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Morphogenesis in plants is usually reconstructed by scanning electron microscopy and
histology of meristematic structures. These techniques are destructive and require many
samples to obtain a consecutive series of states. Unfortunately, using this methodology
the absolute timing of growth and complete relative initiation of organs remain obscure.
To overcome this limitation, an in vivo observational method based on Epi-lllumination
Light Microscopy (ELM) was developed and tested with a male inflorescence meristem
(floral unit) of the handkerchief tree Davidia involucrata Baill. (Nyssaceae). We asked
whether the most basal flowers of this floral unit arise in a basipetal sequence or,
alternatively, are delayed in their development. The growing meristem was observed for
30 days, the longest live observation of a meristem achieved to date. The sequence
of primordium initiation indicates a later initiation of the most basal flowers and not
earlier or simultaneously as SEM images could suggest. D. involucrata exemplarily shows
that live-ELM gives new insights into developmental processes of plants. In addition
to morphogenetic questions such as the transition from vegetative to reproductive
meristems or the absolute timing of ontogenetic processes, this method may also
help to quantify cellular growth processes in the context of molecular physiology and
developmental genetics studies.
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INTRODUCTION

One of the most significant technical advances of the last decades
in plant sciences is the in vivo observation of developmental
processes. In vivo techniques have the great advantage that they
are non-destructive and allow imaging of phenomena as they
occur within the plant body (Grandjean et al., 2004; Sijacic
and Liu, 2010; Hiroi et al., 2013). Several innovations in light
microscopy and fluorescence labeling technologies have offered
amazing insights into developmental processes in meristematic
tissues (Campilho et al., 2006; Reddy, 2008).

While these approaches primarily address gene expression
or hormone flux issues (Grandjean et al., 2004; Heisler et al.,
2005; Vernoux et al., 2011), traditional imaging techniques
such as histology, scanning electron microscopy (SEM), epi-
illumination light microscopy (ELM) and computer tomogra-
phy (CT, Staedler et al., 2013) have succeeded in providing
clear information regarding morphogenesis at the tissue level.
Unfortunately, these techniques are normally destructive and nec-
essarily imply the observation of many individuals in different
developmental states to reconstruct ontogenetic sequences. Thus,
this approach demands some interpretation, since the same devel-
oping structure is not being observed among different samples.

Abbreviations: SEM, scanning electron microscopy; ELM, epi-illumination light
microscopy; FU, floral unit.

Particularly, this can become a complex issue when reconstructing
the development of numerically variable structures, e.g., con-
densed inflorescences known as “floral units” (Claflen-Bockhoff
and Bull-Hereniu, 2013). In floral units (FU), flower primor-
dia usually fractionate in either a centripetal [e.g., umbellets in
Apiaceae, (Bull-Herefiu and Claflen-Bockhoff, 2010)] or centrifu-
gal sequence [e.g., cyathia in Euphorbia, (Prenner and Rudall,
2007)] (Figure 1A). If primordia appear almost simultaneously
the sequence is interpreted from the arrangement and size of
flower primordia, assuming that the smaller ones have been ini-
tiated later (Figure1A). A direct size-age correlation is used
because of the a priori assumption that all flower primordia
share similar growth rates. However, simultaneous initiation
of primordia but a slower growth rate in the basal primor-
dia would create a false impression of centrifugal initiation
(Figure 1B).

This is a case where traditional imaging techniques find their
interpretational limit when trying to elucidate which ontogenetic
process is actually occurring.

The floral unit of Davidia involucrata Bail. (Nyssaceae,
Figure 1F) illustrates this conflict. During development, a num-
ber of flower primordia arise almost simultaneously on the FU
meristem (Figure 1C); those in the equatorial zone are larger than
the most basal ones (Figures 1D,E). As stated above it remains
unclear whether the basal flower primordia in D. involucrata
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FIGURE 1 | Continued

Development of reproductive meristems. (A) The relative size of flower
primordia (filled semicircles) of a reproductive meristem (large dome) is
generally used to reconstruct the sequence of initiation (arrow), which either
occurs toward the center, i.e., “centripetal” (left sketch), or toward the flanks,
i.e., “centrifugal” (right sketch). (B) Different growing rates of simultaneously
initiated flower primordia lead to a false interpretation of the initiation sequence

(here centrifugal). (C-E), SEM images of a developing FU of Davidia involucrata:
(C) Young meristem starting to fractionate flower primordia. (D) Later stage,
with many flower primordia initiated. Note that the most basal primordia (red)
are smaller. (E) A male FU meristem with stamen initiation in equatorial
primorida and delayed development of the most basal flowers (red). All SEM
images are in the same scale, bar line = 500 um. (F) Male inflorescence (FU)
of D. involucrata subtended by two conspicuous extrafloral bracts.

originate later, i.e., in a centrifugal sequence, or grow more
slowly (Figure 1B). This problem can only be solved by in vivo
observation of the same growing meristem. By developing an
automated ELM live imaging technique it was possible to record
the development of a male floral unit meristem of D. involucrata
for a period of 30 days.

