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In nature, most plants are resistant to a wide range of phytopathogens. However,
mechanisms contributing to this so-called nonhost resistance (NHR) are poorly understood.
Besides constitutive defenses, plants have developed two layers of inducible defense
systems. Plant innate immunity relies on recognition of conserved pathogen-associated
molecular patterns (PAMPs). In compatible interactions, pathogenicity effector molecules
secreted by the invader can suppress host defense responses and facilitate the infection
process. Additionally, plants have evolved pathogen-specific resistance mechanisms based
on recognition of these effectors, which causes secondary defense responses.The current
effector-driven hypothesis is that NHR in plants that are distantly related to the host plant
is triggered by PAMP recognition that cannot be efficiently suppressed by the pathogen,
whereas in more closely related species, nonhost recognition of effectors would play a
crucial role. In this review we give an overview of current knowledge of the role of effector
molecules in host and NHR and place these findings in the context of the model. We focus
on examples from filamentous pathogens (fungi and oomycetes), discuss their implications
for the field of plant-pathogen interactions and relevance in plant breeding strategies for
development of durable resistance in crops.
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INTRODUCTION
In nature, successful pathogens are the exception, as the majority
of plants are resistant to most pests and pathogen species. This
form of disease resistance is known as nonhost resistance (NHR)
and can be defined as resistance exhibited by an entire plant species
to all genetic variants of a non-adapted pathogen species or forma
specialis (f. sp.). Multiple factors contribute to NHR to unadapted
pathogens, including constitutive defenses and induced defense
mechanisms that result in plant immunity (Uma et al., 2011; Fan
and Doerner, 2012).

Plant structure and chemistry form the first barriers encoun-
tered by any filamentous plant pathogen. The pathogen must
locate a potential host. Variation in chemical compounds released
by the plants can affect the attraction process (Morris and Ward,
1992). Once in contact, spores must germinate and form appresso-
ria in order to penetrate the tissues. Both these processes are partly
mediated by plant chemical components in compatible interac-
tions (Ruan et al., 1995). Finally, the pathogen needs to find an
appropriate source of nutrients in its host and thus the metabolic
status of the plant can selectively determine its host/nonhost status
(Stuttmann et al., 2011).

If the pathogen is able to overcome these barriers, it will face
induced plant defenses. Most pathogens are defeated following
detection of conserved pathogen molecules (Pathogen-Associated
Molecular Patterns, PAMPs) by host cell surface pattern recogni-
tion receptors (PRRs) which activate pattern-triggered immunity
(PTI; Zipfel, 2009). PAMPs are frequently parts of structural
molecules that are essential for the pathogens and that cannot

be readily changed to avoid their detection. However, adapted
pathogens either evade recognition or suppress triggered plant
defenses as summarized by the so-called Zigzag model (Jones and
Dangl, 2006): PTI renders plants resistant, but pathogens deliver
effector molecules thought to act in the apoplast or inside the plant
cell, suppressing PTI (e.g., de Jonge et al., 2011; Wawra et al., 2012).
In order to counter this, plants have a second layer of immune
receptors encoded by resistance (R) genes, mainly nucleotide-
binding – leucine-rich repeat (NB-LRR) proteins which upon
activation, lead to effector-triggered immunity (ETI; Elmore et al.,
2011). The ETI response is accompanied in most cases by a hyper-
sensitive reaction (HR) – a localized programmed cell death –
which is believed to prevent the spread of biotrophic pathogens
from the infection site.

The role of plant receptors involved in both PTI and ETI as
well as the pathogen effector arsenal are generally considered as
the core components of the battleground in plant-pathogen inter-
actions and NHR has been proposed to be largely based either
on PTI in the absence of defense suppression, or on ETI from
stacks of R genes (Schweizer, 2007; Niks and Marcel, 2009). Fol-
lowing this, a model of NHR was proposed by Schulze-Lefert and
Panstruga (2011) that focused on inducible plant defenses and
disregarded preformed defenses and physical cues. With respect
to this condition, the model suggests that NHR in plants that
are evolutionary distantly related to the natural host is predomi-
nantly triggered by PRR-mediated recognition, as PTI cannot be
suppressed by the pathogen. By contrast, in more closely related
species nonhost recognition of effectors and ETI are proposed
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to play a predominant role. In this review, we not only give
an overview of current knowledge of the central role played by
pathogen recognition systems and effectors in host and NHR but
we also place these findings in the context of the NHR model. We
focus on plant interaction with filamentous pathogens, and the
relevance of NHR in plant breeding strategies for development of
sustainable broad-spectrum resistance in crops.

