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INTRODUCTION

In plants, sugar transporters are involved not only in long-distance transport, but also in
sugar accumulations in sink cells. To identify members of sugar transporter gene families
and to analyze their function in fruit sugar accumulation, we conducted a phylogenetic
analysis of the Malus domestica genome. Expression profiling was performed with
shoot tips, mature leaves, and developed fruit of “Gala” apple. Genes for sugar alcohol
[including 17 sorbitol transporters (SOTs)], sucrose, and monosaccharide transporters, plus
SWEET genes, were selected as candidates in 31, 9, 50, and 27 loci, respectively, of
the genome. The monosaccharide transporter family appears to include five subfamilies
(30 MdHTs, 8 MdEDR6s, 5 MdTMTs, 3 MdvGTs, and 4 MdpGLTs). Phylogenetic
analysis of the protein sequences indicated that orthologs exist among Malus, Vitis,
and Arabidopsis. Investigations of transcripts revealed that 68 candidate transporters are
expressed in apple, albeit to different extents. Here, we discuss their possible roles
based on the relationship between their levels of expression and sugar concentrations.
The high accumulation of fructose in apple fruit is possibly linked to the coordination
and cooperation between MdTMT1/2 and MdEDRG6. By contrast, these fruits show
low MASWEET4.1 expression and a high flux of fructose produced from sorbitol. Our
study provides an exhaustive survey of sugar transporter genes and demonstrates that
sugar transporter gene families in M. domestica are comparable to those in other
species. Expression profiling of these transporters will likely contribute to improving our
understanding of their physiological functions in fruit formation and the development of
sweetness properties.
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SUT) (Ruan, 2014), reducing monosaccharides (monosaccharide

In plants, soluble sugars [i.e., sucrose (Suc), monosaccharides,
and polyols] are essential molecules that not only provide energy
and building blocks for growth and development, but also consti-
tute osmotic, nutrient, and signal molecules (Ruan, 2014). In fruit
crops, soluble sugars are also central to quality; their accumula-
tion during the maturation process largely determines sweetness
at harvest.

In multicellular organisms, the movement of sugar is an essen-
tial part of long-distance transport for assimilates from source
to sink organs, storage of carbon, regulation of osmotic poten-
tial and turgor, and the cellular exchange of carbon and energy
(Slewinski, 2011). Biochemical and molecular researchers have
argued that hexoses or sucrose are transported into the chloro-
plast (Weber et al., 2000), the vacuoles (Martinoia et al., 2000),
and the Golgi apparatus (Wang et al., 2006). As relatively large
and polar solutes, soluble sugars require proteins to facilitate effi-
cient diffusion across membranes. Not only the loading and the
unloading of the conducting complex, but also the allocation of
sugars into source and sink cells, are controlled by sugar trans-
porters that mediate the movement of Suc (sucrose transporter:

transporter or hexose transporter: MST or HT) (Biittner, 2010;
Slewinski, 2011), or sugar alcohols [sorbitol (Sor), mannitol, xyl-
itol, et al.] (Noiraud et al., 2001; Gao et al., 2005; Fan et al., 2009).
This model is depicted in Figure 1.

Efficient movement of sugars across membranes requires the
operation of multiple transporters, which will have different ener-
getic and kinetic properties suited for efficient unloading into cell
wall spaces, uptake of Suc or other sugars leaked or locally trans-
ported via the apoplasm, loading from the cytosol into storage
vacuoles, and the fine-tuning of sugar fluxes for homoeostasis and
interactions with other proteins for sugar sensing and signaling
(Slewinski, 2011; Ruan, 2014). To achieve this, multiple families
for genes encode these transporters.

Since the cloning of the first MST (Sauer and Tanner, 1989),
SUT (Riesmeier et al.,, 1992), and polyol transporter in plants
(Noiraud et al., 2001), many genes in those families have been iso-
lated from various species. For example, the complete Arabidopsis
genome contains nine SUT-like sequences (Ruan, 2014) plus
a monosaccharide transporter (-like) gene family that has 53
members in seven subfamilies (Biittner, 2010). The Vitis vinifera
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FIGURE 1 | Model for sugar transport in apple (Zhang et al., 2004; Doidy
et al., 2012; Li et al., 2012; Chardon et al., 2013; Ruan, 2014). Sorbitol (Sor)
and sucrose (Suc), both of which are synthesized in mesophyll cell of source
leaves, are loaded into phloem via symplast pathway. After translocating to
SE-CC of fruit, both are unloaded into fruit parenchyma cells via apoplast
pathway. In apple cells, four families of transporters are implicated in the
distribution of Suc, Sor, fructose (Fru), and glucose (Glc): sucrose transporter
(SUT), SWEET, sorbitol transporter (SOT), and monosaccharide transporter
(MST) [including hexose transporter (HT), tonoplast membrane transporter
(TMT), vacuolar glucose transporter (vGT), ERD sixlike transporters (EDR6),
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and plastid glucose transporters (pGLCT)]. At the plasma membrane, all of
SUTs, SOTs, and HTs have been characterized as H+/sugar importers, and
transport influx of extracellular Suc, Sor, and hexose. By contrast, SWEETs
function as energy-independent uniporters that mainly mediate sugar efflux.
At the vacuolar membrane, vGTs, and TMTs function as sugar/H+ antiporters
transporting sugars into the vacuole, while EDR6 and SWEET IV subfamilies
are involved in energy-independent sugar efflux from the vacuole. Especially,
in fruit cells these special tonoplast transporters may be involved in
accumulating Fru, Glc, and Suc in vacuole. Additionally, pGLCTs may also play
a role in efflux of sugars from plastids.

(grapevine) genome has four SUTs and 59 MSTs (Afoufa-Bastien
et al., 2010). Evolutionary analysis of plant MSTs has revealed
seven ancient subfamilies in land plants (Slewinski, 2011).
Recently identified SWEET proteins in a distinct transporter fam-
ily account for 17 members in Arabidopsis and 21 in rice. These
members can transport Suc or glucose (Glc) (Chen et al., 2010,
2012) or fructose (Fru) (Chardon et al., 2013; Klemens et al.,
2013), and are involved in loading (Chen et al., 2012), sugar stor-
age (Chardon et al., 2013), nectar production (Lin et al., 2014),
and interactions between plants and fungi (Chen et al., 2010).
Knowledge is gradually increasing about the intracellular dis-
tribution of sugar transporters and their roles in regulating
this transport, signaling, and homeostasis in model herbaceous
plants, e.g., Arabidopsis. Three families of transporters—SUTs,
MSTs, and SWEETs—are mainly implicated in the distribution
of sugars within most plant cells (reviewed by Doidy et al., 2012).
At the plasma membrane, most transporters have been charac-
terized as H+/sugar importers. However, ZmSUT1 (Carpaneto
et al., 2005) and AtSUC4 (Schneider et al., 2011) also medi-
ate the active efflux of Suc. By contrast, SWEETs function as
energy-independent uniporters that mediate sugar influx and/or

efflux (Chen et al., 2010). Both AtSWEET11and 12 have been
localized to the plasma membrane (Chen et al., 2012) whereas
AtSWEETI17 occurs in the tonoplast membrane, where it trans-
ports Fru (Chardon et al., 2013). At the vacuolar membrane,
the MST subfamilies, vacuolar glucose transporter (vGT), and
tonoplast membrane transporter (TMT) function as sugar/H+
antiporters that load sugars into the vacuole (Wormit et al., 20065
Aluri and Biittner, 2007; Schulz et al., 2011). Proteins of the MST
subfamily of ERD six-like transporters (ERD6 or ESL1) are likely
involved in energy-independent sugar efflux from the vacuole
(Poschet et al., 2011; Klemens et al., 2014).

Research data have also suggested that expression of sugar
transporters might be regulated at the transcriptional level by
distinct but usually converging signaling pathways that depend
upon either developmental and environmental cues or metabolic
and hormonal signals. Despite the progress made in identifying
genes that encode sugar transporters, little is known about the
roles and transcriptional regulation of these genes, especially in
crop plants. It is unknown how different transporter orthologs
modulate sugar distribution and homeostasis in plant cells, and
how they control sugar accumulations in storage tissues and cells.
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Therefore, analysis of these orthologs in different species might
help improve our understanding of their biological functions.

