
ORIGINAL RESEARCH ARTICLE
published: 07 November 2014
doi: 10.3389/fpls.2014.00626

Update on the role of R2R3-MYBs in the regulation of
glucosinolates upon sulfur deficiency
Henning Frerigmann and Tamara Gigolashvili*

Department of Molecular Plant Physiology, BioCenter, Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne,
Germany

Edited by:

Rüdiger Hell, University of
Heidelberg, Germany

Reviewed by:

Masami Yokota Hirai, RIKEN Plant
Science Center, Japan
Meike Burow, University of
Copenhagen, Denmark

*Correspondence:

Tamara Gigolashvili, Biozentrum
Köln, Botanisches Institut,
Universität zu Köln, Zülpicher Str. 47
B, 50674 Köln, Germany
e-mail: t.gigolashvili@uni-koeln.de

To balance the flux of sulfur (S) into glucosinolates (GSL) and primary metabolites
plants exploit various regulatory mechanisms particularly important upon S deficiency
(−S). The role of MYB34, MYB51 and MYB122 controlling the production of indolic
glucosinolates (IGs) and MYB28, MYB29, and MYB76 regulating the biosynthesis of
aliphatic glucosinolates (AGs) in Arabidopsis thaliana has not been fully addressed at −S
conditions yet. We show that the decline in the concentrations of GSL during S depletion
does not coincide with the globally decreased transcription of R2R3-MYBs. Whereas the
levels of GSL are diminished, the expression of MYB34, MYB51, MYB122, and MYB28
is hardly changed in early phase of S limitation. Furthermore, the mRNA levels of these
MYBs start to raise under prolonged S starvation. In parallel, we found that SLIM1 can
downregulate the MYBs in vitro as demonstrated in trans-activation assays in cultured
Arabidopsis cells with SLIM1 as effector and ProMYB51:uidA as a reporter construct.
However, in vivo, only the mRNA of MYB29 and MYB76 correlated with the levels of
GSL at −S. We propose that the negative effect of SLIM1 on GSL regulatory genes can
be overridden by a “low GSL signal” inducing the transcription of MYBs in a feedback
regulatory loop. In accordance with this hypothesis, the expression of MYB34, MYB51,
MYB122, and CYP83B1 was further induced in cyp79b2 cyp79b3 mutant exposed to −S
conditions vs. cyp79b2 cyp79b3 plants grown on control medium. In addition, the possible
role of MYBs in the regulation of essential S assimilation enzymes, in the regulation of GSL
biosynthesis upon accelerated termination of life cycles, in the mobilization of auxin and
lateral root formation at S deficiency is discussed.
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INTRODUCTION
Sulfur (S) depletion leads to the decrease of the internal S levels,
followed by a fast decrease in primary S-containing metabolites
like glutathione as well as reduction in the levels of glucosinolates
(GSLs) (Nikiforova et al., 2003, 2005; Hirai et al., 2004, 2005).
Notably, the effects of S nutrition on GSL biosynthesis have been
observed for years but the exact molecular mechanism by which
changes in S supply modulate GSL metabolism are just starting
to be understood. The backbone of GSLs contains from two to
three S atoms, with one originating from 3′-phosphoadenosine
5′-phosphosulfate, the second one from glutathione, and the third
being present in methionine derived aliphatic GSLs. This is the
reason why the S status needs importantly to be regulated with
GSL biosynthesis.

The analysis of transcript profile of Arabidopsis thaliana plants
grown under S deficient conditions revealed the genes of the S
assimilation pathway (sulfate transporters, cysteine biosynthesis,
methionine biosynthesis and the glutathione cycle) upregulated
in these plants after 48 h of S limitation (Hirai et al., 2003).
Conversely, many genes of GSL biosynthesis were shown to be
downregulated (Hirai et al., 2003; Maruyama-Nakashita et al.,

2003; Nikiforova et al., 2003). Combining the metabolomic and
transcriptomic studies demonstrates that S deficiency leads to
reduced expression of all major GSL biosynthetic genes and,
consequently, a reduction in GSL levels in plants. While decreas-
ing the production of some S containing compounds, the plant
maximizes uptake and utilization of S by increasing the expression
of primary S assimilation genes.

