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INTRODUCTION
Biotic and abiotic stresses are the main
problems affecting agricultural losses.
Consequently, understanding the mech-
anisms underlying plant resistance or
tolerance helps us to develop fruitful new
agricultural strategies. These will allow
us to face the challenges of producing
food for a growing human population
in a sustainable and environmentally
friendly way.

To compensate for their sessile life and
face a broad range of biotic and abi-
otic stresses, plants have evolved a wide
range of survival and adaptation strate-
gies. Amongst them, higher plants are
capable of inducing some stress “mem-
ory,” or “stress imprinting.” Bruce et al.
(2007) define stress imprinting as genetic
or biochemical modifications induced by a
first stress exposure that leads to enhanced
resistance to a later stress. This phe-
nomenon also known as “priming” results
in a faster and stronger induction of
basal resistance mechanisms upon sub-
sequent pathogen attack, or greater tol-
erance against abiotic stresses (Pastor
et al., 2013). Basal resistance by itself
is too weak to protect against virulent
pathogens, since it constitutes a residual
level of resistance after immune suppres-
sion by the pathogen through co-evolution
(Walters and Heil, 2007; Conrath, 2011).
However, Ahmad et al. (2010) proposed
that priming-inducing stimuli can provide

more effective basal resistance, particu-
larly when an earlier defense response pre-
cedes immune suppression by the invading
pathogen.

Following perception of microbe-
associated molecular patterns (MAMPs),
recognition of pathogen-derived effectors
or colonization by beneficial microbes,
priming can also be induced by treatment
with some natural or synthetic com-
pounds or even by wounding (Conrath,
2011). Through priming plants are able to
induce responses to a range of biotic and
abiotic stresses, providing low-cost pro-
tection in relatively high stress-pressure
conditions. Despite priming phenomena
having been widely described, the molecu-
lar mechanisms of defense priming are still
unclear. Such techniques are now start-
ing to emerge as a promising alternative
for sustainable modern pest management
in the field, since some pesticides have
been shown to actually exert their known
plant health- and yield-increasing effects
through priming (Beckers and Conrath,
2007). From an ecological point of view,
the benefits of priming are clear: rather
than leading to the costly and poten-
tially wasteful activation of defenses, a
metabolic state of alert is induced after an
initial infection, enabling a rapid intense
resistance response to subsequent attacks.
Thus, this strategy appears promising for
crop protection purposes (Walters and
Heil, 2007).

REACTIVE OXYGEN SPECIES: KEY
MOLECULES IN PRIMING
Reactive oxygen species (ROS) such
as hydrogen peroxide, superoxide, and
hydroxyl radicals are inherent by-products
of aerobic metabolism. ROS have not only
the potential to cause oxidative damage
by reacting with biomolecules, but it is
widely accepted that they also have key
roles as signaling molecules that con-
tribute to control of plant development
and to the sensing of the external environ-
ment (Smirnoff, 2005; del Río and Puppo,
2009).

ROS metabolism includes a com-
plex network that interacts closely with
hormonal signaling systems and allows
plants a subtle regulation of developmen-
tal events as well as biotic and abiotic
stress responses. Oxidative stress is the
term widely used to define the imbalance
between ROS production and scaveng-
ing or detoxification (Pastor et al., 2013).
Recently, a mechanism to explain the role
of ROS in cell signaling has been reported.
This model proposes that changes in redox
homeostasis generate specific ROS signals
or ROS waves that, next to other sig-
nals such as hormones and small peptides,
can prime neighboring cells to defense
(Mittler et al., 2011). The afore-mentioned
ROS signal waves are sensed by specific
receptors that can transfer the message to
activate other networks through phospho-
rylation cascades using mitogen-activated
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protein kinases (MPKs) (Colcombet and
Hirt, 2008). ROS have been involved in
priming events induced by biotic and abi-
otic stimuli, although the mechanisms are
so far not well established. One of the
challenges in ROS research is to identify
specific ROS receptors and to establish
how the cell is able to decode endogenous
ROS signals and discriminate between dif-
ferent stimuli giving rise to a very spe-
cific defense response. In addition to ROS,
nitric oxide (NO) is another key signaling
molecule involved in different cellular pro-
cess (Romero-Puertas et al., 2013). It can
induce a priming protective effect against
biotic and abiotic factors through a com-
plex network, probably involving ROS by
inducing antioxidant systems (Sun and Li,
2013), calcium ions and hormones. This
area deserves further research.