Apple (Malus domestica Borkh.), a member of the Rosaceae
family, is among the most important commercial fruit crops
grown worldwide. Apple and other Rosaceae tree fruits syn-
thesize sorbitol (Sor) and Suc in source leaves. Both are then
translocated to and utilized in fruit, with Sor accounting for
approximately 60-70% of the photosynthates produced in the
leaves. They are loaded via the symplasmic pathway for trans-
port in the phloem (Reidel et al., 2009). After being unloaded
from SE-CC (sieve elements and companying cells) complexes
into the cell wall space of apple fruit (Zhang et al., 2004), Sor
is taken up into the cytosol of parenchyma cells by a sorbitol
transporter (SOT) located on the plasma membrane. Meanwhile,
Suc is directly transported into parenchyma cells by SUT on the
plasma membrane, or else first converted to Fru and Glc by cell
wall invertase and then transported into parenchyma cells by hex-
ose transporters (HT) (Figure 1; Zhang et al., 2004; Fan et al,,
2009; Li et al., 2012). In the cytoplasm of the mesocarp cells,
sucrose and hexoses must be transported into the vacuole via
tonoplastic transporters (Figure 1). Compared with sink organs
in model plants that import and metabolize only sucrose (e.g.,
Arabidopsis, Solanum tuberosum, and Populus), apple is unique in
its metabolism and accumulation of sugars. More than 80% of
the total carbon flux goes through fructose (because almost all of
the Sor and half of the Suc are converted to Fru) (Li et al., 2012).
Consequently, the characteristics of sugar transporters can differ
between apple and other plants. Roles in unloading and changes
in expression during fruit development have been preliminarily
reported for MdSOT (Gao et al., 2005) and MdSUT1 (Fan et al.,
2009), and Li et al. (2012) identified the some members of gene
families encoding transporters (including MdSUT, MdTMT, and
MdvGT) and analyzed the relationship of their transcripts with
sugar accumulation during fruit development of “Greensleeves”
apple, but there was no exhaustive knowledge on apple sugar
transporter based on genome, especially for MST and SWEET
families. Identification and characterization of these transporter
genes in Malus are important steps in understanding the roles of
these proteins in growth and development as well as the process
of sugar accumulation in the fruit.

Here, we identified SUT, MST, and SWEET genes in the
M. domestica genome (Velasco et al., 2010) through phylogenetic
analysis and compared them primarily with Arabidopsis trans-
porters. Real-time PCR was used to determine expression patterns
in different tissue types, and to examine the relationship between
relative transcript abundances and sugar accumulation over time.
Our objective was to devise a useful approach for investigating the
function of sugar transporters and the development of sweetness
traits in apple fruit.

MATERIALS AND METHODS

PLANT MATERIALS

Nine-year-old “Gala” apple trees (Malus domestica) grafted onto
rootstock M. sieversii were trained as a central leader system and
grown at the spacing of 3 (row) x 4 (interval) m in North-
South rows in an experimental orchard at the Horticultural
Experimental Station of Northwest A & F University, Yangling,

China. Fungicides and pesticides were sprayed at regular inter-
vals throughout the growing season to protect the plants from
diseases and insects. At 16, 34, 55, 75, 98, and 122 days after
bloom (DAB), fruits were sampled from the south side of the tree
canopy between 3:00 and 4:00 p.m., under full sun exposure. On
each collection date, six apples were from 3 trees and pooled for
one replicate, with five replications in all from in total 15 trees.
The fruits were immediately weighed, cut into small pieces after
removing the core, and frozen on-site in liquid nitrogen (2-min
interval between harvest and freezing). To compare the expression
patterns of related genes in source and sink tissues, we also col-
lected mature leaves and shoot tips at 34 DAB. All frozen samples
were stored at —80°C.

IDENTIFICATION OF CANDIDATE GENES

Candidate genes were identified by performing a BlastP analysis
against the apple gene set (amino acids) in the Malus Genome
Database (http://www.rosaceae.org) (Velasco et al., 2010) from
the “Fondazione Edmund Mach Istituto Agrario San Michele
All’Adige,” Italy, or IASMA (http://www.rosaceae.org/tools/ncbi_
blast). As query, we used sequences for Arabidopsis thaliana
polyol/monosaccharide transporter (PMT) and sugar trans-
porters [including STP (sugar transport protein) or HT, EDR6
(early-responsive to dehydration), TMT, vGT, pGLCT (plastid
glucose transporter), and SWEET family members] that were
obtained from The Arabidopsis Information Resource (http://
arabidopsis.org/). Additionally, reported MdSOTs (Li et al,
2011) and MdSUT (Fan et al, 2009) were also employed
as query. An E-value of 1.00E-10 was set as the threshold.
Putative candidate gene sequences were retrieved from the Malus
Genome Database  (http://www.rosaceae.org/species/malus/
malus_x_domestica/genome_v1.0). To confirm their expression
in apple and their reliability as putative candidates, we used
their corresponding sequences in a Blast search against the
Malus EST database at the National Center for Biotechnology
Information (http://www.ncbi.nlm.nih.gov/). A predicted gene
was considered expressed when ESTs in the Malus transcriptome
showed high similarity, i.e., length >300 bp and identity score
>98%, were identified. After comparing between each predicted
gene and its EST-constructed contig or EST, we re-conducted the
Blast analysis with divergent genes against all predictions in apple
(nucleic acids) (http://www.rosaceae.org/tools/ncbi_blast). Here,
EST-constructed contigs or ESTs were used so that a sequence
concordant with the EST would be found in all predictions.

SEQUENCE SIMILARITIES AND PHYLOGENY ANALYSES

Multiple alignments of the transporter proteins were obtained
using DNAMAN software. To construct the phylogenetic tree, we
downloaded the full-length amino acid sequences of PMT, sugar
transporters, and SWEET family sequences from Arabidopsis
and grapevine in the NCBI protein database (http://www.
ncbi.nlm.nih.gov/guide/). Those sequences were then aligned
with the integrated MUSCLE alignment program in MEGA5
(Molecular Evolutionary Genetics Analysis) with default param-
eters. Phylogenetic analysis was performed via the Neighbor-
Joining method, using MEGAS5 software and bootstrap tests
replicated 1000 times. In addition, the subcellular localizations
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of candidate genes were predicted with TargetP software (http://
www.cbs.dtu.dk/services/TargetP) and the WoLF PSORT version
of PSORT 1I (http://wolfpsort.org/).

Information about chromosome lengths and gene locations
have previously been reported for the apple genome (Velasco
et al., 2010). Locations and transcriptional directions were
assigned to the chromosomes by MapDraw software (Liu and
Meng, 2003).

ANALYSIS OF mRNA EXPRESSION

Quantitative reverse transcription-polymerase chain reaction
(qRT-PCR) was used to analyze the expression of all selected
genes (Supplementary Data Excel Files1-4). Total RNA was
extracted from samples by the modified CTAB method (Gasic
et al., 2004), and DNase was used to remove DNA before
reverse-transcription. After sequence similarities were examined,
gene-specific primers (Supplementary Data Excel Files 5) were
designed from the coding sequences of apple genes, using Primer5
software. Primer specificity was determined by RT-PCR and Melt
Curve analysis. Afterward, qRT-PCR was performed with an
iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA) accord-
ing to the manufacturer’s protocol. Amplified PCR products were
quantified by an iQ5 Multicolor Real-Time PCR Detection System
(Bio-Rad) and an iQ SYBR Green Supermix kit (Bio-Rad). Actin
(CN938023) transcripts were used to standardize the different
cDNA samples throughout the test (Li et al., 2012). For all sam-
ples, total RNA was extracted into five tubes from five replicates
and then mixed in a tube used for reverse-transcription. The gRT-
PCR experiments were done with three technical replicates. Data
were analyzed by the ddCT method in iQ5 2.0 standard optical
system analysis software.

MEASUREMENTS OF SOLUBLE SUGARS

Soluble sugars and hexose phosphates were obtained and deriva-
tized as described by Wang et al. (2010). Briefly, samples
(0.09-0.11 g) were extracted in 1.4mL of 75% methanol, with
ribitol added as the internal standard. After the non-polar
metabolites were fractionated into chloroform, 2 1 of the polar
phase was transferred into 2.0-mL Eppendorf vials for mea-
surements of the metabolites (Sor, Fru, Glc, Suc, galactose: Gal
and myo-inositol) of each sample. They were dried under vac-
uum without heating and then derivatized sequentially with
methoxyamine hydrochloride and N-methyl-N-trimethylsilyl-
trifluoroacetamide (Lisec et al., 2006). Afterward, the metabo-
lites were analyzed with a Shimadzu GCMS-2010SE (Shimadzu
Corporation, Tyoto, Japan). These metabolites were identified by
comparing their fragmentation patterns with those from a mass
spectral library generated on our GC/MS system, and from an
annotated quadrupole GC-MS spectral library downloaded from
the Golm Metabolome Database (http://csbdb.mpimp-golm.
mpg.de/csbdb/gmd/msri/gmd_msri.html). Quantifications were
based on standard curves generated for each metabolite and
internal standard.