GENOMICS ADVANCES REVEAL EFFECTOR AND R -GENE
DIVERSITY
Many genomes from filamentous phytopathogens have been
sequenced, including both biotrophic and necrotrophic oomycetes
(Haas et al., 2009; Baxter et al., 2010; Levesque et al., 2010) and
numerous fungi with different lifestyles (Dean et al., 2005; Ma
et al., 2010; Spanu et al., 2010; de Wit et al., 2012). Genome-
scale analysis reveals that large numbers of putative effector genes
are present in these phytopathogens. Some effectors occur in
large families and the best-characterized examples are the RXLR
and crinkling and necrosis (CRN) effectors in the oomycete
genus Phytophthora. These families comprise 100s of genes (Haas
et al., 2009; Shen et al., 2013; Stam et al., 2013). In fungi such
large effector families with a common, defining, sequence motif
appear to be absent. Nonetheless 100s of individual effectors
and smaller effector families have been identified, including
the conserved LysM effectors that protect Cladosporium spp.
against chitin-associated defense responses (Bolton et al., 2008;
Kombrink and Thomma, 2013), divergent families of cell wall
degrading enzymes (CWDE; Ma et al., 2010; Spanu et al., 2010),
clusters of putative cytoplasmic effectors (Saunders et al., 2012)
and diverse families of Candidates for Secreted Effector Proteins
(CSEPs) in the barley powdery mildew fungus (Pedersen et al.,
2012).

The different mechanisms through which genomic and effec-
tor diversity within and between species can occur have recently
been reviewed (e.g., Gladieux et al., 2014; Stukenbrock and Croll,
2014). Genome analyses show that many phytopathogens have
a distinct genomic make-up. Nearly all show specific clustering
patterns of genes. Isochore-like regions, which are CG-rich and
non-coding, have been identified in the Ascomycota fungus Lep-
tosphaeria maculans (Rouxel et al., 2011). The few genes present
in these regions show important variation between populations.
Verticillium dahliae genomes show characteristics of chromoso-
mal reshuffling and harbor lineage-specific regions (LS) flanking
chromosomal breakpoints. These LS are enriched for retrotrans-
posons and other repetitive sequence elements (de Jonge et al.,
2013). In the oomycete P. infestans a similar phenomenon has
been described, where gene-dense regions are interspersed with
gene-poor regions (Raffaele et al., 2010b). Effectors are frequently
located in these “plastic” genomic regions. This observation
prompted the hypothesis that this configuration allows for rapid
effector diversification, thus allowing the pathogen to adapt to
rapidly changing environments and to overcome resistance, a pro-
cess also referred to as the two-speed-genome (Haas et al., 2009;
Raffaele et al., 2010a; Raffaele and Kamoun, 2012; Karasov et al.,
2014).

Similarly, as more plant genomes are sequenced, it is possi-
ble to compare their R-gene composition. These analyses show

that the number of predicted R genes varies considerably from
one species to another, even taking relative genome size into
account: e.g., 54 in papaya (∼370 MB; Porter et al., 2009); 149
in Arabidopsis (∼125 MB; Arabidopsis Genome Initiative, 2000;
Meyers, 2003); ca. 500 in rice (∼400 MB; Monosi et al., 2004;
Rice Genome Project, 2005). Reported numbers are likely to be an
under-estimate of the R genes present in each genome; the use of
an enrichment technology (RenSeq) allows targeted sequencing,
focusing on the NB-LRR composition. Using RenSeq, the num-
ber of predicted R genes present in the potato genome increased
from 438 predicted in the original genome sequence, to 755 after
enrichment (Jupe et al., 2012, 2013).

These genome studies suggest that effectors and R genes are
under evolutionary pressure. Indeed, signatures of positive selec-
tion have been shown for effectors (Win et al., 2007), their
targets (Kaschani et al., 2010), and R genes in Arabidopsis spp.
(Mondragon-Palomino et al., 2002; Chen et al., 2010). However,
comparative genomic studies as described above do not directly
prove that effectors and R genes play roles in pathogen host range
or nonhost recognition.

