 2013). Sphingolipids include free long chain
bases, such as long chain bases (LCBs) and long chain base phos-
phate (LCBPs), and complex sphingolipids, such as ceramide
(Cer), hydroxyceramide (hCer), glucosylceramide (GlcCer), and
glycosylinositolphosphoceramide (GIPC; Markham et al., 2013).
Sphingolipid synthesis begins by the condensation of palmitoyl-
CoA and serine catalyzed by serine palmitoyltransferase (SPT;
Hanada, 2003). SPT are heterodimer proteins with two subunits,
LCB1 and LCB2. In Arabidopsis, LCB1 is encoded by a single gene
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(Chen et al., 2006), while LCB2 is encoded by two functionally
redundant genes, LCB2a and LCB2b (Dietrich et al., 2008).

Maintenance of sphingolipid homeostasis is critical for plant
growth and development (Chen et al., 2006; Dietrich et al., 2008;
Teng et al., 2008; Kimberlin et al., 2013). T-DNA disruption of
LCB1 gene in Arabidopsis results in an arrested development of
the embryo at the globular stage (Chen et al., 2006). Partial RNA
interference suppression of LCB1 results in reduced cell expan-
sion, a smaller plant, and elevated levels of saturated sphingolipid
LCBs (Chen et al., 2006). There is no apparent growth pheno-
type for mutants deficient in either LCB2a or LCB2b, however,
the deficiency of both is lethal for gametophyte (Dietrich et al.,
2008). Inducible suppression of LCB2b results in cell necrosis and
reduced levels of LCBs in adult Arabidopsis plants (Dietrich et al.,
2008).

The function of SPT can be regulated by small polypeptides
designated as small subunits of SPT (ssSPT). ssSPTa and ssSPTb
interact with SPT and stimulate its activity in Arabidopsis (Kim-
berlin et al., 2013). T-DNA disruption of ssSPTa results in reduced
plant growth and pollen lethality in Arabidopsis (Kimberlin et al.,
2013). Overexpression of ssSPTa leads to increased levels of free
LCBs and LCBPs compared with that of WT, while RNA interfer-
ence suppression of ssSPTa has opposite effects (Kimberlin et al.,
2013). Overexpression of ssSPTa results in a greater reduction in
plant growth than suppression does, when plants are treated by
fumonisin B1, an inhibitor of sphingolipid synthesis (Kimberlin
et al., 2013).

Previously, we reported that overexpression of pPLAIIIβ results
in a reduced plant growth in Arabidopsis (Li et al., 2011). Here we
report the effects of overexpression of pPLAIIIβ on the content
and composition of sphingolipids, including free sphingolipids
and complex ones. Our results show that overexpression of
pPLAIIIβ results in an elevated level of 3-keto-sphingaine (3-KS),
the product of the first step of sphingolipid synthesis, as well as
altered levels of many of the species of complex sphingolipids.

RESULTS
OVEREXPRESSION OF pPLAIIIβ INCREASED LEVELS OF
3-KETO-SPHINGANINE AND FREE LONG-CHAIN BASES
Overexpression of pPLAIIIβ by constitutive 35S cauliflower
mosaic virus promoter in Arabidopsis resulted in stunted plant
growth (Figure 1A). The sphingolipids were profiled in leaves of
WT, pPLAIIIβ-knockout (β-KO), and pPLAIIIβ-overexpressors
(β-OE). The first step of sphingolipid synthesis is the produc-
tion of 3-KS catalyzed by the serine palmitoyltransferase using
substrates of 16:0-CoA and serine (Figure 1B). The reduction
of 3-KS forms a dihydroxy C18 long chain base (sphinganine),
designated as LCB d18:0 (Figures 1B,C). The reduction of
LCB d18:0 forms the trihydroxy LCB (phytosphingosine), des-
ignated as LCB t18:0. Desaturation of LCB d18:0 and t18:0
produces LCB d18:1 and t18:1. The LCB d18:0, d18:1, t18:0,
and t18:1 can be phosphorylated to form LCBP d18:0, d18:1,
t18:0, and t18:1(Figures 1B,C). LCBs and LCBPs belong to free
sphingolipids.