RESULTS

SORBITOL TRANSPORTERS IN THE MALUS DOMESTICA GENOME
Using AtPMT and reported MdSOT sequences as queries,
we conducted a BlastP search to identify candidate genes in

Malus. In all, 40 consensus gene sets containing major facilita-
tor superfamily (MFS) domains were selected from the “Gold
Delicious” apple genome database, with an EXP cutoff <1.00E-
10. Based on pair-wise comparisons of these predicted genes
against Vitis vinifera and peach genome databases, as well as the
TrEMBL database, all genes were highly similar to orthologs in
Vitis and peach. In addition, 30 selected genes showed very high
homology with reported MdSOT (Supplementary Data Excel
File 1—Sheet 1). To confirm their expression in apple and to
examine the reliability of putative candidate gene sequences, we
used the corresponding sequences of candidate genes for a BLAST
search against the Malus EST database. Sixteen predicted genes
(Supplementary Data Excel File 1—Sheet 2) had high similarities
in EST sequences (score > 300 bp, identity > 98%). However,
the sequences of six selected genes diverged from their corre-
sponding EST-constructed contigs. A concordant sequence with
an EST was found in all predictions from either the Malus genome
database or GenBank. For MdSOT1, —4, and —5, we were unable
to find concordant sequences in all predicted genes. Based on
reports of functional PMTs and SOT's, we set thresholds for the
number of transmembrane domains(>8) and the length of cod-
ing amino acids (>300 a.a.). After re-screening, we selected 27
genes as possible members of the MdSOT or MdPMT family.
All candidates from the AtPMT families were aligned to eluci-
date their evolutionary relationships, and were named according
to our phylogenetic tree (Figure2; Supplementary Data Excel
File 1).

This phylogenetic tree revealed two distinct groups,
with the first containing all reported MdSOTs, but no
PMTs from Arabidopsis or Vitis. In this group, MdSOTI
had the highest similarity with MdSOT4 and shared the
same clade with MdSOT5. The apple genome showed two
newly identified members (MdSOT5.2 and —5.3) with
high similarity to MdSOT5. MdSOT3 was very similar to
MdSOT3.2 and —3.3 within a small, discrete clade. Eight
genes shared high similarity with the amino acid sequence of
MdSOT?2, clustering in the same clade with MdSOT3. These
included MdSOT2.8 and—2.9, both of which had 99.4%
similarity.

In the second group, 10 candidate genes were clustered with
the PMTs of Arabidopsis and Vitis. TheMdPMT1 subfamily con-
tained five members that had high homology and were in the
same clade as AtPMT4, VvPMTI1, and VvPMT4. In addition,
theMdPMT?2 subfamily had three members that were orthologs
of VwPMT2. Both MdAPMT3.1 and —3.2 had high similarity with
AtPMT3, AtPMT6, and VvPMT3, and shared the same clade
(Figure 2).

The approximate gene positions and transcriptional direc-
tions of candidate genes were marked on the physical map
of chromosomes. In all, 17MdSOTs were located on four
apple chromosomes (chrl, 3, 12, and 17). They included
11 on chrl2 (including six in the MdSOT2 subfamily)
(Supplementary Figure 1) plus three on chrl7. On chrl2,
10 MdSOTs were in tandem at approximately 449kb. From
the MdPMT subfamilies, two pairs of MdPMTs showed tan-
dem duplication, including MdPMT?2.1-MdPMT2.2 on chr2 and
MdPMT1.4-MdPMT1.5 on chr9. MdPMT2.3 was located on
chr15 while single MdAPMTI members were found on chr5, 10,
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FIGURE 2 | Phylogenetic analysis (A) of Malus domestica polyol
transporter families with Vitis vinifera and Arabidopsis thaliana, and
conserved properties of transporter Motif 1 (B) and 2 (C) in MdPMT
and MdSOT subfamily. Tree was constructed via Neighbor-Joining
method with 1000 bootstrap replications. Accession numbers for all Malus

= N TSN BT IV

genes are listed in Supplementary Data Excel File 1. Accession numbers
for Vitis genes were reported by Afoufa-Bastien et al. (2010). Accession
numbers for A. thaliana: AT2G16120.1/ATPMT1, AT2G16130.1/ATPMT2,
AT2G20780.1/ATPMT4, AT2G18480.1/AtPMT3, AT3G18830.1/ATPMT5, and
AT4G36670.1/ATPMTE.

and 17, and two MdPMT3 members occurred on chr2 and
chrl5.

SUCROSE TRANSPORTERS IN THE MALUS DOMESTICA GENOME
Using AtSUT or AtSUC protein sequences as query, we found
15 candidate gene sets in the Malus genome, including five pre-
dicted genes with high concordant EST sequences. Two sets were
divergent with their corresponding ESTs; concordant sequences
with ESTs were found in all predictions from the Malus database
(Supplementary Data Excel File 2). Based on the reported func-
tionality of SUT or SUC genes, we set the thresholds at >6 for the
number of transmembrane domains and >200 a.a. for the length
of coding amino acids. Nine genes were selected as candidates
for the MdSUT family, including five MdSUT's we had described
previously (Li et al., 2012).

Phylogenetic analysis divided the nine candidate MdSUT's
into three groups that incorporated MdSUT1, MdSUT2, and
MdSUT4 clades (Supplementary Figure 2; Supplementary Data
Excel File 2). Three members of the MdSUT1 group shared the
same clade with V¥SUC27 but did not cluster in the same clade
with those in the AtSUTI group (including AtSUCI, AtSUC2,
and AtSUCY) that show high-affinity uptake in dicot plants
(Ayre, 2011). MdSUT2.1 and —2.2 were 93.6% similar and were

clustered in the SUT2 clade with AtSUT2/SUC3 and VvSUT2. The
SUT4 clade contained four MdSUT4 members that were similar
toAtSUC4 and VvSUCI.

The physical map presented nine MdSUT's on seven apple
chromosomes. These included three MdSUT4 members with tan-
dem duplications at the end of chr8, plus MdSUT4.1 on chrl5
(Figure S1). Single members of the MdSUTI subfamily were
located on chr10, chr9, and chr5, while MdSUT2.1 and —2.2 were
found on chr16 and chrl3, respectively (Figure S1).

MONOSACCHARIDE TRANSPORTERSIN THE MALUS DOMESTICA
GENOME

We found 114 MST candidate gene sets in the Malus genome
when AtHT, AtSTP, AtEDRG6, AtTMT, or other sugar transporter
protein sequences were used as query (Supplementary Data Excel
File 3). Of these, 27 predicted genes had high-concordance EST
sequences in the Malus EST database. Although five sets were
divergent with the corresponding ESTs, concordant sequences
with ESTs were found in all predictions of the Malus genome
database. Simultaneously, 12 sets matched more reasonable splic-
ing sequences in all predictions of that database. Based on the
reported functionality of AtSTP, AtHT, and other genes, we set
the threshold at >6 for the number of transmembrane domains
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and at >800 bp for the length of coding amino acids. Ultimately,
30 genes were selected as candidates for the MdHT family, includ-
ing eight MdEDRG6s, five MATMTs, three MdvGTs, and three
MdpGLTs. All candidates that were homologous to family mem-
bers in the A. thaliana or V. vinifera genomes were aligned
to elucidate evolutionary relationships. These were then named
according to our phylogenetic tree (Supplementary Data Excel
File 3).