In addition to changes in GSL biosynthesis rate, plants may
also catabolize these secondary compounds. GSL catabolism has
been postulated since the expression levels of genes coding for
myrosinase-like proteins and thioglucosidases were upregulated
in −S (Nikiforova et al., 2003, 2005; Hirai et al., 2004, 2005).
During the myrosinase-catalyzed hydrolysis reaction (Bones and
Rossiter, 1996; Rask et al., 2000), the GSL, which are normally
stored in the vacuoles, need to come into contact (e.g., due to
tissue disruption) with cytosolic myrosinases to be hydrolyzed.
However, under conditions of −S, GSLs might be also degraded in
intact plants by myrosinase-like proteins (Schnug and Haneklaus,
1993; Schnug et al., 1995), which do not require tissue dam-
age. Similar mechanism of GSL degradation has been reported
to be important for the plant innate immunity (Bednarek et al.,
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2009). S released after in vivo GSL hydrolysis can be further
incorporated into essential S-containing compounds and there-
fore maintain the vital processes in plant metabolism. Activation
of GSL catabolism at −S is among the processes of −S response,
which are least understood and cannot be explained directly
by flux alterations because of changed concentrations of S-
containing compounds (Hoefgen and Nikiforova, 2008). Along
with the release of S, the hydrolysis of indolic GSLs (IGs)
allows an increased synthesis of auxin which promotes lateral
root formation and facilitates in this way the uptake of sul-
fate. Although the accumulation of auxin has not been shown
to be induced in S-depletion experiments, several observa-
tions suggest the hydrolysis of IG upon this condition. These
include an activation of genes involved in synthesis of tryp-
tophan (Nikiforova et al., 2003), an activated GSL catabolism
(Nikiforova et al., 2003, 2005; Hirai et al., 2004, 2005) and
strong overexpression of nitrilases (Kutz et al., 2002). Additionally
to that Nikiforova et al. (2003) reported transcriptional acti-
vation of genes involved in synthesis of indolic glucosinolates
(IGs), downstream genes leading to auxin and its derivatives
pointing to a possible flux to IAA biosynthesis under −S
conditions.

Figure 1 summarizes finding of Hirai et al. (2003), Maruyama-
Nakashita et al. (2003), Nikiforova et al. (2003), Li et al. (2013) on
the effect of S deficiency of the transcription of GSL genes. The
duration of S deficiency appears to determine the outcome of the
gene expression, as S deficiency of 24–48 h duration was shown to
inhibit gene expression, whereas under long-term depletion of S
(lasting for 7 days or more), the activation of some GSL biosyn-
thetic genes is registered. Remarkably, Li et al. (2013) has recently
reported the activation of MYB28 as measured after 3 weeks of
mild −S conditions.

The primary and secondary S assimilation is positively con-
trolled by the group of R2R3-MYB transcription factors, which
are also known to regulate GSL biosynthesis (Hirai et al., 2007;
Sønderby et al., 2007; Gigolashvili et al., 2007a; Yatusevich
et al., 2009) (Figure 2). There are 6 different MYBs involved
in GSL regulation, with MYB34, MYB51, and MYB122 con-
trolling the production of IGs and MYB28, MYB29, and
MYB76 controlling the production of aliphatic glucosinolates
(AGs). Remarkably, these MYBs can also stimulate expression
of primary S assimilation enzymes, enhancing substrate sup-
ply for GSL biosynthesis. Although all six MYB factors regulate
adenosine-5′-phosphosulfate reductase (APR) and adenosine-5′-
phosphosulfate kinase (APK), the trans-activation of ATP sul-
furylase (ATPS) was isoform specific in relation to the aliphatic
and indolic group.

S-deficiency response is largely controlled by Sulfur Limitation
1 (SLIM1). SLIM1 is a key transcriptional regulator of sulfate
uptake identified from a genetic screen for Arabidopsis mutants
disrupted in the S-limitation response. SLIM1 is the first tran-
scription factor suggested to regulate plant metabolism upon −S,
by, e.g., activating the sulfate acquisition (Maruyama-Nakashita
et al., 2006). In addition, SLIM1 can probably activate the above
described GSL catabolism process (like a putative thioglucosi-
dase) and has been suggested as a negative regulator of R2R3-MYB
genes controlling production of GSL in plants (Figure 2). In the

FIGURE 1 | Experimental scheme of sulfur (S) starvation showing

number of days at S deficient conditions for four independent

experiments conducted in different groups (Hirai et al., 2003;

Maruyama-Nakashita et al., 2003; Nikiforova et al., 2003; Li et al., 2013;