MATERIALS AND METHODS

PLANT MATERIAL

A FU meristem of D. involucrata was taken from a tree cul-
tivated in the Botanical Garden at the University of Mainz,
Germany. The meristem, located at the tip of a short branch, was
dissected and mounted with styrofoam in a histological stain-
ing dish while the site of fracture was submerged in tap water
(Figure 2). To prevent dehydration the meristem was directly
covered by a modified probe tube (50ml) that was used as
moisture chamber. The lower side was closed by the water of
the staining dish and the upper side was covered with a latex
membrane that enveloped the objective lens. During observa-
tion, the water in the staining dish was checked and refilled
twice a week.

EPI-ILLUMINATION LIGHT MICROSCOPY (ELM)

Since common binocular microscopes have angular optical paths
that produce a shift of images in a stack, we used a monocu-
lar microscope (Leitz Wetzlar, Figure 2). Photographs were taken
with a Canon Powershot G9 that was mounted on the eyepiece
and triggered by a computer (Canon CameraWindow). For an
automated stacking procedure a stepper motor was adapted to
the focus wheel of the microscope and controlled by a four-
channel motor driver circuit (L298N). For illumination a LED
light was switched on during the image capture process. The
whole stacking cycle was controlled by an open-source micro-
controller (Arduino Leonardo) that was connected to the motor
driver to change the focus. The camera was triggered by an
implemented keyboard source code via a computer and the LED
was controlled via a relay. Each cycle began with the activation
of the LED and was followed by raising the microscope to the
highest focus point. The next two steps that triggered the cam-
era and moved the microscope to a lower focus position were
repeated until the lowest focus point was reached (70 times).
To finish the cycle the LED was turned off. For live imaging
the cycle was triggered and repeated once per hour by a timer
(remote control for cameras). Since the meristem grew, the focus
range was checked twice a week and manually readjusted. After
the meristem became too large the magnification was reduced
from a 10-fold to a 4-fold objective (comp. Figures 3A-F and
G-L). Accordingly, live observation is divided into two time
lapse videos.

Computer
T Timer
Arduino
Leonardo Relay
LED
v
Driver for St
Stepper Motor —» Ntleptper
(L298N) g

FIGURE 2 | Setup (A) and schematic diagram (B) of the automated
arrangement. A branch of Davidia involucrata is placed in a staining dish
with tap water and fixed with two styrofoam blocks (A, Close-up). The tip
of the branch (meristem) is protected by a modified probe tube forming a
moisture chamber (mc). The upper side is covered by a latex membrane
(Im) that envelops the objective lens. The lower side is closed by the water
level (dotted line). ar, Arduino Leonardo (microcontroller); dr, driver for
stepper motor; Im, latex membrane; mc, moisture chamber; ti, timer
remote control.
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FIGURE 3 | Twelve representative images from the time-lapse videos
(Video S1, S2), showing the development of a male FU, from flower (A-D)
and stamen initiation (EF) to anther development (G—K). Due to meristem
growth the magnification was changed between (A-F) (Video S1) and (G-L)

(Video S2). The corresponding bar lines are indicated in (A,G). The white and
black arrows mark two individual primordia at different developmental states.
The outer primordia (black arrow) are clearly initiated later than the inner ones
(white arrow). Videos available at www.spinningspecies.com/davidia.html.

IMAGE PROCESSING

To generate a time-lapse video all images from each stack had
to be combined to one single sharp image (Wilson et al., 2006).
This image processing was performed with CombineZP (http://
www.hadleyweb.pwp.blueyonder.co.uk/), which allows automa-
tion of this process for all image stacks (CZBatch.exe). Here
the soft stack algorithm was applied. To compensate the shift

of photographs due to image processing as well as to the read-
justments of the focus range, all images were arranged by
adjusting and shifting them consecutively with Amira (Mercury
Computer Systems). The resulting time-lapse videos were gen-
erated either with JPGVideo (http://www.ndrw.co.uk/) or by
loading all images into a flash movie (Adobe Flash CS3, www.
spinningspecies.com/davidia.html).
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RESULTS AND DISCUSSION

MERISTEM DEVELOPMENT

The observation began with an undifferentiated meristem
(Figure 3A, Video S1). Flower initiation was clearly seen on
the 3rd day of observation (Figure 3B), when almost all flower
primordia appeared more or less simultaneously. After 2 days
and a considerable enlargement of the FU meristem, additional
primordia arose at its base (Figure 3C, black arrow). In contrast
to the SEM sequence (Figures 1C,D) the most basal primordia
develop faster, since they became larger than the ones in the equa-
torial zone as the FU meristem continued to expand during the
next 5 days (Figures 3D,E). At day 12 the first anther primordia
could be observed in the basal flowers (Figure 3F). These anthers
developed faster than those of the upper flowers (Figures 3G-1,
Video S2). Finally, the anthers covered the whole meristem and
became red (Figures 3),K) to purple (Figure 3L).