Thirty candidate MdHTs were divided into four groups.
The first, named the MdHTI1 subfamily, contained 11 genes
(Figure 3). MdHT1I.1 through MdHT1.3 clustered with AtSTP13
and VvHT5. By contrast, MdHT1.4through MdHT1.11 did not
cluster with any Arabidopsis or Vitis genes. This MAHT1 subfamily

included MdHT1.1, which shared 95.3% similarity to the amino
acid sequence ofMdHT1.2, as well as MdHT1.10 and —1.11,
with 95.9% similarity. In the second group, five members of
the MdAHT?2 subfamily clustered with AtSTP14, AtSTP7, VvHT1I3,
and VvHT3, while both MdHT2.1 and —2.2 had higher homol-
ogy with AtSTP14 and VvHTI3. The protein sequences of
MdHT2.3 and —2.4 differed by only two amino acids. In
the third group, MdHT3 subfamily members MdHT3.1through
MdHT3.3 were highly homologous with VvHT4 and AtSTP3,
while three other MdHT3s were highly conserved and clustered
with VVHT2 and AtSTP5. The eight MdHT4 subfamilies that
comprised the fourth group were separated into two subgroups.
The first had four relatively conserved members clustered with

AtSTPY

AtSTP10
AtSTP11

D001

FIGURE 3 | Phylogenetic analysis of Malus domestica MdHT
families with Vitis vinifera and Arabidopsis thaliana. Tree was
constructed via NeighborJoining method with 1000 bootstrap
replications. Accession numbers for all Malus genes are listed in
Supplementary Data Excel File 3. Accession numbers for Vitis genes
were reported by Afoufa-Bastien et al. (2010). Accession numbers for
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A. thaliana: AT1G11260.1/AtSTP1, AT1G07340.1/AtSTP2,
AT5G61620.1/AtSTP3, AT3G19930.1/AtSTP4, AT1G34580.1/AtSTPS,
AT3G05960.1/AtSTP6, ATAG02050.1/AtSTP7, AT5G26250.1/AtSTPS,
AT1G50310.1/AtSTP9, AT3G19940.1/AtSTP10, AT5G23270.1/AtSTP11,
AT4G21480.1/AtSTP12, AT5G26340.1/AtSTP13, and AT1G77210.1/
AtSTP14.
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four AtSTPs, based on their amino acid sequences. The second
subgroup contained MdHT4.5 and —4.6 with 89.8% similarity
in a separated branch, while MdHT4.7 and —4.8 shared 93.8%
similarity with AtSTPI (Figure 3; Supplementary Data Excel
File 3).

Within the Malus genome, 29 MdHT families were located
on 10 chromosomes while MdHT4.60ccurred on an unanchored
contig. Five MdHT1 members—MdHTI1.1,—1.4, —1.5, —1.6,
and —1.10—were in tandem on chr9 at approximately 66 kb while
the other five MdHTIs were in tandem on chrl3 at approxi-
mately 95 kb. MdHT1.3 was located on chr7 along with MdHT3.3.
For the other MdHT subfamilies, three pairs of MdAHTs showed
tandem duplications, including MdHT2.3-MdHT2.4 on chr2,
MdAHT4.1-MdHT4.2 on chrl15, and MdHT3.5-MdHT3.6 on chr13
(Supplementary Figure 1). Based on the chromosomal evolution
described by Velasco et al. (2010), two pairs of very similar MdHT
were located on homologous chromosomes, including MdHT?2.1
(chr2)-MdHT2.2 (chr15) and MdHT4.7 (chr5)-MdHT4.8 (chr10)
(Supplementary Figure 1).

For other MST families, MdTMTI1 on chr6 had 13 ESTs
in the Malus EST database, and showed high homology with
V¥TMT]1 (Figure 4). Both MdTMT2 and —3 were 90.4% simi-
lar in their amino acid sequences, and clustered with V¥TMT2
and AtTMT2. The MdTMT4 and MdTMT5 tandems on chr9
were highly homologous to AtTMT3. MdvGTI1 (on chr7) was
93.2% similar to MdvGT2 (chrl), and was orthologous to VyvGT1
and AtvGT1. MdvGT3 (chr11) was orthologous to V¥vGT2 and
AtvGT3. Chromosome 3 had four MdpGLT genes, i.e., MdpGLT1
and MdpGLT2 with high homology to VvpGLTI and AtpGLT
(At16150), as well as MdpGLT3 (homologous to VvpGLT2 and
At05030, a putative AfpGLT) and MdpGLT4 (homologous to
VvpGLT4 and At67300) (Figure4; Supplementary Data Excel
File 3).

When AtEDR6 protein sequences were used as query, we
found eight MAEDRG families in the Malus genome. Five pre-
dicted genes had highly concordant EST sequences, especially
MAEDR6.5. Results of phylogenetic analysis with Arabidopsis
AtEDRG6-like families indicated that eight candidate MdEDRG6s
could be divided into three groups (Figure5; Supplementary
Data Excel File 3). For example, five members—MdEDR6.1
through MdEDR6.5—showed high similarity and shared the same
clade with AtEDR6L-7, whereas MdEDRG6.6 had high homol-
ogy with AtEDR6L-1. Both MAEDR6.7 and —6.8 were clustered
with AtEDR6L-5 and AtEDR6L-6. However, 14 AtEDR6L fam-
ilies plus AtEDR6 (At1g08930) were clustered in clades that
had no Malus genes (Figure5). Four members—MdEDRG.2
through MdEDRG6.5—were in tandem at approximately 19kb at
the tail end of chrl11. MdAEDRG6.1 occurred on chr3, MAEDR6.6
and —6.7 were found on chr12, and MdEDR6.8 was on chr8
(Supplementary Figure 1).

MdSWEET GENES IN THE MALUS DOMESTICA GENOME

The Malus genome contained 33 candidate SWEET gene sets,
which were revealed when 17 AtSWEET protein sequences
were used as query. Of these, 16 had high concordant EST
sequences in the Malus EST database. Five sets diverged in
their corresponding ESTs, but concordant sequences with ESTs
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FIGURE 4 | Phylogenetic analysis of Malus domestica MdATMT, MdvGT,
and MdpGLT families with Vitis vinifera and Arabidopsis thaliana. Tree
was constructed via Neighbor-Joining method with 1000 bootstrap
replications. Accession numbers for all Malus genes are listed in
Supplementary Data Excel File 3. Accession numbers for Vitis genes were
reported by Afoufa-Bastien et al. (2010). Accession numbers for A. thaliana:
AT1G20840.1/AtTMT1, AT4G35300.1/AtTMT2, AT3G51490.2/AtTMT3,
AT5G16150.1/AtpGLT, AT3G03090.1/AtvGT1, AT5G17010.1/AtvGT2, and
AT5G59250.1/AtvGT3.

were found in all predictions for the Malus genome database
(Supplementary Data Excel File 4). Another three sets had
reasonably well-matched splicing sequences in all predictions.
The thresholds for MASWEET were set at >4 for the num-
ber of transmembrane domains and >200 a.a. for the length
of the coding amino acids. Upon re-screening, 29 genes were
identified as candidates, which were then aligned to eluci-
date their evolutionary relationships and named according to
our phylogenetic tree (Figure6; Supplementary Data Excel
File 4).

Phylogenetic analysis demonstrated that the 29 families
could be separated into four groups: MASWEET1, MASWEET2,
MASWEET3, and MdASWEET4 (Figure 6), similar to what has
been reported previously with Arabidopsis and rice (Chen
et al.,, 2010). The MdSWEET! subfamily contained 13 mem-
bers. Of these, MASWEET]I.1 through MASWEET1.5 were clus-
tered in a clade with AtfSWEET2. The amino acid sequence of
MASWEET1.2 had 43 more residues of amino acid at 5 end
compared with MASWEETI.1. MASWEET1.4 and —1.5 were
93.1% similar. MASWEET6 through MdASWEET12 were homol-
ogous to AtSWEETI, and had >83.5% similarity among their
amino acid sequences. As a single, AtSWEET1.13 clustered with
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FIGURE 5 | Phylogenetic analysis of Malus domestica MdEDRG6 families
with Arabidopsis thaliana. Tree was constructed via NeighborJoining
method with 1000 bootstrap replications. Accession numbers for all Malus
genes are listed in Supplementary Data Excel File 3. Accession numbers for
A. thaliana: AT1G08930.1/AtERD6, AT1G54730.2/AtEDR6L-1, AT5G18840.1/
AtEDR6L-2, AT1G08920.2/AtEDR6L-3, AT3G05160.1/AtEDR6EL-4, AT1G194
50.1/AtEDR6L-5, AT1G75220.1/AtEDR6L-6, AT2G48020.2/AtEDR6L-7, AT1G
08900.1/AtEDR6L-8, AT3G05155.1/AtEDR6L-9, AT3G05150.1/AtEDR6EL-10,
AT3G05165.1/AtEDR6L-11, AT3G05400.1/AtEDR6L-12, AT3G20460.1/AtED
R6L-13, AT4G04750.1/AtEDR6L-14, AT4G04760.1/AtEDR6L-15, AT5G273
50.1/AtEDR6L-16, AT1G08890.1/AtEDR6L-17, and AT5G27360.1/
AtEDR6L-18.