and present work). The seeds were either sown directly in −S medium
(bright blue), or were grown in S sufficient (dark blue) medium followed by
transfer to −S medium. This figure indicates that the duration of S
deficiency determines the possible outcome on GSL gene expression. The
S deficiency of 24–48 h (Hirai et al., 2003; Maruyama-Nakashita et al., 2003)
was shown to inhibit GSL gene expression. The S deficiency applied for 7
days (present work) revealed absence of change in the expression of MYBs
regulating IGs or downregulation of MYBs regulating AGs. The mild S
shortage (1/10 of S levels) for 21 days revealed the activation of MYB28
along with the downregulation of MYB29 and MYB76 (Li et al., 2013). The
long-term depletion of S (Nikiforova et al., 2003—13 days; Present
work—growth at −S for 28 days) revealed the activation of MYB34,
MYB51, MYB122 and MYB28 and downregulation of MYB29 and MYB76.
Green arrows show increased gene expression. Red arrows show
decreased gene expression. Black arrows indicate no significant change in
the expression of gene. Two types of arrows shown simultaneously are
indicative for the downregulation (↓), upregulation (↑), or no changes (↔) in
the expression of different genes in GSL biosynthesis or regulation. As we
do not possess original expression profiling data (Hirai et al., 2003;
Maruyama-Nakashita et al., 2003; Nikiforova et al., 2003), the changes
shown in this figure can be applied only to some selected genes discussed
by the authors of original manuscripts. Hirai et al. (2003),
Maruyama-Nakashita et al. (2003), Nikiforova et al. (2003) discuss only the
expression of some genes in GSL biosynthesis, whereas Li et al. (2013)
discuss the expression of R2R3-MYB regulators.

support of this hypothesis, it was shown that the −S dependent
decline in the expression of MYB34 was not present any more
in slim1 knockout, pointing to the role of SLIM1 as a nega-
tive regulator of MYB34 upon S limitation. The effect of SLIM1
on regulation of other MYBs was unclear (Maruyama-Nakashita
et al., 2006). Still, a recent review on S assimilation in plants has
suggested that R2R3-MYBs can be regulated by SLIM1 to repress
the GSL biosynthesis (Takahashi et al., 2011). Despite the link that
seems to exist between S and the biosynthesis of GSL (Mugford
et al., 2009, 2010, 2011; Yatusevich et al., 2010; Kopriva et al.,
2012; Huseby et al., 2013), the molecular mechanisms remain less
clear. Particularly little is known about the role of R2R3-MYBs
in the S-deficiency mediated regulation of GSL biosynthesis in
Arabidopsis.
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FIGURE 2 | MYB34, MYB51, and MYB122 are the central regulators of

IG biosynthesis in Arabidopsis controlling transcription of the genes

of core GSL biosynthesis and primary S assimilation. As accumulation
of GSL is strongly diminished upon −S, it has been thought that these
three MYBs along with the MYBs regulating aliphatic GSLs (MYB28,
MYB29, and MYB76—not shown) need to be negatively regulated upon S
deficiency. The SLIM1—a well-known regulator in S deficiency response

has been suggested as an upstream negative regulator of R2R3-MYBs
(Takahashi et al., 2011). In addition, SLIM1 seems to be able to stimulate
GSL degradation by activating myrosinase-like proteins of thioglucosidases,
which are able to degrade GSL and release the S. However, during this
enzymatic hydrolysis of GSL, plants additionally release auxin, which is an
important hormone to accelerate the lateral root formation, which can
allow plant to acquire more sulfate.
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We show that SLIM1 has a potential to downregulate the
expression of R2R3-MYBs regulating GSL biosynthesis in vitro.
However upon sulfate deficiency, the mRNA levels of main
aliphatic and indolic GSL regulators MYB28, MYB34, MYB51,
and MYB122 are either not changed or increased. To explain
this observation we suggested that the negative effect of SLIM1
on GSL regulatory genes can be overridden by a “low GSL sig-
nal” inducing the transcription of MYBs in a feedback regulatory
loop.

RESULTS
SLIM1 IS CAPABLE OF REPRESSING THE TRANSCRIPTION OF
R2R3-MYBs IN CULTURED ARABIDOPSIS CELLS IN VITRO
The S-deficiency regulator SLIM1 is an important regulator of −S
response, which activates the sulfate acquisition and probably
GSL catabolism with latter releasing S from these S-rich com-
pounds. In addition, SLIM1 has been suggested to repress the
GSL biosynthesis, probably by repressing the R2R3-MYBs which
control their biosynthesis. To study how SLIM1 affects expres-
sion of MYBs, qRT-PCR analysis of MYBs in cultured Arabidopsis
cells transiently over-expressing SLIM1 was conducted. Figure 3A
shows that SLIM1 is capable of repressing the expression of
MYB34, MYB51, MYB28, MYB29, and MYB76 in vitro.

Further SLIM-MYB interactions were performed with the help
of trans-activation assay (Berger et al., 2007). In brief, the co-
transformation assay with Pro35S:SLIM1 as an effector construct
and promoters of R2R3-MYBs as reporter was conducted. To
be able to observe the repressing activity of SLIM1 on MYBs
in trans, the promoter used in the assay should be strongly
expressed in cultured cells. Among all promoters tested only
ProMYB51:GUS showed strong GUS staining allowing the usage
of ProMYB51 in this assay. As shown on Figure 3B, the inter-
action of Pro35S:SLIM1 with the ProMYB51:GUS revealed an
inhibitory effect of SLIM1 on the expression of ProMYB51:GUS
cultured Arabidopsis cells (Figure 3B), confirming the poten-
tial of SLIM1 to repress transcription of MYBs. Despite the
insights on the inhibitory role of SLIM in vitro, it’s role on
the expression of R2R3-MYBs in vivo remains to be studied in
future.