The level of 3-KS was 26% lower in β-KO and 52% higher in
β-OE compared with that of WT (Figure 2A). The levels of LCB
t18:0 and t18:1 were approximately 15 times higher than LCB d18:0

and d18:1 in leaves of WT (Figure 2B). Among the LCB species,
the levels of d18:0 and t18:0 were 38 and 97% higher, respectively,
in leaves of β-OE compared to those of WT (Figure 2B). The level
of LCB t18:0 tended to be lower in β-KO than in WT (Figure 2B).
Of the LCBP species, the level of t18:0 tended to be 85% higher
while it was 43% lower in β-KO than in WT (Figure 2C).

OVEREXPRESSION OF pPLAIIIβ ALTERED THE LEVELS OF CERAMIDE
AND HYDROXYCERAMIDE
Ceramide was synthesized by CS using substrates of LCBs and acyl-
CoAs (Figure 1B). A Cer molecule contains two components, a
LCB and a fatty acid chain, linked by an amide bond. For example,
Cer d18:0–16:0 comprises a LCB d18:0 and a fatty acyl chain 16:0
(Figure 1C). The levels of Cer molecules containing one of four
types of LCBs and one of the 14 types of fatty acyl chains were
quantified by mass spectrometry (Figure 3). The four types of
LCBs are d18:0, d18:0, t18:0, and t18:1, and the most abundant
fatty acyl chains are 16:0, 22:0, 24:0, and 26:0 (Figure 3). The
levels of 16:0-containing Cers, including d18:0–16:0, d18:1–16:0,
t18:0–16:0, and t18:1–16:0, tended to be lower in β-KO while
higher in β-OE than in WT (Figure 3). The levels of Cer d18:0–
16:0 and t18:0–16:0 were about twofold higher in β-OE than in
WT (Figure 3). The levels of 24:0-, 24:1-, and 26:0-containing
Cers, including t18:0–24:0, t18:1–24:1, and t18:1–26:0, tended to
be lower in β-OE than in WT (Figure 3). Generally the levels of
Cers containing fatty acyl chain of 16–22 carbons tended to be
higher while those containing fatty acyl chain of 24–26 carbons
tended to be lower in leaves of β-OE than in WT, and the β-KO
behaved oppositely (Figure 3).

The fatty acyl chains of Cer can be hydroxylated to produce
hydroxyl ceramide (hCer; Figure 1B). For example, the hydrox-
ylation of 16:0 in Cer d18:0–16:0 led to the formation of hCer
d18:0–h16:0 (Figure 1C). The levels of hCer species containing
one of the four types of LCBs and one the 14 types of hydroxy-
lated fatty acyl chains were profiled (Figure 4). The most profound
alteration was the level of hCer d18:0–h16:0; it was 24% lower in
β-KO and 72% higher in β-OE than in WT (Figure 4). The levels
of the other hCer species did not display any significant alteration
between WT and β-OE (Figure 4).

OVEREXPRESSION OF pPLAIIIβ CHANGED THE LEVELS OF
GLUCOSYLCERAMIDE AND GLYCOSYLINOSITOLPHOSPHOCERAMIDE
A sugar-containing polar head group can be linked to the hydroxyl
ceramide to form GlcCer and GIPC (Figure 1B). For exam-
ple, GluCer d18:0–h16:0 has a glycosyl head group and GIPC
d18:0–h16:0 has a phosphoryl-inositol-hexose-hexuronic acid
head group (Figure 1C). Some GlcCer species displayed higher
levels in leaves of β-OE than in WT, including GlcCer d18:0–
h20:0, d18:1–h24:0, t18:1–h24:0, and t18:1–h24:1 (Figure 5). The
level of GlcCer t18:0–h24:0 was 80% lower in β-KO (Figure 5).
The profound alteration of GIPC species was d18:0–h26:0; its lev-
els increased 64% in β-OE compared to WT (Figure 6). The levels
of GIPC d18:0–h16:0, d18:1–h16:0, and t18:0–h16:0 tended to be
lower in β-KO while higher in β-OE than in WT (Figure 6). Gen-
erally most of the GIPC species tended to be lower in β-KO and
higher in β-OE than in WT (Figure 6).