The observation of the male FU of D. involucrata performed
here indicates that the smaller size of the proximal flower primor-
dia may be due to basipetal initiation. The initiation of ray florets
in Asteraceae heads exhibits a similar phenomenon; SEM stud-
ies suggested that they emerged later (Harris et al., 1991; Harris,
1995; Bello et al., 2013). However, the alternative “basal delay”
hypothesis discussed here cannot be rejected until an in vivo
observation of a head meristem is performed.

LIVE IMAGING WITH ELM

Our study shows that ELM can be used to obtain detailed struc-
tural information of a growing meristem. This technique could be
an alternative to replica molds (Williams and Green, 1988; Green
et al., 1991; Dumais and Kwiatkowska, 2001; Kwiatkowska, 2006;
Barabé et al., 2007; Szczesny et al., 2009) and confocal microscopy
(Grandjean et al., 2004; Heisler et al., 2005; Campilho et al., 2006;
Reddy, 2008; Sijacic and Liu, 2010; Vernoux et al., 2011), the only
imaging techniques that have been successful in obtaining data
from the development of a single meristem up to now. In contrast
to conventional methods, in vivo techniques are able to ana-
lyze developmental timing and clear up relative initiation issues
(Table 1). While SEM only allows reconstruction of developmen-
tal steps, live imaging reveals the absolute time of organ initiation
and duration of growth. Moreover, this low-cost method is com-
patible with color imaging and is simple: objects do not need to
be fixed, critical point dried or sputtered.

Although ELM has been successfully used for fixed material
(Bartlett et al., 2008; Dadpour et al., 2008, 2011, 2012; Oraei
etal., 2013), live ELM imaging of a developing meristem has been
largely neglected in the past. The main reason may have been the
difficulty in maintaining the tissue healthy for several days.

The spatial resolution of ELM depends on the properties of
the microscope and the stepper motor. Thereby the depth of field
depends on the aperture of the objective for a single image and
on the range of the fine focus for the whole stack. The distance
between single images depends on the physical resolution of the
stepper motor. We used 200 steps per revolution which provided
a resolution of 1 um, but this could be made smaller by driving
the motor with micro-steps.

The temporal resolution of the system is defined by the dura-
tion of a stack, which depends on the speed of the motor

Table 1 | Comparison of different visualizing techniques used in plant
development.

Technique Pros and Cons

Histology + Reveals inner structures
+ Reveals gene expression patterns
— Destructive

SEM + Retrieves high structural details

— Destructive

+ In vivo observation

+ Reveals gene expression patterns

— High cost

— Demands appropriate culturing methods
— Fluorescent labeling required

Confocal microscopy

Replica molds + In vivo observation
+ Retrieves high structural details

— Time-consuming and limited application

Micro-CT + Reveals inner structures
— High cost and time-consuming

— Destructive

ELM + Inexpensive
+ Color imaging

— Destructive

Live-ELM + Inexpensive
+ Color imaging
+ In vivo observation

— Complex image processing

and the exposure time of the camera. Since we used a long
exposure time (1s) and a low motor speed, the stacking pro-
cedure took about 15min. Another serious problem was the
correct illumination of the object. To avoid reflections that would
hamper the stacking procedure we used a weak indirect illu-
mination of the object with long exposure times. Therefore,
the light cone was directed to the upper latex membrane
(Figure 3B, Im).

CONCLUSIONS

By means of this automated live ELM system it is possible to cre-
ate real-time high resolution records of growing plant meristems.
The methodology illustrated here can contribute substantially
to ontogenetic plant imaging, as it provides a potential easy-
to-operate tool for monitoring and quantification of growth
processes. On the morphogenetic level it can give new insights
into organ growth, meristematic transitions, absolute timing of
plant development and morphometric responses to experimental
stimuli (Reinhardt et al., 2003; Bello et al., 2013; Cla8en-Bockhoff
and Bull-Herefiu, 2013). On the cellular level it may help to
analyze cell expansion and division in the context of molecu-
lar physiology and developmental genetic studies (Hamant et al.,
2010; Sijacic and Liu, 2010; Uyttewaal et al.,, 2012; Sassi and
Vernoux, 2013).
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