R2R3-MYBs REGULATING GLUCOSINOLATE BIOSYNTHESIS ARE
DIFFERENTLY RESPONDING TO −S
To study the adaptive changes in GSL accumulation and MYB
regulation upon S deficiency, wild-type seedlings of Arabidopsis
were seeded out on Hoagland’s media (+S) on agar plates and for
the analyses of S deficiency were further cultivated on −S plates.
Three-week-old Arabidopsis seedlings grown on +S or −S plates
were transferred either to plates with the −S, or to new plates
that maintained the existing S growth conditions and used for the
analysis of expression levels of MYBs and GSL accumulation after
7 days of exposure to −S. This approach enabled us to describe the
changes in the MYB expression after 7 and 28 days of S depletion
conditions. Plants grown at −S for 7 days (“+S to −S”) do not
display any obvious symptoms, whereas plants grown for 28 days
(“−S to −S”) were retarded in growth. Plants transferred from +S
to +S served as a control for the possible induction of genes by
mechanical stress and were used as a calibrator for the relative

FIGURE 3 | SLIM1 is able to suppress the expression of R2R3-MYBs.

(A) Expression of R2R3-MYBs regulating the biosynthesis of IG (MYB34,
MYB51, MYB122) and AG (MYB28, MYB29, MYB76) in cultured
Arabidopsis cells overproducing SLIM1; Data for MYB28, MYB29 and
MYB76 are presented as means ± SE from five independent biological
replicates (n = 5). Data for MYB51, MYB34, and MYB122 are presented as
means ± SE from 7 independent biological replicates (n = 7). Values
marked with asterisks are significantly different from controls (+S to +S)
(Student’s t-test; p < 0.05). (B) Expression of promoter ProMYB51:GUS is
suppressed by Pro35S:SLIM1 in cultured Arabidopsis cells. This experiment
was replicated twice with three independent biological replicates. Promoter
of MYB51 is the only MYB showing strong activity in cultured cells. Other
MYBs regulators controlling the production of IG and AG show no staining
in cultured cells, which hampered the potential visualization of inhibitory
effects of SLIM1 on MYBs.

expression analysis of MYBs. Figure 4 shows that the expres-
sion levels of MYBs regulating IGs is not changed in seedlings
transferred from +S to −S condition, (Figure 4A), although the
amounts of IGs are significantly reduced (Figure 4C). Moreover,
when Arabidopsis seedlings were transferred from −S to −S,
these plants showed significantly increased expression of MYB34,
MYB51 and MYB122 along with the further decreased levels
of IGs. Notably, changes in the expression of MYBs went along
with the increased expression of CYP83B1 in “−S to −S” plants
(Figure 4A). Thus, in “+S to −S” and “−S to −S” plants we
have uncoupling of MYB and SLIM1 (Figure 4D) transcripts
with and GSL (Figure 4C) accumulation levels pointing on addi-
tional regulatory signal interfering with negative regulation of
GSL regulation.

Not only the mRNA levels of MYBs regulating IG biosynthe-
sis but also the mRNA of MYBs regulating AGs were different at
“+S to −S” and at “−S to −S” conditions. The accumulation of
AGs was significantly reduced in seedlings transferred from +S
to −S and even further reduced in “−S to −S” plants (Figure 4C),
which went along with the significantly declined mRNA levels
of MYB29, MYB76 and AG biosynthesis gene CYP79F1 in both
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FIGURE 4 | Sulfur deficiency differently affects the expression of

R2R3-MYBs. (A) Relative transcript levels of MYB34, MYB51, MYB122, and
CYP83B1; (B) Relative transcript levels of MYB28, MYB29, MYB76, and
CYP79F1; (C) Accumulation of indolic (IG) and aliphatic (AG) glucosinolates;
(D) Relative transcript levels of SLIM1. Transcript levels of R2R3-MYBs, GSL
biosynthesis genes (CYP83B1 and CYP79F1) and SLIM1 and GSL contents
were determined by qPCR or UPLC analysis. Three-week-old seedlings
grown on +S or −S plates were transferred to plates with +S and −S,
respectively, grown for 7 more days followed by the analysis of gene

transcript levels (A,B,D) and the sum of IG, AG, and GSL levels (C). Relative
gene expression values are given compared to plants transferred from +S
to +S (+S to +S = 1). Data are presented as means ± SE from four
independent cultivations with three biological replicates (n = 12). (C) For GSL
analysis, two independent cultivations with four biological replicates were
done (n = 8). GSLs were totalled either as the sum of IG (I3M, 4MO-I3M,
1MO-I3M), sum of AG (3MSOP, 4MSOB, 5MSOP, 8MSOO) or sum of all GSL
(IG plus AG). Values marked with asterisks are significantly different from
controls (+S to +S) (Student’s t-test; p < 0.05).

conditions (Figure 4B). Furthermore, the transfer of seedlings
from +S to −S did not negatively affect the expression of MYB28,
whereas “−S to −S” plans manifested significantly increased level
of MYB28. This observation also indicates uncoupling of MYB28
transcript with the level of GSL, pointing to additional regulatory
signal taking over the “−S signal” aiming the negative regulation
of GSL biosynthesis.