AtSWEET3. Of the four candidates in the MASWEET2 subfamily,
MASWEET?2.1 showed high homology with AtSWEET4 and —5,
but was also closely homologous to MASWEET2.2 and —2.3.
MASWEET2.4 showed high homology with AtSWEET7 and —8.
In the MASWEET3 subfamily, MASWEET3.1 and —3.2 (87.3%
similarity) were clustered with AtSSWEET9 and MdSWEET3.3.
MASWEET3.4 and —3.6 (88.1% similarity) were homologous
to AtSWEET10. Both MdASWEET3.6 and —3.7 were 88.3% sim-
ilar to MASWEET3.8, and clustered with AtSWEET!1 through
AtSWEET14. MASWEET3.9 clustered with AtSWEETI5 and
showed 85.8% similarity with MdASWEET3.10 and —3.11, both
of which had the same sequence. In the fourth subfamily,
MASWEET4.1 was grouped with AtSWEET16 and —17 (Figure 6;
Supplementary Data Excel File 4).

In all, these 29 MASWEET genes were distributed on 15
chromosomes plus one anchored contig. Four pairs of MdHT
arose from tandem duplications, including MASWEETI.I-

MASWEET1.2 on chr3, MASWEET1.9-MdSWEETI.10
on chr7, MASWEET3.7-MdSWEET3.8 on chrl4, and
MASWEET3.11-MdSWEET3.12 on chrl6 (Supplementary

Figure 1).

EXPRESSION PROFILING OF SUGAR TRANSPORTERS IN DIFFERENT
TISSUES OF APPLE

To determine the tissue-specific expression levels of candi-
date genes, we performed qRT-PCR to analyze mRNA rel-
ative abundance in mature leaves, shoot tips, young fruit
(16 DAB), and completely ripened fruit (122 DAB) from
“Gala” apple (Supplementary Data Excel File 6). Transcripts
of 10 MdSOT and seven MdPMT subfamilies were examined.
Expression of MdSOT3, MdSOT5, and MdSOT5.3 was strongest
in mature leaves, whereas transcripts for MdSOT1, MdSOT3.3,
and MdPMT1.1 were most abundant in ripened fruit and those
of MdSOT2 and MdPMTs were at their highest levels in young
fruit (Figure 7).

Expression was detected for 11 members of the MdHT fam-
ily. However, MdHT1.2 and —1.3 were barely detected in the
fruit, especially those that were already ripened. MdHT2.1, —2.2,
and —4.8 showed the highest abundance in older fruit, while
MdHT3.4 and MdHT3.5/6 were most strongly detected in
young fruit, MdHT2.3/4 in mature leaves, and MdHTI1.2 and
MdHT4.7 in young leaves (Figure 7; Supplementary Data Excel
File 6).

Except for MAEDR6.6 (most abundant in young fruit), the
seven MdEDR family members showed their highest levels of
expression in ripened fruit. For those genes, expression was not
distinctly different between young and mature leaves. Transcripts
ofMdTMT1, MdTMT2, and MdvGT3 were most abundant in
ripened fruit while those of MdTMT3 were highest in young fruit
(Supplementary Data Excel File 6).

Using 10 pairs of primers, we detected a high level of
expression by various MASWEETs in mature leaves. Expression
by MASWEET1.6 and —3.5 was not abundant in ripened
fruit or by MASWEET3.1 and —3.2 in young fruit. Transcript
levels were much higher for MdASWEETI1.1/2, MdSWEET2.4,
and MdSWEET3.5 in young fruit and for MASWEET3.1 and
MASWEET3.10/11 in mature leaves (Supplementary Data Excel
File 6).

Except for MdSUT1.2 in mature leaves, expression of MdSUT's
was higher in fruit tissues. In particular, MdSUTI.I and
MdSUT4.2 transcripts were more abundant in the young fruit
while those of MdSUT2.1/2 and MdSUT4.1 were at higher levels
in ripened fruit (Supplementary Data Excel File 6).

When we investigated possible correlations between gene
expression and sugars (Figure7), we found that transcripts
of MdSOT members, especially MdSOTS5, paralleled that of
Sor transport and accumulations. The expression of most
MAEDR6 members (except MAEDR6.6 and —6.8) showed par-
allel trends for Suc and Fru concentrations, particularly in the
fruit. Other genes, including MdTMTI1, MdTMT2, MdHT2.1,
and MdHT2.2, were closely associated with Fru and Suc
concentrations.

THE RELATIONSHIP BETWEEN EXPRESSION ABUNDANCE AND THE
CONCENTRATION OF MAIN SUGARS DURING FRUIT DEVELOPMENT
To investigate the relationship between gene expression and
sugar accumulations, we assayed fruits at different stages of
development (Figure 8; Supplementary Data Excel Files 6, 7).
Overall, five general patterns emerged. In the first, and largest,
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FIGURE 6 | Phylogenetic analysis of Malus domestica MdSWEET
families with Arabidopsis thaliana. Tree was constructed via
Neighbor-Joining method with 1000 bootstrap replications. Accession
numbers for Malus genes are listed in Supplementary Data Excel
File 4. Accession numbers for A. thaliana: AT1G21460.1/AtSWEETT,
AT3G14770.1/AtSWEET2, AT5G53190.1/AtSWEET3, AT3G28007.1/

o
o
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0001

AtSWEET4, AT5G6285.1/AtSWEET5, AT1G66770.1/AtSWEETS,
AT4G10850.1/AtSWEET7, AT5G40260.1/AtSWEETS, AT2G39060.
1/AtSWEET9, AT5G50790.1/AtSWEET10, AT3G48740.1/AtSWEET 11,
AT5G23660.1/AtSWEET12, AT5G50800.1/AtSWEET13, AT4G25010.1/
AtSWEET14, ATbG13170.1/AtSWEET15, AT3G16690.1/AtSWEET16, and
AT4G16920.1/AtSWEET17.

group, expression by 17 genes increased in parallel with higher
concentrations of Fru and Suc. This was especially true for
MATMTI1, MATMT2, MdHT2.1, MAHT2.2, MASWEET3.6/7, and
five MdEDRs, for which expression was significantly and pos-
itively correlated with levels of Suc and Fru in ripened fruit
(Table 1). Concentrations of Sor decreased over time in conjunc-
tion with diminished expression by 12 genes, such as MdHT3.3,
MdPMTI1.4, MdPMTI.5, MdSUTI1.1, MASWEET2.4, MdSOT2,
and MdSOT5. In addition, Glc concentrations were signifi-
cantly and positively correlated with MdvGT2 and MdSOT4
in developed fruit, while Gal concentrations were correlated
with the expression of MdEDR6.6 and MdSOT5.2 (Table 1;
Figure 8).

DISCUSSION

Domesticated apple genotypes are very heterozygous, making
genome sequencing difficult (Velasco et al., 2010). As a result,
predicted genes in the Malus genome database contain redundant
data. Using protein sequences of AfPMT and reported MdSOT
(Gao et al., 2005; Fan et al., 2009) as query, we obtained 40 con-
sensus putative SOT gene sets from the Malus database, which is
more than found for apple by Velasco et al. (2010) and much more
than those described for peach (Verde et al., 2013). As thresh-
olds, we used Malus ESTs, and set sequence size and number of
transmembrane domains as high as possible. Putative gene sets of
insufficient size or with too few transmembrane domains did not
allow one to find ESTs in the GenBank database. After screening,
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FIGURE 7 | Heat map illustrating sugar concentrations and
transporter expression levels in shoot tips, mature leaves, young
fruit (16 DAB), and mature fruit (122 DAB) from “Gala” apple.
Relative expression abundances and sugar concentration are shown in
Supplementary Data Excel Files 6, 7 Fold-difference is designated as
log2 value, while the data in shoot tip was set as “1" for each gene
and sugar. Genes with similar profiles across arrays are grouped on top
by hierarchical-clustering method.

