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Predictive sulfur metabolism – a field in flux
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The key role of sulfur metabolites in response to biotic and abiotic stress in plants, as
well as their importance in diet and health has led to a significant interest and effort in
trying to understand and manipulate the production of relevant compounds. Metabolic
engineering utilizes a set of theoretical tools to help rationally design modifications that
enhance the production of a desired metabolite. Such approaches have proven their value
in bacterial systems, however, the paucity of success stories to date in plants, suggests that
challenges remain. Here, we review the most commonly used methods for understanding
metabolic flux, focusing on the sulfur assimilatory pathway. We highlight known issues
with both experimental and theoretical approaches, as well as presenting recent methods
for integrating different modeling strategies, and progress toward an understanding of flux
at the whole plant level.
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INTRODUCTION
Sulfur is an essential nutrient; available in the soil as sulfate, plants
are able to reduce inorganic sulfur, for use in a large number of
primary and secondary metabolites.

Unsurprisingly, the study of reductive sulfur assimilation by
plants is often pragmatically motivated; Brassicaceae especially
have large sulfur requirements, and the quality and yield of oilseed
rape is known to be affected by low sulfur availability (De Pascale
et al., 2008). Furthermore, the importance of sulfur metabolites
in diet and health (Sekiz et al., 1975; Tawfiq et al., 1995; Tripathi
and Mishra, 2007; Traka and Mithen, 2011), their intrinsic eco-
nomic value (Li et al., 2004), and conferred tolerance to abiotic
or biotic stresses in the plant (Gatehouse, 2002; Bednarek et al.,
2009; Yadav, 2010) has led to an interest in manipulating their
production.

A tenet of metabolic engineering is that with sufficient under-
standing of the components, reactions, and fluxes through a
pathway we can rationally design modifications that improve, for
instance, the production of a desired metabolite. This interest in,
and comparative lack of examples of successful sulfur pathway
engineering in plants suggests that approaches thus far have failed
to significantly advance our understanding of sulfur assimilation
at some level.

For plants, all is flux; all biological responses are ultimately
to direct the movement of molecules and energy through the
metabolic network in the most appropriate way, often acting to
buffer changes in metabolite levels (Mugford et al., 2011). Con-
sequently, understanding the control of flux is a pre-requisite
for successful metabolic engineering. Unfortunately, this dynamic
property is comparatively difficult to measure and interpret, and
thus requires the integrated involvement of theoretical biology.
Mathematical modeling has developed a number of approaches
to understand control of flux through metabolism, ranging
from theoretical frameworks to integrate experimental results, to
highly detailed kinetic models of small fragments of a pathway,

to constraint-based methods which can encompass the entire
reactome.

Here, we review the most commonly used methods for studying
flux, focusing on the sulfur assimilatory pathway, not just because
of the commercial and scientific importance of sulfur, but because
it illustrates well the more general challenges and weaknesses
of each approach. Starting with the difficulties of experimen-
tal attempts to partition control of flux among the enzymes of
the pathway, we then consider small scale kinetic models of sev-
eral pathway branches, and flux balance analysis (FBA), as well
as recent approaches to integrate different modeling strategies,
and progress toward an understanding of flux at the whole plant
level.

SULFUR ASSIMILATORY PATHWAY
The sulfur assimilatory pathway has been recently reviewed (Taka-
hashi et al., 2011). In summary; sulfate is taken up from the
environment, facilitated by specialized transporters. A large frac-
tion of the sulfate is stored in the vacuole, while sulfate in
chloroplasts or the cytosol is activated by ATP sulfurylase, form-
ing adenosine 5′-phosphosulfate (APS). APS may then either
be further phosphorylated by APS Kinase (APK) or reduced
by APS Reductase (APR). Phoshorylation of APS forms 3′-
phosphoadenosine 5′-phosphosulphate (PAPS), which acts as a
promiscuous donor of activated sulfate, and is involved in the
modification of a variety of proteins, saccharides, and secondary
metabolites, including desulfo-glucosinolates. In primary assimi-
lation, APS is instead reduced in the plastid to sulfite by APR, and
then to sulfide by sulfite reductase (SiR). Sulfide in chloroplasts,
mitochondria and the cytosol, is incorporated into O-acetylserine
(OAS) to form cysteine, the precursor of all organic compounds
containing reduced sulfur. Cysteine in the plastid may be con-
verted into glutathione (GSH) via γ-glutamyl-cysteine, or reacts
with phosphohomoserine, to form cystathionine, which can then
be converted to methionine via homocysteine. Excess sulfite can
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be oxidized in the peroxisome back to sulfate by sulfite oxidase
(Figure 1).