Altogether our observation on the expression of MYBs sug-
gest an existence of more complex SLIM1-independent signaling,
which can positively regulate transcription of MYB34, MYB51,
MYB122, and MYB28 along with the negative regulation of
MYB29 and MYB76 at −S. It’s probably not a coincidence that the
expression of two latter regulators of AG biosynthesis was signif-
icantly decreased at −S. One might suggest that AGs containing
one more molecule of S need to be more tightly regulated at −S.
This mechanism will probably allow to channel S into essential for
the plant survival metabolites. In accordance with this suggestion

the levels of AGs were strongly diminished after 7 days of −S than
the levels of IGs. Still, this logic does not explain an increased
expression of MYB28 under the same condition and point to a
specific role of MYB28 at −S, differing from the role of MYB29
and MYB76.

Along with the interesting insights on the different regulation
of MYBs regulating IG and AG biosynthesis we suggested that an
additional regulatory signal positively controlling the transcrip-
tion of MYB34, MYB51, and MYB122 might be a “low IG level”
in plants.

INCREASED EXPRESSION OF MYB34, MYB51, AND MYB122 UPON −S
CAN RESULT FROM THE LOW LEVELS OF IGs TRIGGERING THE
TRANSCRIPTION OF THESE MYBs IN NEGATIVE FEEDBACK LOOP
To address whether low IGs may have signaling function we ana-
lyzed the transcript levels of MYB34, MYB51 and MYB122 and
of IG biosynthetic gene CYP83B1 in the cyp79b2 cyp79b3 mutant
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(Zhao et al., 2002). This mutant is known to be devoid of IG
and therefore an increased level of MYBs especially at “−S to −S”
was expected. Figure 5 shows elevated expression of CYP83B1 in
cyp79b2 cyp79b3 mutant already on +S to +S medium, together
with an induction of MYB51. This observation supports previous
findings on the negative feedback regulation of IG biosynthesis
driven by low IG levels in IG deficient mutants like cyp83b1, atr1
and cyp83b1 atr1 (Celenza et al., 2005). Furthermore, the cyp79b2
cyp79b3 mutant plants revealed a further increase in MYB51,
MYB122 and also of CYP83B1 expression levels at “−S to −S”
conditions. The mRNA levels of MYB34 were also increased at
“−S to −S” but only moderately. In sum, analysis of MYB34,
MYB51 and MYB122 expression in cyp79b2 cyp79b3 mutant
plants grown at “−S to −S” indicated the possible role of “low
IGs signal” in triggering the transcription of these transcription
factors (TFs).

DISCUSSION
The biosynthesis of S-containing GSLs competes with primary
S metabolism. SLIM1 is a S-deficiency induced TF, which was
correlated with the induction of transcriptional changes lead-
ing to a downregulation of GSL biosynthetic genes and with
the induction of genes involved in GSL catabolism (Maruyama-
Nakashita et al., 2006). A decrease in the steady-state levels of
MYB34 in microarray experiments of wild-type vs. slim1 mutants
exposed to S deficiency (Maruyama-Nakashita et al., 2006) sug-
gests that MYBs could be negatively regulated by SLIM1. Based

FIGURE 5 | Expression of MYB34, MYB51, and MYB122 in cyp79b3

cyp79b3 mutant deficient in IG biosynthesis. The relative expression of
MYB34 (A), MYB51 (B), MYB122 (C), and CYP83B1 (D) was measured in
wild-type plants and cyp79b2 cyp79b3 knockout mutant (Col-0 from +S
on +S = 1). Data are presented as means ± SE from two independent
cultivations with three biological replicates (n = 6). Values marked with
asterisks are significantly different from the control (Col-0 from +S on +S)
(Student’s t-test; p < 0.05).

on this observation and on the fact that GSL biosynthesis is nega-
tively regulated at −S, a recent review work has summarized that
MYB transcription factors should be negatively regulated by S
limitation (Takahashi et al., 2011).