27 of 40 putative SOT genes were chosen as possible members
of the MdSOT and MdPMT families. The same selections were
done for MSTs, SUTs, and SWEETs. Although it is not likely that
these genes are the only ones that exist, we are confident that they
are functional because we found all of them to be expressed in
Malus, and that they represent most of the genes expressed in
apple leaves, shoot tips, and fruit.
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FIGURE 8 | Heat map illustrating sugar concentrations and transporter
expression levels in fruits of “Gala” apple at different developmental
stages. Relative expression abundances, measured with gRT-PCR, are
shown in Supplementary Data Excel Files 6, 7. Fold-difference is designated
as log2 value, while the data in young fruit (16 DAB) s was set as “1" for
each gene and sugar. Genes with similar profiles across arrays are grouped
on top by hierarchical-clustering method.

ROSACEAE PLANTS HAVE SPECIFIC SORBITOL TRANSPORTERS

In  Rosaceae, photosynthesis-derived  carbohydrates are
transported mainly as Sor, which is mediated by SOT, a
subfamily of the PMT family (Fan et al., 2009). Compared with
other plant genomes, apple has considerably more copies of key
genes related to Sor metabolism, including aldose 6-P reductase
(A6PR), sorbitol-dehydrogenase (SDH), and SOT (Velasco et al.,
2010). Both SDH and SOT, which are highly specific to Rosaceae
fruits, have evolutionarily been shown to be large families
of specific paralogous genes. After clustering to elucidate the
evolutionary relationship with AtPMT and VvPMT families,
we were able to divide the 27 candidate genes into two groups:
MdSOTs and MdPMTs, and MdSOTs group contained all reported
functional MdSOT's but lacked any PMT from Arabidopsis and
Vitis. Our 10 MdSOTs (including highly expressed MdSOT2, —4,
and —5; Gao et al., 2005) were in tandem at approximately
449kDb on chr12. However, no MdSOTs or MdPMT's were found
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Table 1| Correlation coefficients between expression abundance and main sugars or sugar alcohols during development of apple fruit (n = 6).

Glec Fru Suc Gal Sor Glc Fru Suc Gal Sor
MdHT1.1 0.439 0.241 0.558 0.234 —0.446 MASWEET1.1/2 0.249 —0.790 -0.707 0.406 0.692
MdHT1.2 0.407 —0.842* —-0.866* 0.737 0.869* MdSWEET1.6 0.709 —0.809 —0.688 0.768 0.682
MdHT1.3 0.177 —0.538 —0.691 0.305 0.5628 MdASWEET2.4 0.622 —-0.897* —0.795 0.801 0.843*
MdHT2.1 —0.274 0.958%** 0.987** —0.587 —0.971**  MdJSWEET4.1 —0.004 —0.525 —0.705 0.242 0.572
MdHT2.2  —0.452 0.997** 0.948** —0.753 —0.968**  MdASWEET3.1 -0.017 0.728 0.844*  —0.234 -0.774
MdHT2.3/4 —0.651 0.245 0.012 —0.696 —0.133 MdASWEET3.2 0.074 0.785 0.945**  —0.269 —0.888*
MdHT2.5 0.636 0.003 0.141 0.385 —0.106 MdSWEET3.5 0.445 -0.706 —0.553 0.578 0.665
MdHT4.2  —0.262 0.850* 0.689 —0.581 —0.790 MdSWEET3.6/7  —0.307 0.968** 0.977** —0.609 —0.967**
MdHT4.3  —0.134 0.612 0.515 —0.242 —0.485 MdASWEET3.9 —0.261 0.869* 0.812*  —0.517 —0.876*
MdHT4.7 0.666 —0.907* —0.860* 0.844* 0.829* MdSWEET3.1011 —0.058 0.741 0.888* —0.301 —0.820*
MdHT4.8 0.091 0.749 0.730 —0.202 -0.730 MdSUT1.1 0.457 —0.885*  —0.920** 0.763 0.911*
MdHT3.1 0.135  —0.808 -0.810 0.371 0.833* MdSUT1.2 —0.353 0.761 0.857*  —0.524 —0.791
MdHT3.3 0.669 —0.923** —-0.919** 0.798 0.883* MdSUT2.1/2 —-0.472 0.954** 0.820* -0.716 —0.891*
MdHT3.4 0.383 —0.445 —0.496 0.341 0.420 MdSUT4.1 0.032 0.723 0.5692 —0.263 —0.698
MdHT3.5/6 0565 —0.915*  —0.802 0.785 0.875* MdSUT4.2 —0.597 0.455 0.169 —-0.700 —0.296
MdEDR6.1 —0.449 0.962** 0.849* —0.756 —0.899* MdSUT4.3/4 —0.687 0.668 0.433 —0.858* —0.539
MdEDR6.2 —0.522 0.981** 0.925**  —-0.784 —0.949**  MdSOT1 —0.271 0.856* 0.866* —0.488 —-0.861*
MdJEDR6.3 —0.455 0.993** 0.905*  —0.753 —0.960** MdSOT2 0.484 -0.896* —0.808 0.653 0.828*
MJEDR6.4 —0.463 0.993** 0.921**  —0.742 —0.937**  MdSOT2.2 0.335 -0.879*  —0.848* 0.566 0.882*
MdEDR6.5 —0.781 0.818* 0.567 —0.884* —0.640 MdSOT3 —0.806 0.534 0.245 —-0.793 —0.380
MdJEDR6.8 —0.200 0.961%* 0.972** —0.546 —0.984**  MdSOT3.2 -0.718 0.571 0.241 —0.71 —0.345
MJEDR6.7 —0.314 0.953** 0.877*  —-0.610 —0.895* MdSOT3.3 0.233 0.528 0.784 —0.033 —0.691
MdJEDR6.6 0.772 -0.857* —0.725 0.865* 0.732 MdSOT4 0.959** —0.500 —0.292 0.849* 0.314
MdTMT1 —0.257 0.951%* 0.972** —0.560 —0.964**  MdSOT5 0.168 —0.475 —0.631 0.329 0.607
MdTMT2  —0.300 0.976** 0.974**  —0.616 —0.971**  MdSOT5.2 0.688 -0.907*  —0.709 0.895* 0.805
MdATMT3 0.691 —0.635 —0.484 0.693 0.637 MdSOT5.3 0.075 0.698 0.897* -0.219 —0.822*
MdvGT1 0.569 0.025 0.064 0.304 —0.200 MdPMT1.1 —0.059 0.849* 0.974**  —0.390 —0.915*
MavGT2 0.837* —0.503 -0.379 0.760 0.311 MdPMT1.2 0.734 —0.455 —0.205 0.770 0.362
MavGT3 0.001 0.793 0.951** —0.318 —0.889* MdPMT2.1/2 —0.361 —0.092 —0.431 —0.259 0.251
MdpGLT1 0.165 0.233 0.025 0.015 —-0.213 MdPMT2.3 0.427 —-0.837* —0.837* 0.583 0.810
MdpGLT2  —0.358 0.764 0.531 —0.559 —0.625 MdPMT1.3 0.786 0.050 0.239 0.612 —0.202
MdpGLT3 0.319 0.678 0.775 —0.067 —0.765 MdPMT1.4 0.426 —0.947**  —0.974** 0.729 0.960**
MdpGLT4 —0.558 0.939** 0.776 —0.781 —0.820* MdPMT1.5 0.439 —0.969** —0.974** 0.727 0.963**

*Significant at P < 0.05; **Significant at P < 0.01.

on chr4 and chrl4, both of which share partial homology
with large segments on chrl2 (Velasco et al.,, 2010). Reported
members of MdSOT families have greater substrate selectivity
for Sor (Watari et al., 2004; Gao et al., 2005). All of our selected
MdAPMT members had lower transcript abundance in mature
leaves that contained a high Sor concentration. These results
implied that the segment on chrl2 is related evolutionarily to
Sor metabolism, and that a trend toward Sor accumulation may
have been somewhat based on gene duplication that created
large families of MdSOT paralogous genes. Many PMT subfamily
members in Arabidopsis transport a wide range of sugar alcohols
and hexoses, and may be non-specific for sorbitol (Klepek
et al., 2010). Supporting this, we determined that the expression
of MdPMTI.1 and -1.2 was highly correlated with Fru and
Suc concentrations in developed fruit, and that expression of
seven MdPMTs was relatively higher in fruits than in leaves.
Further confirmation is needed for the function of MdPMT in
conferring substrate selectivity for Sor or other sugar alcohols and
hexoses.