SULFUR FLUX CONTROL – MEASURE BY MEASURE
Efforts to experimentally characterize flux through the assimila-
tion pathway are based on accumulation of radiolabelled 35S, from
35SO4, into various metabolite pools (Koprivova et al., 2000; Vau-
clare et al., 2002; Mugford et al., 2011). Assuming that over the
timescale considered there is no significant turnover of the most
downstream metabolites measured, this allows calculation of sul-
fur flux from SO4 through the pathway. By measuring alterations
to flux distribution under genetically (Khan et al., 2010; Mugford
et al., 2011), and environmentally (Koprivova et al., 2000; Vauclare
et al.,2002; Scheerer et al.,2010) perturbed conditions it was hoped
that insights could be gained into the control of flux through the
sulfur assimilation pathway, and into various organic molecules.

CONTROL IS DISTRIBUTED
To quantify control of flux, Vauclare et al. (2002) applied
the metabolic control analysis (MCA) framework (for a

comprehensive introduction to MCA, see Fell, 1992). Based on
flux correlation with decreased APR activity, they calculated that
APR has a large proportion of the total control of flux through
the assimilatory pathway. From this, and several qualitative stud-
ies (Tsakraklides et al., 2002; Loudet et al., 2007), the hypothesis
arose that APR is the key enzyme, controlling flux through the
reductive assimilation pathway (Vauclare et al., 2002; Yoshimoto
et al., 2007; Davidian and Kopriva, 2010; Scheerer et al., 2010).
Consistent with this idea, APR has been shown to be highly reg-
ulated by demand for reduced sulfur products (Lappartient et al.,
1999; Kopriva, 2006; Davidian and Kopriva, 2010; Takahashi et al.,
2011), internal sulfate levels (Lee et al., 2012), and other environ-
mental signals (Jost et al., 2005; Koprivova et al., 2008; Lee et al.,
2011; Huseby et al., 2013).

More recently, however, a number of different enzymes have
also been implicated in altered flux through the sulfur reduction
pathway; Khan et al. (2010) found that SiR knockdown plants have
a strongly reduced flux to thiols, variation in ATPS has been shown
to cause altered flux of sulfur into primary metabolism (Koprivova
et al., 2013), and reduction in APK increased flux through primary

FIGURE 1 |The sulfur assimilation pathway. Dashed line indicates
putative transport of APS. Metabolite abbreviations; APS, adenosine
5′-phosphosulfate; Cys, cysteine; Cyst, cystathionine; γ-GluCys,
γ-glutamyl-cysteine; GSH, glutathione; GS-X, glutathione conjugate; Hcy,
homocysteine; Met, methionine; OAS, O-acetylserine; OPH,
O-phosphohomoserine; PAPS, 3′-phosphoadenosine 5′-phosphosulfate;
R-OH, hydroxylated precursor; Ser, serine; Thr, threonine. Enzyme

abbreviations; APK, APS kinase; APR, APS reductase, ATPS,
ATP sulfurylase; CBL, cystathionine β-lyase; CGS, cystathionine
γ-synthase; γ-ECS, γ-glutamyl-cysteine synthetase; GSHS,
glutathione synthetase; GST, glutathione-S-transferase; MS,
methionine synthase; OAS-TL, OAS(thiol)lyase; SAT, serine
acetyltransferase; SiO, sulphite oxidase; SiR, sulphite reductase;
TS, threonine synthase.
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assimilation (Mugford et al., 2011). These results suggest that flux
control is more complicated than had been previously thought,
and extends beyond the APR enzyme. This distribution of con-
trol among multiple enzymes is a common feature of metabolic
pathways (Thomas and Fell, 1998).

DIFFICULTY OF APPLYING MCA FRAMEWORK TO EXPERIMENTS
Distributed control of flux means that a quantitative understand-
ing, as attempted by Vauclare et al. (2002), becomes increasingly
important for successfully engineering overproduction of metabo-
lites. However, the results of this kind of perturbation experiment,
in which the activity of an enzyme is artificially increased or
decreased, are difficult to interpret within the MCA framework
due to regulatory interactions, and non-linear changes in control
coefficients with enzyme activity.

Metabolic control analysis defines flux control coefficients
(FCCs) as the sensitivity of flux through the pathway to an
infinitesimal change in a given enzyme activity from the refer-
ence state (Figure 2). These coefficients can be interpreted as a
measure of the ‘rate limitingness’ of the enzyme to flux though the
pathway, and potentially used to identify targets for overexpression
to increase flux to metabolites of interest.