Frontiers in Plant Science | Plant Physiology October 2014 | Volume 5 | Article 553 | 2

http://www.frontiersin.org/Plant_Physiology/
http://www.frontiersin.org/Plant_Physiology/archive


Li et al. Overexpressing pPLAIIIβ alters sphingolipid composition

FIGURE 1 | Schematic representation of sphingolipid biosynthesis in

Arabidopsis. (A) pPLAIIIβ-overexpressing mutants (β-OE) were smaller
than wild type (WT). (B) Representative diagram of the sphingolipid
biosynthesis pathways (Markham et al., 2013). (C) Representative
sphingolipid molecules. 3-KS, 3-keto-sphinganine; Cer, ceramide; CS,
ceramide synthase; FA2H, fatty acid 2-hydroxylase; GCS, glucosylceramide

synthase; GIPC, glycosylinositolphosphoceramide; GIPCS,
glycosylinositolphosphoceramide synthase; GlcCer, glucosylceramide;
hCer, hydroxyceramide; IPC, inositolphosphoceramide; IPCS,
inositolphosphoceramide synthase; KSR, 3-ketosphinganine reductase;
LCBK, long-chain base kinase; LCBP, LCB phosphate; LCBs, long-chain
bases; SPT, serine-palmitoyltransferase.

Of the measured free sphingolipids, the level of total LCBs was
32% higher in β-OE than in WT (Figure 7A). The level of total
LCBPs tended to be lower in β-KO than in WT (Figure 7B). Of
the measured complex sphingolipids, the most abundant classes
were GIPC (50%), followed by GlcCer (37%), Cer (8%), and hCer
(5%; Figure 7C). The level of total Cer tended to be lower while
the levels of total GlcCer and total GIPC tended to be higher in

β-OE than in WT (Figure 7C). The total content of complex
sphingolipids tended to be slightly higher in β-OE than in WT
(Figure 7D).

DISCUSSION
These data show that overexpression of pPLAIIIβ results in a 52%
increase and knockout mutant has a 26% decrease of 3-KS, the
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FIGURE 2 | Levels of 3-KS, LCBs, and LCBP in pPLAIIIβ-knockout and

overexpression plant leaves. (A) The level of 3-keto-sphingaine (3-KS).
(B) The level of long-chain bases (LCBs). (C) The level of long chain
base-phosphates (LCBPs). β-KO, T-DNA knockout of pPLAIIIβ

(Salk_057212). β-OE, overexpression mutant of pPLAIIIβ driven by
cauliflower mosaic 35S promoter. Values are means ± SE (n = 5).
*Significant difference at P < 0.05 compared with the WT, based on
Student’s t -test.

FIGURE 3 | Levels of Cer species in pPLAIIIβ-knockout and overexpression plant leaves. β-KO, T-DNA knockout of pPLAIIIβ (Salk_057212). β-OE,
overexpression mutant of pPLAIIIβ driven by cauliflower mosaic 35S promoter. Values are means ± SE (n = 5). *Significant difference at P < 0.05 compared
with the WT, based on Student’s t -test.

product of the first step of sphingolipid synthesis. Overexpression
of pPLAIIIβ leads to increase of several complex sphingolipid
species with saturated long chain base and saturated fatty acid
chains, such as Cer d18:0–16:0 (90%), Cer t18:0–16:0 (112%),
hCer d18:0–h16:0 (72%), GlcCer d18:0–h20:0 (379%), and GIPC
t18:0–h16:0 (24%). The total amount of each complex sph-
ingolipid class has no significant difference between WT and
pPLAIIIβ-overexpression plants. It is not clear how the over-
expression of pPLAIIIβ leads to the alteration of sphingolipid
homeostasis.

pPLAIIIβ and pPLAIIIδ can hydrolyze PC and generate LPC
and FA (Li et al., 2011, 2013a). It is implicated that pPLAIIIs
are involved in the fatty acyl trafficking from plastids to ER (Li
et al., 2013a). Overexpression of pPLAIIIβ may promote the fatty

acyl flux from plastids to ER and enlarge certain fatty acyl pools
that provide fatty acyl substrates for sphingolipid synthesis. We
observed that the level of 3-KS, the precursor of sphingolipid
synthesis, was significantly increased in pPLAIIIβ-overexpression
plants. The alteration of this critical first step of sphingolipid
synthesis could lead to the observed changes in sphingolipid
homeostasis (Figure 8).