CARBOHYDRATE UNLOADING IN APPLE IS DRIVEN BY SOT, SUT, AND
HT FAMILIES

After their synthesis in apple leaves, both Sor and Suc are pas-
sively loaded into SE-CC of the phloem via the symplasm pathway
(Reidel et al., 2009), and then unloaded in the fruit to the
parenchyma cells through the apoplasm pathway (Zhang et al.,
2004). Therefore, both SOT and SUT may not be essential for
phloem loading, but serve as proton co-transporters for phloem
unloading. This theory is supported by reports of higher tran-
script abundances for MdSOT1 and —2 (Gao et al., 2005) and
our finding of a MdSUT4 clade and four MdPMTI members in
fruit. Although AtSUT4, as an antiporter, is located on the tono-
plast (Schneider et al., 2011), MdSUT4.1 is present on the plasma
membrane and functions in unloading Suc to the apoplasm (Fan
et al., 2009). Many MdSOTs, e.g., MdSOT3, —4, —5, and —5.3,
are expressed in the vascular tissue of source leaves (Watari et al.,
2004). They might not play direct roles in the movement of
sugar alcohols or phloem loading. When highly expressed in the
leaves, MdSOT and MdSUT may be involved in recovering leaked
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Suc or Sor, local transport via the apoplasm, or regulation of
osmotic potential and turgor among intracellular compartments
by adjusting concentrations to adapt to changes in environmental
conditions, such as drought (Li et al., 2012).

Most of the HT's or STPs identified in Arabidopsis are localized
to the plasma membrane and are capable of transporting hexoses,
such as Glc, Fru, and Gal. In apple fruit, after Suc is unloaded, it
can be hydrolyzed to Glc and Fru by cell wall invertase. MdHT
is needed for moving Glc and Fru from cell wall spaces into
parenchyma cells because Sor transport is inhibited by high con-
centrations of hexoses (Gao et al., 2003). We detected mRNA
expression of MAHT2.1 and —2.2 were more abundant in the fruit
and were significantly correlated with Fru and Suc concentra-
tions. This is the same trend noted for VvHT13, a highly orthol-
ogous gene in grape (Afoufa-Bastien et al., 2010). However, their
homologous gene in Arabidopsis is AtSTP14, which is galactose
substrate-specific (Poschet et al., 2010). Expression of MdHT4.4
was also highly correlated with Fru concentrations in developed
fruit. This gene has high homology with AtSTP9, which is Glc
substrate-specific (Schneidereit et al., 2003). These results implied
that the functions of these three MdHTs are different in apple
when compared with their orthologs in Arabidopsis. MdHT4.8
was highly expressed in ripened fruit and showed high homol-
ogy to AtSTPI, VvHTI, and VvHTS. AtSTPI transports Glc as
well as Gal, mannose, and xylose (Biittner, 2010). AtSTPI, —13,
and —14 function in the recovery of hexoses generated during
the process of cell wall remodeling and because of passive leakage
by sugars from cells (Yamada et al., 2011). Stronger expression
of MdHT2.1, —2.2, and —4.8 in ripened apple fruit may be
related to the process of hexose release (including that of Gal,
xylose, and Glc) due to cell wall degradation. In young fruit, tran-
script levels for MdAHT3.5/6 and MdHT3.4 were high, and those
genes showed the closest similarity to AtSTP5 (uncharacterized)
in Arabidopsis and VYHT2 in Vitis. Although VYHT2 is weakly
expressed in grape leaves, transcript levels are high in young
berries but decline around veraison (Afoufa-Bastien et al., 2010).
That pattern resembles what we observed for MdHT3.5/6 expres-
sion in apple. In tomato fruit, three HT genes are co-localized
with QTLs for sugar accumulation (Prudent et al., 2011). That
relationship has been further verified by RNAi knockdowns of
three LeHTs (McCurdy et al., 2010) that are highly homolo-
gous to MdHT4.8, MAHT2.1/2.2, and MdHT1I.1. AtSTP13, highly
homologous to MdHTI.1/2, can transport Glc, Fru, and Gal
in yeast (Yamada et al.,, 2011). Here, MdHTI.1 expression was
strongly up-regulated in mature fruit whereas MdHT1.2 was
barely detectable in any fruit. Future studies should focus on
the roles that MdHT's have in sugar accumulation and efficient
unloading of carbohydrates.

EXPRESSION OF MDvGTS, MDTMTs, MDEDRG, AND MDSWEETs IS
CORRELATED WITH SUGAR ACCUMULATIONS IN APPLE FRUIT
VACUOLES

For apple, most of the Fru, Suc, and Glc are stored in the cen-
tral vacuoles of parenchyma cells (Yamaki and Ino, 1992). This
requires that sugars be transported from the cytosol by carrier
proteins localized on the tonoplast membrane. In Arabidopsis,
these vacuolar proteins are encoded by AtvGT (Aluri and Biittner,

2007), AtTMT (Wormit et al., 2006), AtEDR6 (Poschet et al.,
2011), and AtSWEET17 (Chardon et al., 2013). We found three
MdvGTs with high homology to three AtvGTs; their expression
was much stronger in fruit than in leaves. We have previously
reported (Li et al., 2012) that MdvGT1 and MdvGT2 transcript
levels are highest in young fruit and are correlated with Glc
concentrations in ripened fruit. MdvGT3, which presents an N-
terminal extension as VwGT2 (Afoufa-Bastien et al., 2010), is
more closely related to AtvGT3 and VwwGT2. Its expression is
highly correlated with Suc concentrations in fruit. By contrast,
expression of MdvGT3 was stronger in mature leaves where less
sugar was accumulated. Its predicted locations were primarily
the chloroplasts and mitochondrial membrane. Although AtvGT1
mediates low-affinity Fru uptake when expressed in yeast vac-
uoles (Aluri and Biittner, 2007), we found no correlation between
MdvGT1/2 expression and Fru uptake in apple vacuoles. These
results suggested that MdvGT is not active in the accumulation
of Fru and Suc within ripened fruit but may be involved in Glc
transport.

Arabidopsis AtTMTIand AtTMT?2 are equally capable of mov-
ing Glc and Suc into the vacuoles (Schulz et al., 2011). The
former is associated with a rate of Fru transport that is approx-
imately 30% of that for Glc in yeast (Wormit et al., 2006). Two
of three grape TMTs—VvTMT1 and —2—are strongly expressed
in post-veraison berries, a period that coincides with the major
phase of hexose accumulation (Afoufa-Bastien et al., 2010). We
previously reported that, although 18 predicted genes in apple
genome are similar to AtTMTs, we were able to select only five
MdATMTs based on ESTs, length of mRNA, and number of trans-
membrane domains. Transcript levels of MATMT1 and —2, both
of which share high similarity in amino acids with AtTMTI1/2
and V¥TMT1/2, paralleled Fru and Suc concentration, suggesting
that both proteins are involved in transporting those sugars into
the vacuoles. Therefore, they may be highly efficient Fru-specific
vacuolar transporters in apple. This should be clarified in future
examinations.

AtERD6 and AtESLI (or AtEDRGL-3) are vacuolar exporters
of Glc (Yamada et al., 2010; Poschet et al., 2011; Klemens et al.,
2014). We found 16 predicted genes in the Malus genome with
homology to AtEDR6. However, only eight had amino acids or
trans-membrane domains that were of similar size or number.
Expression by the seven selected MAEDR families was highest in
ripened fruit, and was strongly and positively correlated with Fru
and Suc concentrations but negatively with Glc concentrations.
By contrast, MAEDRG6.6 was highly expressed in young fruit. In
pineapple, AcMST1 (EF460876 in GenBank) has high homology
with MdEDRG6.7 and —6.8 and is located on the tonoplast; its
expression is highest in fruit tissues (Antony et al., 2008). If the
substrate for MdEDR is specific to Glc, we expect that a lower
Glc concentration in fruit vacuoles would be related to greater
MdAEDRG6 expression in ripened fruit. Similar to AtTMT (Schulz
et al., 2011), the protein encoded by MdATMT may be capable of
transporting Glc and Suc into the vacuoles. Consequently, Glc
moves into the vacuoles of ripened fruit along with Fru and
Suc. However, because fruit sweetness has been artificially, rather
than evolutionarily or naturally, selected, EDR6 may be capable
of moving Glc from the vacuoles to maintain turgor and permit
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a greater accumulation of Fru, which is the sweetest sugar. This
phenomenon has also been suggested for pineapple, where the
high amount of EDR6 transcript in the leaves accommodates the
efflux of Glc and Fru at night to provide substrates for dark-
uptake of CO, (Antony et al., 2008). Further characterization of
MdATMT functioning would resolve this question.