EFFECTOR RECOGNITION IN HOST AND NONHOST PLANTS
The oomycete Phytophthora infestans causes disease in potato and
tomato but it is unable to colonize the related solanaceous crop
plant pepper (Capsicum annum). A screen of 54 P. infestans RXLR
proteins in pepper revealed that many effectors are recognized in
various pepper lines leading to a HR (7 on average and up to
36 in some accessions; Lee et al., 2014). Given that P. infestans
has a predicted RXLR effector complement of >500 sequences
and that 65% of the effectors tested in this study are detected
and trigger a HR, this strongly suggests that NHR to P. infestans
may be determined by recognition of multiple effector proteins.
Similarly, a screen of 34 RXLR proteins from Bremia lactucae in
152 breeding lines of lettuce (Lactuca sativa) showed recognition
of multiple effectors (Stassen et al., 2013). Two of these, BLG01
and BLG003, were recognized in 52 and two lines respectively. In
addition, recent work on P. capsici has correlated NHR in a range
of Nicotiana species with HR elicited by a single effector, PcAvr3a-
like (Vega-Arreguín et al., 2014). Moreover, Magnaporthe oryzae
formae speciales are only pathogenic on their original host species
and as such are reproductively isolated. Thus, artificial crosses
between these pathogens allow the analysis of the hybrid progeny
to identify genes restricting host range. Among these genes, some
were identified that encode secreted effector proteins belonging to
the PWL family, variants of which are expected to be recognized in
nonhost plants (Kang et al., 1995; Sweigard et al., 1995; Tosa et al.,
2006).

Besides the direct evidence that multiple effectors can be rec-
ognized in nonhost plants, genetic studies of resistance in cereals
and lettuce to different filamentous pathogens highlighted that
NHR is based on multiple quantitative trait loci (QTLs; Jafary
et al., 2008; Jeuken et al., 2008; Zhang et al., 2009; Aghnoum and
Niks, 2010). In barley, QTLs associated with NHR showed simi-
larity in location with QTLs for basal resistance to Puccinia hordei
(Jafary et al., 2008). Interestingly, these QTLs show different and
overlapping specificities and contain several putative R genes, sug-
gesting that effector recognition might still play a role in this
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resistance. Besides, Zellerhoff et al. (2010) found that the differ-
entially expressed genes in barley in response to closely related
pathogens do not hugely differ between host and nonhost interac-
tions but show distinct responses between the various pathogens.
Interestingly, they also found a small cluster of genes overlap-
ping between species, with similar functional annotations as those
responsive to basal resistance. Unfortunately, the limited number
of genes studied and the absence of pathogen data in this study,
make it impossible to draw firm conclusions about the role of
effector recognition in these interactions.

One way for a pathogen to avoid ETI is to lose recognized
effectors. Whereas most effectors are thought to serve important
functions during infection and seem to be indispensable, loss of
effectors does not always lead to reduced fitness, most likely due to
functional redundancy. For example, P. striiformis lacking effectors
recognized by the wheat resistance protein Yr2 perform equally
well on susceptible and Yr2 plants (Sørensen et al., 2013). Pres-
ence/absence polymorphisms are also common in Phytophthora
RXLR and CRN effectors and in some cases, effector loss does not
obviously affect fitness (Shan et al., 2004). A precursor to com-
plete loss of effectors might be transgenerational gene silencing of
effectors, as observed in P. sojae (Qutob et al., 2013). Thus, loss of
recognized effectors in pathogen populations that are exposed to
plants with cognate R genes shows that effector recognition plays
a crucial role in avoiding resistance.

HOST SPECIFIC EFFECTOR FUNCTION
In order for an effector to achieve its function and promote viru-
lence, it is expected to manipulate one or more host target proteins
or processes. One of the main ways effectors are thought to act
is by suppressing defense responses activated during PTI. While
there is a lot of evidence in the literature for effectors of filamen-
tous pathogens suppressing immunity in host plants (de Jonge
et al., 2011; Stassen and Van den Ackerveken, 2011) very little
is known about effector function in distantly related nonhost
plants, although CWDE from different phytopathogenic fungi
show strongest enzymatic activity on their respective hosts (King
et al., 2011). Recently, a protoplast expression system was used to
identify RXLR effectors from P. infestans that were able to suppress
PTI responses in a host (tomato) and in distantly related nonhost
plant (Arabidopsis; Zheng et al., 2014). Of the 33 RXLR effectors
screened, eight are able to suppress FRK1 (FLAG22-INDUCED
RECEPTOR-LIKE KINASE 1) induction triggered by the PAMP
flg22 in tomato. Interestingly, only three of the eight maintained
this activity in Arabidopsis, suggesting the failure of the remaining
five effectors to successfully manipulate their targets in the non-
host plant. Unfortunately, the effector targets in this case are yet
not known.