Sphingolipids are the major components of the plasma mem-
brane (Sperling et al., 2004). Changes in sphingolipid homeostasis
may alter structure integrity of raft-like domains in the plasma
membrane and therefore influence cell surface activities, such
as lipid trafficking and cell wall metabolism (Mongrand et al.,
2004; Borner et al., 2005; Melser et al., 2011). Overexpression
of pPLAIIIβ results in a decreased level of cellulose content,
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FIGURE 4 | Levels of hCer species in pPLAIIIβ-knockout and overexpression plant leaves. β-KO, T-DNA knockout of pPLAIIIβ (Salk_057212). β-OE,
overexpression mutant of pPLAIIIβ driven by cauliflower mosaic 35S promoter. Values are means ± SE (n = 5). *Significant difference at P < 0.05 compared
with the WT, based on Student’s t -test.

FIGURE 5 | Levels of GlcCer species in pPLAIIIβ-knockout and overexpression plant leaves. β-KO, T-DNA knockout of pPLAIIIβ (Salk_057212). β-OE,
overexpression mutant of pPLAIIIβ driven by cauliflower mosaic 35S promoter. Values are means ± SE (n = 5). *Significant difference at P < 0.05 compared
with the WT, based on Student’s t -test.
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FIGURE 6 | Levels of GIPC species in pPLAIIIβ-knockout and overexpression plant leaves. β-KO, T-DNA knockout of pPLAIIIβ (Salk_057212). β-OE,
overexpression mutant of pPLAIIIβ driven by cauliflower mosaic 35S promoter. Values are means ± SE (n = 5). *Significant difference at P < 0.05 compared
with the WT, based on Student’s t -test.

FIGURE 7 | Levels of total LCBs, total LCBPs, and total complex

sphingolipids in pPLAIIIβ-knockout and overexpression plant leaves.

(A) The level of total LCBs, summarized from individual species in Figure 2B.
(B) The level of total LCBPs, summarized from individual species in
Figure 2C. (C) The levels of total complex sphingolipids, including Cer, hCer,
GlcCer, and GIPC, summarized from individual species in Figures 3–6. (D) The

total content of sphingolipids (SL), including free sphingolipids, such as LCBs
and LCBPs, and complex sphingolipids, such as Cer, hCer, GlcCer, and GIPC.
β-KO, T-DNA knockout of pPLAIIIβ (Salk_057212). β-OE, overexpression
mutant of pPLAIIIβ driven by cauliflower mosaic 35S promoter. Values are
means ± SE (n = 5). *Significant difference at P < 0.05 compared with the
WT, based on Student’s t -test.

a loss of anisotropic cell expansion, and a thinner cell wall
(Li et al., 2011). Plasma membrane dynamics contribute sig-
nificantly to the buildup of the cell wall (Li et al., 2013b). It
could be possible that the altered sphingolipid homeostasis in
pPLAIIIβ mutants impairs cell membrane activities which con-
sequently results in a reduced cellulose production and plant
growth.

Multiple lines of evidence suggest that pPLAIIIβ plays a
role in auxin transport. In the early seedling stage, some
auxin-related phenotypes were shown for pPLAIIIβ mutants,
such as slightly longer roots and hypocotyls in pPLAIIIβ-
KO mutants and much shorter roots and hypocotyls, as well

as smaller leaves in pPLAIIIβ-OE (Li et al., 2011). Reduced
lobe formation in the interdigitating pattern of leaf epi-
dermis cells in pPLAIIIβ-OE resembles those observed in
auxin receptor mutant abp1 (auxin-binding protein1; Xu et al.,
2011). In addition, the induction of early auxin response
genes was delayed in pPLAIIIβ-KO mutants (Labusch et al.,
2013).