The recently identified SWEET superfamily has 17 members in
Arabidopsis and 21 in rice (Chen et al., 2010; Xuan et al., 2013).
Here, we selected 29 genes as candidates in the Malus genome.
Although the number of MASWEET members related to special
carbohydrate metabolism and higher Sor concentrations may in
fact be larger in Malus, we detected the transcripts of only 10
MASWEETs in apple leaves and/or fruit. Plant SWEET proteins
are grouped into four subclades, based on amino acid homolo-
gies (Chen et al., 2010). Compared with the three AtSSWEET's
in Arabidopsis, 13 MASWEET1 subfamilies are clustered in Clade
I, in which SWEET proteins mainly transport monosaccharides
(Chen et al., 2010). Expression of MASWEETI.1/2 was twice as
high in the fruit when compared with the leaves and shoot tips,
which suggested that it may not be affected by Glc, Fru, and Suc
concentrations in apple cells. Therefore, we hypothesized that
MASWEET1.1/2 encodes the only MASWEET protein in apple
for transporting Sor, serving as a uniporter with both uptake
and efflux activities. Compared with MdASWEET].1, more than
45 residues at the 5'-end possibly target MASWEETI.2 to the
tonoplasts, based on our predicted localization.

For Clade II, only MASWEET2.4 was detected, especially in
young fruit. Its Arabidopsis homolog ATSWEETS is essential for
pollen viability and is co-opted by pathogens, which likely provide
an energy source and carbon at the site of infection by mediat-
ing Glc transport (Chen et al., 2010). Another gene, OsSWEET5
in rice, is located on the plasma membrane and is homolo-
gous to AtSWEET4, which encodes a Gal transporter in yeast.
Those earlier observations support our finding that MASWEET2.4
expression was correlated with Glc and Gal concentrations during
fruit development.

In Clade III, SWEETSs in Arabidopsis and rice transport dis-
accharides, mainly Suc (Chen et al., 2010, 2012). In particular,
AtSWEETI11 and -12 mediate the key step of Suc efflux from
phloem parenchyma cells for translocation via the apoplast load-
ing pathway (Chen et al., 2012). AtSWEET?Y is essential for nectar
production and can function as a Suc efflux transporter (Lin et al.,
2014). However, in apple leaves, loadings of Suc and Sor occur
through the symplast pathway, which does not require a SWEET
gene to mediate Suc efflux from the parenchyma to extracellular
spaces. In our MASWEET3 clade, MASWEET3.6, —3.7, and —3.8
were most similar (48%) to AtSWEETI1I and 12. Expression of
MdASWEET3.6/7 was higher in mature leaves and ripened fruits.
Similar trends were observed for transcripts of MdSWEET3.9
and —3.10/11, which are homologous to AtSWEETI5, a gene
strongly induced by leaf senescence (Quirino et al., 1999). As
homologs of AfSWEET9, MASWEET3.1 and —3.2 showed the
highest abundance in developed fruits whereas MdSWEET3.5
(homologous to AtSWEETI10) had the highest expression in tis-
sues undergoing rapid growth, such as shoot tips and young fruit.
Different expression models have linked their functions with the
maintenance of a balance in Suc efflux within various tissues and

under certain conditions. In apple fruit, Suc and Sor unloading is
accomplished through the apoplast pathway (Zhang et al., 2004),
which requires one transporter to move Suc from SE-CC into
the extracellular spaces. The MASWEETsS of Clade III, particularly
MdASWEETS3.5, may be the most likely candidate for this process.
Two members of Clade IV—SWEET16 and —17—are local-
ized to the tonoplast, where they have key roles in exporting Fru
from the vacuoles of Arabidopsis leaves (Chardon et al., 2013;
Klemens et al., 2013). MASWEET4.1 was most highly expressed in
the leaves, where Fru accumulations were lower, while transcripts
were reduced in the fruit, where Fru accumulation was high. This
decrease in MASWEET4.1 expression might explain why apple
fruit would have elevated Fru concentrations, as has also been
demonstrated with an Arabidopsis mutant of AtSWEET17 that
accumulates Fru in its leaf vacuoles (Chardon et al., 2013).

GENES FUNCTION TO TRANSPORT SUGARS IN APPLE LEAVES

In mature leaves, transporters are necessary in both the plas-
tid membranes and the tonoplasts. Plasma-membrane-localized
sugar transporters (e.g., MAHTs, MdSUT, MASWEETSs) assist in
exporting or importing sugars to control the osmotic balance
and sugar signaling between extra- and intra-cellular compart-
ments (Linka and Weber, 2010). In apple leaves, high expression
of MdSOT3 and —5 may serve to retrieve Sor that is passively
leaked into the apoplast space in source cells, or to transport
Sor into the guard cells. This can help modulate stomatal aper-
tures during periods of dehydration stress. Under drought condi-
tions, MdSOT's are up-regulated in apple leaves (Li et al., 2011).
Additionally, AtSTP1, —4, —5, and —13 are localized to the guard
cells (Norholm et al., 2006; Biittner, 2010). We detected MdHT's
in our mature apple leaves, with expression being strongest
forMdHT2.3/4. Future examinations will focus on their roles in
mature leaves, especially under stress conditions.

Tonoplast transporters help control osmotic balance and sugar
homeostasis in the cytosol by exporting or importing soluble car-
bohydrates in the vacuoles (Wingenter et al., 2010). We might
associate this phenomenon with the high levels of expression
by MdvGTs, MATMT1, and MdASWEET4.1 in our mature apple
leaves. In Arabidopsis, the study of tmt1-2::tDNA double mutants
suggests that At«TMT1 and —2 have roles in both cellular carbon
balance and whole-plant carbohydrate partitioning (Wingenter
etal., 2010). Some members of the vGT subfamily may have func-
tions that resemble those of the TMTs, as evidenced by their
expression in similar tissues and their preference for transport-
ing glucose and, to a lesser extent, fructose (Aluri and Biittner,
2007). Arabidopsis plants over-expressing EDR6 from pineap-
ple accumulate fewer monosaccharides and become sensitive to
low-temperature stress (Klemens et al., 2014). These reports sug-
gest that EDR6 functions in osmotic adjustments by regulating
sugar flux within cells. Similar results have been found with
AtSWEET17 and AtSWEET16 (Chardon et al., 2013; Klemens
et al., 2013). Therefore, we might speculate that altering the
expression of MdATMT, MdvGT, MdAEDR6, and MdSWEET4.1
could affect plant growth and tolerance to abiotic stresses. Future
experiments could involve using these genes to regulate the sugar
concentration of fruits from transgenic plants in which a special
promoter has been utilized in the transformation procedure.
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In conclusion, this study represents a comprehensive investi-
gation of sugar transporter genes in a woody plant. Our gene
identifications and comparative analysis with transporters from
Arabidopsis and Vitis indicate their strong conservation between
herbaceous and woody species, as well as the expansion of par-
ticular functional subfamilies, e.g., MdSOT, MASWEET]1, and
MdATMT transporters. After investigating their expression pro-
files simultaneously in various tissue types, and analyzing any
correlations between transcript levels and the amounts of Fru
and Suc in the fruit, we propose that the high accumulation of
Fru is a result of coordination and cooperation by MdTMT1/2
and MdEDRG6 with reduced MASWEET4.1 expression and greater
Sor-associated Fru flux. In addition, we suggest that MdSOT1I,
MdSOT2, and MdSUT4 are involved in the efficient unloading
of Sor and Suc in fruit. Furthermore, other transporters may be
required for unloading Suc and Sor into the cell wall spaces (pos-
sibly MASWEET1s or MASWEET3s), loading hexose from the cell
wall spaces into the cytosol for storage (MdHTs), retrieving sug-
ars that passively leak into the apoplast space, fine-tuning sugar
flux for homoeostasis, and regulating stomatal apertures. Our
current findings serve as tools for elucidating the biological func-
tion of transporters in Malus domestica, particularly during fruit
formation and sugar accumulation. This information will have a
significant impact on our knowledge of sugar transporters in gen-
eral, and the development of sweetness properties in particular.
However, the possible errors in the apple genome sequence may
also affect the location of pieces of DNA, so that members of a
gene family may end up on the wrong scaffold and therefore on
the wrong linkage group, which need further to confirm.
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