To determine FCCs experimentally, by measuring the effect of
a genetic perturbation on flux through the pathway requires the

FIGURE 2 | Flux control coefficient varies non-linearly with enzyme

activity, confounding experimental approximations. Flux control
coefficients (FCCs) can be computed from the gradient of the ln(flux)
versus ln(activity) curve for a given enzyme. Most experimental attempts to
approximate the FCC at the reference state measure the change in flux
through the pathway with change in an enzyme activity. Larger
experimental perturbations result in less accurate estimates, and knock
down experiments can be expected to overestimate FCC at the reference
state. Ideally multiple perturbations should be made, and the curve fitted to
the data, allowing a point estimate of FCC at the reference state.

assumption that no other enzyme activities change in compensa-
tion (Fell, 1992). However, demonstrating that this is the case is
challenging (Vauclare et al., 2002; Scheerer et al., 2010), and given
the complex regulation of the pathway by a number of metabolites
(Takahashi et al., 2011) is generally unlikely to be true. Although
for some simple purposes this may not matter, it does hinder
an understanding the root causes of changes of flux through the
network, limiting the applicability of any findings.

Flux control coefficients vary non-linearly with enzyme activ-
ity. Therefore although a large experimental change in enzyme
activity may result in significantly altered flux through the path-
way, this does not mean that the enzyme actually has a high
control coefficient in the unperturbed state (Figure 2). Ideally
several magnitudes of perturbation would be made, and used to
estimate the control coefficient in unperturbed conditions, how-
ever, this has not been done to date within the sulfur community
(Vauclare et al., 2002; Khan et al., 2010). Furthermore, this means
that experimentally approximated control coefficients cannot be
directly compared to each other, as genetic perturbations vary in
magnitude (Vauclare et al., 2002; Khan et al., 2010). It is there-
fore still not quantitatively clear which reactions have how much
control of sulfur assimilation, even under controlled experimental
conditions.

This non-linearity also means that MCA is not a robust pre-
dictive framework for engineering; control coefficients at the
reference state are not necessarily likely to reflect control coeffi-
cients under genetically altered conditions. Interestingly, Scheerer
et al. (2010) found that distribution of FCCs through the sulfur
assimilation pathway varied with environmental conditions and
organism, likely due to altered enzyme expression levels. This
highlights the importance of a predictive understanding of the
controlling steps through the pathway, not only to more robustly
predict the effect of genetic alterations, but also due to the imprac-
ticality of experimentally determining control distributions under
all environments of interest.

SMALL IS BEAUTIFUL – KINETIC MODELING
Although experimental investigations into control of flux through
the pathway have been useful in qualitatively identifying impor-
tant enzymes, this approach is limited, as multiple controlling
enzymes and non-linear dynamics make predicting behavior away
from measured conditions difficult. This was clearly seen in the
analysis of poplar roots, where despite an increase in APR activ-
ity in many conditions, only few resulted in higher flux (Scheerer
et al., 2010). Furthermore, the data generated experimentally is
not easily integrated into a formal framework for analysis. In
contrast, the MCA framework is easily applied to kinetic mod-
els of the pathway, which can be used not only to calculate
control coefficients at the reference state more accurately than
is possible experimentally, but also to simulate altered condi-
tions. The difficulty lies, however, in producing an appropriate
model.

Kinetic modeling of metabolic pathways is well established (see
Curien et al., 2014 for a practical introduction). Models comprise
a coupled system of ordinary non-linear, differential equations,
functions of metabolite concentrations and kinetic parameters,
which specify the rate of a reaction. A given pathway system can
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be mapped onto these equations, and solved numerically using a
range of freely available software (Copeland et al., 2012).

In sulfur metabolism, this has allowed not only dissection of
flux control distribution at several points (Curien et al., 2003;
Mendoza-Cózatl and Moreno-Sánchez, 2006), but also predic-
tions about how environmental perturbation changes control
of flux to GSH (Mendoza-Cózatl and Moreno-Sánchez, 2006),
and suggested engineering interventions to modify levels of sul-
fur metabolites. For example Curien et al. (2003) were able to
predict that overexpressing cystathionine-γ-synthase would allow
overproduction of methionine, without compromising threonine
production, and that this was therefore a better strategy than
knocking down threonine synthase (TS).

However, although kinetic models have yielded useful insights
into flux through the sulfur assimilation pathway, the rarity of
models published in this area hints at the difficulties of the
approach.