Still, the regulation of R2R3-MYBs at −S has not been specifi-
cally addressed. Furthermore, the recent finding of Li et al. (2013)
reported counterintuitive results showing significantly increased
expression of MYB28 upon mild S deficiency. To find out how
R2R3-MYBs controlling IG and AG biosynthesis are regulated
upon S deficiency conditions, the expression of the MYB34,
MYB51, and MYB122 on one side and of the MYB28, MYB29,
and MYB76 on other side was analyzed at two different −S
conditions.

REGULATION OF R2R3 MYBs EXPRESSION AT −S
Whereas both 7 days of “+S to −S” and 28 days of “−S to −S”
caused drastic decrease in GSL accumulation, the R2R3 MYBs
responded differently to these −S conditions. The MYB29 and
MYB76 were repressed in both −S conditions and correlated with
the levels of GSL indicating the positive “feed-forward regulation”
of these two genes at −S. Conversely, the expression of MYB28,
MYB51, MYB34, and MYB122 was not affected after 7 days of −S
but was significantly increased after 28 days. The increased levels
of mRNA of MYBs were counterintuitive, as we expected to find
the correlation of the levels of GSL with the expression levels of
MYBs. To explain this finding we suggested that a specific signal
(activated by −S but SLIM1 independent) is interfering in nega-
tive GSL regulation and activates expression of MYBs (Figure 6A)
for the reasons discussed below.

Several possible scenarios explaining high expression of MYBs
under −S conditions could be suggested. Firstly, we propose that
the downregulation of IG biosynthesis at −S could be overrid-
den by “a low IG signal” inducing the transcription of MYB51
and MYB122 in a feedback regulatory loop. In analogy, “a low
AG signal” can induce the transcription of MYB28 in a feed-
back regulatory loop. The transcription of MYB28, MYB51, and
MYB122 is, therefore, increased to push the production of these
compounds when GSL go below a certain threshold limit (sum-
marized in Figure 6A). Remarkably, and in accordance with this
hypothesis, the expression of MYB34, MYB51, and MYB122 and
of IG biosynthesis gene CYP83B1 was further induced in cyp79b2
cyp79b3 mutant exposed to −S conditions vs. cyp79b2 cyp79b3
plants grown on Hoagland’s medium (Figure 5). Secondly, the
activation of these MYBs at −S could be important for plants
because they regulate essential S assimilation enzymes like APR
and APK. The role of MYBs in the specific regulation of these
enzymes (e.g., APR) could be of special importance upon −S.
Especially because the APR genes are known to be independent
from SLIM1 and can be therefore controlled by MYBs. To fur-
ther address this hypothesis, the primary S assimilation of plants
need to be studied at −S in plants devoid of major MYBs (e.g.,
myb28 myb51 and/or myb28 myb29 myb34 myb51). Thirdly, it
is also possible that at continuous −S when the metabolism of
plants exposed to stress is reprogrammed to the shortening of
the life cycle and speeding up the seed production (Hoefgen and
Nikiforova, 2008). Among the numerous changes happening in
the plant metabolism are positive changes in the expression of
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FIGURE 6 | The final model for the R2R3-MYB-mediated regulation of

glucosinolate biosynthesis upon sulfur stress. (A) The early (7 days
of −S; the dark blue chart) and late (28 days of −S; the bright blue chart)
sulfur stress responses including changes in plant metabolism and
expression of R2R3-MYBs. Only mRNA levels of MYB29 and MYB76 are
downregulated in both early and late S deficiency responses. The
expression of MYB28, MYB34, MYB51, and MYB122 is not changed after 7
days of −S. The expression of MYB28, MYB51, and MYB122 is significantly
increased after 28 days of −S deficiency indicating that the inhibitory signal
of SLIM on MYBs is overridden by “low GSL signal” (shown in detail in
Figure 6B). Solid lines/arrows indicate positive (inducing) effects; Solid or