Antonovics et al. (2013) described how failure of infection
of a nonhost plant by pathogens could be an incidental by-
product of ongoing antagonistic evolution between adapted host
and pathogens, a process they call non-evolved resistance. In
agreement with this theory, recent work by Dong et al. (2014)
demonstrated how effectors from two phylogenetically closely
related oomycetes, P. infestans and P. mirabilis, evolved to specif-
ically inhibit proteases from the distantly related plants tomato
and four o’clock flower (Mirabilis jalapa) respectively. Cysteine

proteases are involved in immunity and cell death signaling in
plants (Gilroy et al., 2007; Shindo and van der Hoorn, 2007)
and are known targets of effectors from fungi (Shabab et al.,
2008; Mueller et al., 2013), oomycetes (Tian et al., 2006) and
nematodes (Lozano-Torres et al., 2012). The effector PiEPIC1
from P. infestans is a cysteine protease inhibitor, which interacts
with the proteases PIP1 and RCR3 in tomato. The homologue
in P. mirabilis (PmEPIC1) is under diversifying selection com-
pared to PiEPIC1. The genes corresponding to the equivalent
proteases of tomato RCR3 were cloned from potato and four
o’clock flower (Mirabilis RCR3-like protease 2, MRP2) and the
inhibitory activity of each effector was analyzed. PiEPIC1 was
able to efficiently suppress potato and tomato RCR3 activity but
not MRP2 and the opposite was observed for PmEPIC1 (Dong
et al., 2014). This supports the hypothesis that pathogens may be
unable to suppress immunity in distantly related nonhost plants
through failure of effectors to correctly manipulate their plant
targets.

UNDERSTANDING EFFECTOR ACTIVITY FOR NONHOST
RESISTANCE BREEDING IN CROPS
Studies presented in this review support the fact that effector
recognition plays an important role in resistance or in suscep-
tibility between closely related plant species. In this light, R
genes from related resistant crop species have been used for
many years in breeding programs to provide resistance to spe-
cific isolates of a given pathogen species. Resistance genes from
distantly related species have also been successfully introduced.
For example, the introduction of the barley R gene MLA1 in
immunocompromised Arabidopsis mutants provided resistance to
Blumeria graminis f. sp. hordei (Maekawa et al., 2012). Similarly,
introduction of the tomato Ve1 gene in Arabidopsis conferred resis-
tance to Verticillium spp. (Fradin et al., 2011). This shows that the
mechanism involved downstream of the recognition event can be
conserved between plant species, and even between monocotyle-
donous and dicotyledonous plants. Consequently the transfer
of R genes from a distantly related nonhost into a host plant
could be used as a new source of resistance (Wulff et al., 2011).
However, deployment of a single R gene in a variety usually
leads to resistance breakdown in the field within a couple of
years and merely serves as an example of rapid adaptations that
phytopathogens are capable of in natural and agricultural sys-
tems (Fry, 2008; Palloix et al., 2009; Stukenbrock and McDonald,
2009).

Transcriptomics studies of barley powdery mildew on
immunocompromised Arabidopsis mutants revealed large effec-
tor sets that were similarly expressed early during compatible and
incompatible interactions, but a reduction of effector expression
in the presence of an active MLA1 R gene was observed (Hacquard
et al., 2013). This suggests that a large number of effectors might
be essential during infection and a subset of them may be recog-
nized in nonhost interactions. The identification of indispensable
effectors and their cognate R genes could be a straightforward step
toward resistance breeding in crops. However, recent studies show
that a single point mutation in either NB-LRR or effector genes
can alter the R-gene specificity or the effector function (Brunner
et al., 2010; Segretin et al., 2014; Stirnweis et al., 2014).
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Alternative breeding strategies include modification of host
genes targeted by effectors that are essential for the pathogen to
establish itself, in order to artificially create the incompatibility
observed in divergent host species. These genes are sometimes
referred to as susceptibility (S) genes (Vogel et al., 2002; Pavan
et al., 2010; Lapin and Van den Ackerveken, 2013). Modification
of S genes is thought to be more durable; however, changing host
proteins to avoid effector binding but retain normal functionality
might prove to be very difficult (van Schie and Takken, 2014).

CONCLUSION
NHR is by definition more durable than host resistance; we have
summarized here the recent findings supporting the idea that NHR
is likely to be governed by multiple recognition events. However,
effector recognition in distantly related nonhost plants has not
frequently been observed. Taken together, the recent studies pre-
sented here rather support the original model of NHR proposed by
Schulze-Lefert and Panstruga (2011). To determine involvement
of effectors in NHR in distantly related crops, more comprehensive
population genomics and transcriptomics studies will be required
to advance our understanding of effector occurrence and expres-
sion within and between hosts and nonhosts as well as in pathogen
populations. More studies are also required to examine effector
function and recognition in both closely and distantly related non-
host plants. This work might help answer whether PTI does indeed
play a greater role in NHR in more distal plant species. Alterna-
tively it may find that the inability of the pathogen to modify
crucial host processes due to lack of coevolution, in other words,
the non-evolved resistance might already happen in closely related
hosts. Additionally, we have highlighted two approaches that can
be used to breed resistant plants. Whereas both approaches are
very different, in both cases the study of effector proteins will
be instrumental toward understanding the infection process and
selecting appropriate target genes.
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