The altered sphingolipid composition in pPLAIIIβ mutants
may disturb the auxin transport. Alteration of pPLAIIIβ expres-
sion changed the levels of sphingolipid metabolites, particularly
species with saturated long chain base and saturated fatty acyl
chain, such as Cer d18:0–16:0 and t18:0–16:0, hCer d18:0–h16:0,
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FIGURE 8 | Proposed role of pPLAIIIβ on sphingolipid synthesis. In
plants, fatty acids are primarily synthesized in plastids and need to be
transferred to the ER for assembly of glycerolipids, such as PC and PE, as
well as sphingolipids, such as long chain bases(LCBs), Cer, hCer, and
GlcCer (Bates et al., 2013; Markham et al., 2013). The synthesis of GIPC
takes place at Golgi apparatus (Markham et al., 2013). An acyl flux cycle
was proposed for the trafficking of fatty acids from plastids to ER, in which
the synthesis of PC was catalyzed by LPCAT and the hydrolysis of PC by
PLAs (Lands, 1960; Wang et al., 2012). pPLAIIIβ could be one type of PLA
that participates in the acyl flux cycle and contributes to synthesis of the
complex membrane lipids. 3-KS, 3-keto-sphinganine; Cer, ceramide; ER,
endoplasmic reticulum; FA, free fatty acids; GlcCer, glucosylceramide;
GIPC, glycosylinositolphosphoceramide; hCer, hydroxyceramide; LPC,
lysophosphatidylcholine; LPCAT, LPC acyltransferase; PC,
phosphatidylcholine; PE, phosphatidylethanolamine; PLA, phospholipase A;
SPT, serine-palmitoyltransferase.

and GIPC d18:0–h16:0, and t18:0–h16:0 (Figures 3–6). Disrup-
tion of CS genes diminished the production of sphingolipids
with very long chain fatty acids (>18C), impaired the auxin
transport, and led to auxin defective phenotypes (Markham
et al., 2011). Important functions of sphingolipids on the traf-
ficking of auxin carriers PIN1 (PIN-Formed 1) and AUX1
(Auxin Resistant 1) were evidenced by detailed analyses of an
auxin transporter, ATP-binding cassette B19 (ABCB19) auxin
transporter (Yang et al., 2013). Sphingolipids are essential com-
ponents of membrane microdomains or lipid rafts where they
attract a unique subset of proteins and together are trans-
ported to the plasma membrane (Klemm et al., 2009). The
presence of very long chain fatty acids and saturated long car-
bon chains in sphingolipids can increase their hydrophobicity
and the transition from a fluid to a gel phase, which are
required for microdomain or lipid raft formation. The altered
levels of sphingolipids with saturated acyl chains in pPLAIIIβ
mutants may impact the membrane physical properties, the mem-
brane functions on auxin transport, the induction of auxin
response gene expression, and subsequently the auxin-related
growth.

In summary, our data show that overexpression of pPLAIIIβ
alters sphingolipid homeostasis. Our study implies that pPLAIIIβ
may influence the substrate availability of the first step of sphin-
golipid synthesis, which may alter the sphingolipid homeostasis,
change the membrane integrity, and eventually impede plant
growth.

MATERIALS AND METHODS
PLANT GROWTH CONDITION AND GENERATION OF OVEREXPRESSION
MUTANTS
Plants were grown in growth chambers with a 12 h light/12 h-dark
cycle, at 23/21◦C, in 50% humidity, under 200 μmol m−2 sec−1

of light intensity, and watered with fertilizer once a week. The WT
and the mutant Arabidopsis are in Columbia-0 background (Col-
0). To overexpress pPLAIIIβ, the genomic sequence of pPLAIIIβ
was obtained by PCR using Col-0 Arabidopsis genomic DNA as a
template. The genomic DNA was cloned into the pMDC83 vector
before the GFP-His coding sequence. The expression was under
the control of the 35S cauliflower mosaic virus promoter. The
detailed procedure to generate overexpression lines of pPLAIIIβ
was described previously (Li et al., 2011).

SPHINGOLIPID PROFILING
Leaves from 4 week old plants were harvested and immedi-
ately immersed into liquid nitrogen. The frozen samples were
lyophilized and stored at −80◦C before sphingolipid extraction.
Approximately 30 mg of freeze-dried Arabidopsis leaves was pro-
cessed for the sphingolipid profiling using mass spectrometry. The
detailed protocols of sphingolipid extraction, detection, and quan-
tification were described previously (Markham and Jaworski,2007;
Markham, 2013).
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