MSB: A NOVEL PRIMING AGENT
Menadione sodium bisulphite (MSB) is a
water-soluble addition compound of vita-
min K3, or pro-vitamin K. Menadione,
previously thought to be synthetic, has
been isolated from fungi and phanerogams
(Binder et al., 1989). Moreover, it is a
redox-active compound widely used in
the study of oxidant stress in plants (Sun
et al., 1999), mammals (Shi et al., 1996),
fungi (Emri et al., 1999), and bacteria
(Mongkolsuk et al., 1998). It is promptly
subjected to cell-mediated one-electron
reduction, generating superoxide radi-
cals (O−

2 ) and hydrogen peroxide (H2O2)
(Hassan and Fridovich, 1979). The physi-
ological function of vitamin K in plants is
associated directly with its redox proper-
ties. Quinones, benzoquinones, and naph-
thoquinones such as menadione have
two major chemical properties that ren-
der them reactive in biological systems.
They may attract electrons acting as oxi-
dant agent or electrophile, and in turn
also donate electrons, acting in this case
as reducing agent or nucleophile. The
grade to which these properties contribute
to overall toxicity is highly dependent
on the concentration, and the chemical
and cellular exposure conditions (Castro
et al., 2007). This property can induce
an increased production of ROS in which
vitamin K3 (within the group formed by
vitamins K1 and K2) seems to be more
active in the induction of oxidative stress.
It has been proposed that vitamin K3

could be converted once metabolized into
vitamin K1, but this has not yet been
demonstrated (Manzotti et al., 2008). The
most studied of such compounds, vitamin
K1 or phylloquinone, has been detected
inside thylakoid membranes as an elec-
tron carrier and key element within the
photosystem I redox chain. A recently pub-
lished review suggests the role of vitamin
K as mobile electron carrier in the trans-
port chain transferring electrons across
the plasma membrane, and the possi-
bility that this molecule contributes to
the maintenance of a suitable redox state
of some important proteins embedded
in the plasma membrane with protec-
tive functions against stress (Lüthje et al.,
2013). Phylloquinone is a metabolite of
the shikimate pathway widely used by
plants and bacteria but not by animals, for
this reason they must obtain some com-
pounds including vitamin K through their
diet. The physiological function of vita-
min K in plants is directly linked to its
redox properties deriving from the pres-
ence of a double quinone functional group
on the naphthalenic ring. In fact, simi-
larly to many other quinones and naph-
thoquinones, vitamin K can be reduced
and reoxidized cyclically by several sub-
stances and enzyme pools (Döring and
Lüthje, 1996; Lütthje et al., 1998). Given its
hydrophobic nature, menadione can eas-
ily cross biological membranes, allowing it
to enter organelles and and catalyze super-
oxide, hydrogen peroxide, and hydroxyl
radical production (Hassan and Fridovich,
1979; Lehmann et al., 2012). A recent
study in Arabidopsis roots using mena-
dione as oxidant showed that ROS are
produced by an electron transport chain
via mitochondria and plastids (Lehmann
et al., 2012). Furthermore, De Nisi et al.
(2006) observed that menadione is capable
of increasing the activity of H+-ATPase.
This enzyme uses energy derived from ATP
hydrolysis to pump protons from the cyto-
plasm to the apoplast, which creates and
maintains a negative membrane poten-
tial and an acid pH in the extracellular
space. This electrochemical gradient can
control many aspects of transport through
the plasma membrane, such as secondary
transport control of cell turgor, stomatal
closure (Elmore and Coaker, 2011) or the
movement of sucrose and amino acids
to the cytoplasm by symport transporters

(Morsomme and Boutry, 2000). This lat-
ter might be involved in regulating the
activity of this H+-ATPase of the plasma
membrane during the defensive response
against pathogens (Elmore and Coaker,
2011).

MSB, first studied as a plant growth reg-
ulator (Rama-Rao et al., 1985), has been
widely demonstrated to function as plant
defense elicitor against several pathogens
in a number of different plant species
(Borges et al., 2003, 2004, 2009; Liu et al.,
2006; Pushpalatha et al., 2007; ShengYi
et al., 2007). Changes in gene expression in
response to 0.2 mM MSB at different time-
points post-treatment, using microarray
technology, show that MSB leads to a
unique molecular mark by inducing differ-
entially the expression of 158 genes. More
up-regulated genes were included in cat-
egories such as “response to stress” than
the background, and the behavior of these
genes in different treatments confirmed
their role in response to biotic and abiotic
stress (Borges et al., 2009). Different appli-
cations of MSB in agriculture have been
patented (Borges-Pérez and Fernández-
Falcón, 1996; Borges-Rodríguez et al.,
2008; Borges-Rodríguez and Borges-Pérez,
2010) and several MSB-based commercial
formulations have been marketed.