PROBLEMS WITH KINETIC MODELS
Kinetic models require detailed understanding of the biologi-
cal pathway under study, at the structural, thermodynamic, and
kinetic levels. In many instances the pathway structure is well
known, and thermodynamic data are either available (Goldberg
et al., 2004), or can be calculated approximately (Jankowski et al.,
2008), however, incomplete knowledge of enzyme kinetic param-
eters remains as the biggest hurdle to model building, particularly
given that isoenzymes in different tissues or compartments often
display different kinetics. Strategies for determining parameter
values can be broadly split into measurement, and estimation
approaches.

Parameter measurement
For small models, it may be possible to measure all kinetic param-
eters required. Curien et al. (2003) were able to measure the
kinetic parameters of TS and cystathionine-γ-synthase for their
model of the branch point of methionine and threonine biosyn-
thesis in vitro, however, the large experimental effort required
(Stitt and Gibon, 2014; Tummler et al., 2014; van Eunen and
Bakker, 2014) makes this a comparatively rare example; it is more
common to search the literature to recover the majority of param-
eters required (Rohwer, 2014). Several databases (Schomburg
et al., 2004; Wittig et al., 2012) facilitate the search for previously
determined kinetic parameters, however, generally poor cover-
age, particularly for allosteric regulation, means that it is accepted
practice to use whichever parameters are available, either from
experiments under differing conditions, or from orthologous pro-
teins (Rohwer, 2014). The validity of transferring parameters in
this way is generally unclear (Stitt and Gibon, 2014), the excep-
tion being enzyme activity parameters, which are acknowledged
to vary so greatly with environment, that they should be measured
under the condition of interest (Curien et al., 2014). There has
been some speculation that advances in robotics, and microflu-
idics could lead to ‘omics style investigations’ into enzyme kinetics
(Gibon et al., 2004; Sjostrom et al., 2013), however, a reliable high
throughput pipeline has not to our knowledge been developed,
and poor coverage is likely to remain a problem in the immediate
future.

Kinetics databases highlight a further shortcoming of kinetic
parameters measured in vitro; the assay conditions used are typ-
ically far from the in vivo environment seen by the enzyme. This
problem of non-physiological in vitro assay media can be seen in
Curien et al. (2003), where the use of high phosphohomoserine
media, likely contributed to a poor initial model fit to data. Initia-
tives to design more in vivo like in vitro media, are underway for
several microorganisms (Garcia-Contreras et al., 2012; Goel et al.,
2012; Leroux et al., 2013), but to the best of our knowledge, no such
effort has been reported in plants, where the problem is exacer-
bated by the presence of multiple subcellular compartments, each
with a unique environment. In the sulfur assimilation pathway,
three out of the five reactions converting sulfate to cysteine occur
in multiple compartments (Takahashi et al., 2011) and thus likely
require multiple sets of kinetic parameters.

Parameter estimation
The difficulties of obtaining experimentally measured kinetic
parameters mean that in the vast majority of published models,
at least some parameters are fitted by minimizing the difference
between model predictions (e.g. of flux through the path), and
experimental measurements (Tummler et al., 2014). Aside from
the experimental difficulties of acquiring data, especially within
subcellular compartments, one problem with this approach is
overfitting; assigning parameter values to fit the data more pre-
cisely than is justified. As a result, many models parameterized
using a top down approach lose predictive accuracy as condi-
tions move away from those at which the parameters were fitted
(Hawkins, 2004).

A number of approaches have been developed based on sensi-
tivity of model predictions to parameter values to analyze parame-
ter identifiability, and calculate confidence intervals for parameters
and predictions (Cotten and Reed, 2013; Kravaris et al., 2013).
However, these problems have not always been rigorously con-
sidered in the literature. Mendoza-Cózatl and Moreno-Sánchez
(2006) ignored possible interaction terms between parameters in
their sensitivity analysis, and Curien et al. (2003) provide no indi-
cation of the robustness of their predictions to error in measured
parameter values.

Parameter reduction
Given the problem of estimating a large number of unknown
parameters with limited data, most models tend to use lumped,
empirical rate laws, which aim to capture the salient kinetic fea-
tures, whilst minimizing the number of parameters required,
rather than complicated, mechanistic laws (Heijnen, 2005; Curien
et al., 2014; Rohwer, 2014). However, although this simplifica-
tion can be useful (Costa et al., 2011), it inevitably leads to a loss
in model fidelity. Curien et al. (2003) found that even replacing
a ping-pong rate law with relatively complex Michaelis–Menten
kinetics led to their model losing the experimentally identified
insensitivity to cysteine concentration of cystathionine γ-synthase.