dashed lines with an aslant dash indicate negative (inhibiting) effects;
Dashed lines/arrows indicate postulated pathways; Dotted lines/arrows
indicate complex changes with many and not highlight pathways affected.
Bold green arrows indicate increased expression of R2R3-MYB gene. Bold
red arrows indicate decreased expression of R2R3-MYB gene. (B) Model
explaining the increased expression of MYBs under continuous sulfur
deficiency. The SLIM inhibitory effect can be overridden by “low GSL
signal,” which positively regulates GSL biosynthesis with a so far unknown
TF or regulatory switch by a negative feedback mechanism. This work
demonstrated, that at −S low IGs can activate the expression of MYBs
regulating their production.
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MYBs required to produce GSL for the seeds (Figure 6A). In this
case the MYB28 and MYB51 could be the important TFs taking
over the responsibility to control the synthesis and the transport
of GSL into the seeds ensuring the survival of plant offspring.
Notably, this hypothesis is not in line with the previous obser-
vations showing decline in the expression of MYB28 (Gigolashvili
et al., 2007b) and MYB51 (Gigolashvili et al., 2007a) on the onset
of bolting. Conversely, the expression of genes closely related
to MYB28 is strongly increased with the onset of flowering in
Brassica juncea (Augustine et al., 2013). To verify this hypothe-
sis it will be necessary to analyse GSL accumulation in seeds of
triple myb28 myb51 myb122 mutant “forced” to complete their
life cycle at −S. Finally and according to the fourth scenario,
which can explain the activation of MYBs controlling IG pro-
duction, the positive regulation of MYB34, MYB51, and MYB122
could be an important mechanism allowing the plant to produce
auxin either via IAOx or via catabolism of IG (Figure 6A) with the
involvement of nitrilases (Kutz et al., 2002). In conformity with
this scenario, the levels of IG are stronger declined than the levels
of IG in “−S to −S” plants (Figure 4C). To prove this hypothesis
the catabolism of IG in vivo at −S needs to be addressed in more
detail. Alternatively, accumulation of auxin at −S in triple myb34
myb51 myb122 mutant in comparison to wild-type plants needs
to be analyzed.

One more possible scenario, which can explain the up-
regulation of MYB28 along with the down regulation of MYB29
and MYB76 at −S has been recently discussed by Li et al. (2013).
This hypothesis is based on the observation that MYB mutually
regulate each other and therefore an increased transcription of
MYB28 may result from the decreased transcription of MYB29
and MYB76 (Sønderby et al., 2010). However, even if this hypoth-
esis is applicable to AG pathway, it cannot be applied to explain
the upregulation of MYB34, MYB51, and MYB122, at “−S to −S”
conditions.

Even if each of the considered hypothesis can explain the
observed positive regulation of R2R3-MYBs at −S alone, the
GSL-S balance in plants is probably controlled in a complex com-
binatorial network integrating many signals (Figure 6A). It can
be therefore assumed that several of suggested scenarios can be
happening simultaneously.

FEEDBACK REGULATORY LOOP IN GSL BIOSYNTHESIS AS A TRIGGER
ACTIVATING TRANSCRIPTION OF R2R3-MYBs UNDER S DEFICIENCY
Our first hypothesis suggested that negative feedback regulation
of GSL is switched upon low GSL status in the cell, resulting in
the activation MYB28, MYB51, and MYB122 at −S. Low-GSL sig-
nal activating the transcription of MYBs seem to act together but
against the SLIM1 to regulate the glucosinolate-sulfur balance
in the cell (Figure 6B). In agreement with this hypothesis, the
expression of MYB34, MYB51, and MYB122 and of IG biosyn-
thesis gene CYP83B1 is induced in cyp79b2 cyp79b3 mutant vs.
wild-type plants and is further stimulated in cyp79b2 cyp79b3
plants exposed to −S conditions (Figure 5).

It was also previously reported that Arabidopsis plants pos-
sess a mechanism reacting to low levels of GSLs as a signal for
induction of their synthesis (Smolen and Bender, 2002; Mugford
et al., 2009). For example, the negative feedback regulation of

the IGs was shown in cyp83b1 mutant having increased levels of
ASA1, TSB1, CYP79B2, CYP79B3, and MYB34 transcripts, sug-
gesting feedback inhibition of expression of MYB regulators by
IGs (or their intermediates) (Smolen and Bender, 2002; Celenza
et al., 2005). Furthermore, expression of CYP83B1 and MYB34
was significantly enhanced in IG deficient cyp79b2 cyp79b3 double
mutant, substantiating the existence of a feedback regulatory loop
(Celenza et al., 2005). Finally, the CYP79B2 and CYP79B3 tran-
scripts were shown to be suppressed in the myb34 cyp83b1 (atr1-2
cyp83b1) double mutant indicating the MYBs to be an important
element of the negative feedback loop. It has been recently sug-
gested that GSL may bind MYB transcription factors and thereby
modulate their activity toward to promoters of biosynthetic genes
(Kopriva et al., 2012).

Despite this counterintuitive finding on the positive regulation
of R2R3-MYBs at S deficiency, the question on the role of such
regulation remains open. We suggest that the specificity of the
response of different MYBs can be achieved by the combinatorial
activation of various signaling components acting upstream of
MYBs. These signaling components include the SLIM1 negatively
regulating GSL accumulation, “low IG signal” activating negative
feedback loop of IG biosynthesis as well as other known −S-
responsive pathways suggested in several studies (Maruyama-
Nakashita et al., 2003; Nikiforova et al., 2003) (e.g., the activation
of GSL catabolism, production of auxin via IG biosynthesis path-
way etc.) and shown in Figure 6A, which build up together a
complex regulatory unit for the response of R2R3-MYB to S
deficiency.