MSB was capable of inducing resis-
tance by priming in Arabidopsis against
the virulent strain Pseudomonas syringae
pv. tomato DC3000 (Borges et al., 2009).
Previous studies in oilseed rape plants
(Brassica napus cv Bristol) showed that
MSB-pretreatment 24 h before inocula-
tion with Leptophaeria maculans exhibited
rings of necrotic mesophyll cells surround-
ing the invasive hyphae of L. maculans,
after staining with aniline blue in lactophe-
nol. In water pre-treated control plants,
unobstructed L. maculans hyphal growth
was observed at infection sites, with no
visible host reaction (Liu et al., 2006).
However, staining assays of MSB-treated
Arabidopsis plants did not fit with the
generation of ROS or SAR in planta,
despite the fact that a significant up-
regulation of genes involved in ROS detox-
ification was found in the microarray.
In this interaction, MSB induced resis-
tance by priming without inducing necro-
sis or visible damage (Borges et al., 2009).
Furthermore, a western blot analysis of
the known SA signaling pathway marker
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FIGURE 1 | Hypothetical model on the effects of MSB on plant defense

mechanisms against biotic and abiotic stresses. MSB treatment is
capable of inducing resistance by priming through of a slight oxidative burst
which develops a ROS-dependent signaling network and inducing the

accumulation of latent defense proteins such as ROS-scavenging and
transcription factors, among others, resulting in a primed state and an
enhanced stress response. Abbreviations: TFs, transcription factors;
ROS-scavenging, reactive oxygen species-scavenging.

PR1 (Dong, 2001) showed that MSB does
not itself induce PR1 protein expres-
sion. Contrastingly, 3 days after inocu-
lation, MSB-pretreated plants enhanced
more than two-fold PR1 expression as
compared with mock plants (Borges et al.,
2009). Finally, the promoter analysis of
MSB-induced cis-elements in the microar-
ray clearly showed that most of the genes
up-regulated by MSB contain the G-box
in their promoter regions. Some interest-
ing functions were represented among the
individual up-regulated genes, such as glu-
tathione S-transferases, transcription fac-
tors (including putative regulators of the
G-box) and cytochrome P450s (Borges
et al., 2009). In Figure 1 we propose a
hypothetical model that summarizes the
possible mode of action of MSB as priming
agent in planta.

Another notable effect of MSB is its
capacity to induce a reduction in insect
growth rate (unpublished). Interestingly,
a recent MSB application has been
patented for controlling Trioza erytreae
and Diaphorina citri, the psyllid vectors
carrying the genus Candidatus Liberibacter
that are bacterial causal agents of the
most serious citrus disease known as
Huanglongbing (HLB) (Borges-Rodríguez
and Borges-Pérez, 2010).

Another effect of menadione on abi-
otic stresses is to induce tolerance to
chilling stress in maize seedlings (Prasad
et al., 1994). These authors suggested
that exogenous application of mena-
dione and H2O2 to the seedlings might
induce a mild oxidative stress leading to
chilling tolerance (Prasad et al., 1994).
A very recently published work from
our laboratory has focused on the MSB
effect at the seed stage (Jiménez-Arias
et al., forthcoming). Firstly, we found
that soaking Arabidopsis seeds in 20 mM
MSB induces salt tolerance by priming
an early plant adaptation and proline
accumulation. In addition, it was found
that MSB primes the expression of key
transcription factors such as Zat12, one
of the key zinc-finger proteins encoded
by a multi-gene family and involved
in a ROS-dependent signaling network
against abiotic stress (Mittler et al., 2011).
Interestingly, it was also found that
MSB leads to a hypomethylation state in
the promoter region of genes involved
in the biosynthesis (PYRROLINE-5-
CARBOXYLATE SYNTHETASE 1, P5CS1)
and degradation (EARLY RESPONSIVE
TO DEHYDRATION 5, ERD5) of proline,
demonstrating that one of the mecha-
nisms underlying this early adaptation to

salt stress is an epigenetic mark (submitted
for publication).
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