MATERIALS AND METHODS
PLANT MATERIALS AND GROWTH CONDITIONS IN SULFUR
LIMITATION EXPERIMENT
Seeds of wild-type A. thaliana (Col-0) were grown in a
temperature-controlled greenhouse or in a growth chamber in
a light/dark cycle of 8 h/16 h at a day/night temperature of
21◦C/18◦C and 40% humidity.

To analyse the expression of different MYBs in response so −S,
surface-sterilized seeds of wild type or cyp79b2 cyp79b3 plants
were plated on Hoagland’s Media (+S) or corresponding sul-
fur limiting media (−S) [2 mM Ca(NO3)2, 0.5 mM KH2PO4,
0.75 mM MgCl2, 10 mM KNO3, 1.5 μM CuCl2, 2 μM ZnCl2,
10 μM MnCl2, 50 μM H3BO3, 0.1 μM MoO3, 50 μM KCl, 50 μM
Fe-Na-EDTA] or Hoagland’s media (Hoagland and Martin, 1950)
(+S) [2 mM Ca(NO3)2, 0.5 mM KH2PO4, 0.75 mM MgSO4,
10 mM KNO3, 1.5 μM CuSO4, 2 μM ZnSO4, 10 μM MnSO4,
50 μM H3BO3, 0.1 μM MoO3, 50 μM KCl, 50 μM Fe-Na-EDTA]
After 7 and 28 days of growth, the plants were harvested for the
analysis of gene expression and GSL content.

RNA EXTRACTION AND EXPRESSION ANALYSIS
The isolation of RNA, first strand synthesis and qRT-PCR
was performed as described recently (Dean and Annilo, 2005).
Relative quantification of expression levels was performed using
the comparative ��Ct method and the calculated relative expres-
sion values were normalized to Actin2 and to wild-type expression
levels (wild type = 1). Primers used for the qRT-PCR analysis are
shown in Supplemental Table 1.
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HPLC ANALYSIS OF DESULFO-GS
The isolation and analysis of GSL content was performed by
UPLC (Waters, Eschborn) as described recently (Gigolashvili
et al., 2012).

GROWTH OF ARABIDOPSIS THALIANA CELL SUSPENSION AND
OVEREXPRESSION OF SLIM1
A. thaliana dark grown suspension-culture cell line was main-
tained in 50 mL of A. thaliana (AT) medium. The AT
medium contained 4.3 g/L MS basal salts (Duchefa), 1 mg/L 2,4-
dichlorophenoxyacetic acid (2,4-D), 4 mL vitamin B5 mixture
(Sigma-Aldrich) and 30 g/L sucrose (pH 5.8). Cells were gently
agitated at 160 rpm in the dark at 22◦C.

To generate cells transiently overexpressing SLIM1, the full
length coding sequence of SLIM1 was amplified from the cDNA
and cloned into the Gateway pDONR207 vector (Life
Technologies) using primers containing attB1 and attB2 sequences
(SLIM1_attB1:gggacaagtttgtacaaaaaagcaggcttcATGGGCGATCTT
GCTATGTCCGTAGC and SLIM1_attB2: gggaccactttgtacaagaa
agctgggtcAGCTCCAAACCATGAGAAATCATCAC).Theobtained
clone was recombined with the pGWB2 to obtain Pro35S-SLIM1-
pGWB2, which was used for transient expression assay.

Transformation of dark-grown cultured Arabidopsis cells was
performed using the supervirulent Agrobacteria strains LBA4404.
pBBR1MCS.virGN54D containing Pro35S-SLIM1-pGWB2 as
described by Koprivova et al. (2000).

PROMOTER TRANS-ACTIVATION ASSAY WITH SLIM1 AND PROMOTER
OF MYB51 IN CULTURED A. THALIANA CELLS
Promoter of MYB51 gene was generated as reported in
Gigolashvili et al. (2007a). To assess the trans-activation poten-
tial of SLIM1 against promoter of MYB51, the effector construct
with Pro35S-SLIM1-pGWB2 and the promoter reporter uidA con-
struct driven by the promoters of MYB51 gene were used. Thus,
the effector construct in the supervirulent Agrobacterium strain,
the anti-silencing Agrobacteria strain 19 K (Voinnet et al., 1999)
and ProMYB51-uidA-pGWB3i constructs were taken from fresh
YEB plates, grown overnight, resuspended in 1 mL AT medium
and used for cotransfection (Berger et al., 2007). Three clones
of Agrobacterium were mixed in 1:1:1 ratio and 75 μL of this
suspension was added to 3 mL of cultured A. thaliana cells.
After 4–5 days of co-culturing (in the dark, 22◦C, 160 rpm),
cells were treated with 100 μL 5-bromo-4-chloro-3- indolyl-β-D-
glucuronid acid (X-Gluc) solution for 1 h to overnight at 37◦C.
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