SMALL MAY NOT BE SUFFICIENT
A minimal model of a subsystem should include everything that
affects the internal variables of the model (Curien et al., 2014),
however, in practice, lack of biological knowledge can make it
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difficult to know what has to be included. Within the sulfur assim-
ilation pathway, it is still often unclear which metabolites regulate
enzyme activity allosterically, although it seems that many poten-
tially can (Vauclare et al., 2002; Hopkins et al., 2005; Rouached
et al., 2009; Hubberten et al., 2012; Lee et al., 2012). This means
that, for example, even a small model of the APR, APK branch
point must be large enough to consider the reduction pathway
at least as far as GSH production, as this feeds back to regulate
APR (Vauclare et al., 2002; Hacham et al., 2014) and possibly APK
through changes in redox environment (Ravilious et al., 2012).
This results in the requirement for a large number of kinetic
parameters.

The extent to which models can be simplified and still remain
useful is unclear, as an overly reduced model system can result in
inaccurate predictions. For example ignoring phosphohomoser-
ine production meant that Curien et al. (2003) were only able
to identify a subset of the intervention steps that have since been
experimentally shown to increase methionine production Lee et al.
(2005) and Mendoza-Cózatl and Moreno-Sánchez (2006) demon-
strated the importance of considering demand for GSH, as well as
its production by finding that including demand results in large
changes in the control coefficients of synthesizing reactions.

It is possible that a much larger metabolic network has to
be considered when modeling sulfur assimilation than just the
pathway itself, for example, GSH production at night is limited
by availability of glycine, as its major source is photorespira-
tion (Noctor et al., 1999). Integration of sulfur assimilation within
the wider metabolic network is demonstrated by the tight coor-
dination of sulfur uptake with nitrogen and carbon availability
(Koprivova et al., 2000; Kopriva and Rennenberg, 2004; Nero
et al., 2009), and the broad range of conditions which have been
shown to alter enzyme activities in the pathway (Kopriva et al.,
1999; Koprivova et al., 2008; Huseby et al., 2013). For instance
cysteine links both nitrogen and carbon metabolism to sulfur
assimilation via OAS. OAS availability is likely a dominant factor
in regulating the production of cysteine by controlling forma-
tion of the cysteine synthase complex (Birke et al., 2012), and so
its availability has to be considered in models of cysteine syn-
thesis. Furthermore, as at least under some conditions, cysteine
availability limits production of downstream metabolites such as
methionine and GSH (Noctor et al., 1996), and these downstream
metabolites can regulate upstream components (Vauclare et al.,
2002; Hacham et al., 2014), therefore this link to wider metabolism
should be acknowledged whichever part of the sulfur pathway is
being studied.

THE DIFFICULTY WITH LARGER MODELS
Unfortunately, as model size increases, the problems of unknown
parameters, and rate laws become extremely difficult to overcome.
To generate a large kinetic model, simplifying assumptions about
parameter values (Smallbone and Mendes, 2013), and rate laws
(Alves et al., 2008), are frequently made, but this often results in
poor model quality away from the fitted conditions (Chakrabarti
et al., 2013) and so is of limited predictive value.

Other kinetic modeling frameworks acknowledge the inher-
ently greater unknowns of a large system, and use the available
data to define a cadre of related models, or sample feasible

parameter space, reflecting either structural, or parameter and
rate law uncertainty in their predictions (Famili et al., 2005; Steuer
et al., 2006; Tran et al., 2008; Miskovic and Hatzimanikatis, 2011).
Some of these approaches have resulted in the production of large
kinetic models, in the order of 200 metabolites and reactions
(Khodayari et al., 2014), but do not scale well to bigger models.
As model size increases, parameter space expands enormously
(Zamora-Sillero et al., 2011), resulting in prohibitive computa-
tional requirements (Link et al., 2014). As such, kinetic modeling
currently does not scale to the size that is likely to be required
to gain a holistic understanding of flux through sulfur related
pathways.

BIGGER IS BETTER – GENOME SCALE MODELS
In contrast, constraint-based modeling provides a number of
hugely scalable, largely parameter free methods for understanding
flux through large metabolic networks (Lewis et al., 2012; Bordbar
et al., 2014a). Here we focus on FBA as the most commonly used
constraint-based method, the only method currently applicable to
the genome scale, and a foundation for of many closely related
variants.

Flux balance analysis (Varma and Palsson, 1994) is a powerful
technique to estimate internal flux distributions within a large-
scale network using only the structure of the reaction network,
an objective function, and a small number of measured nutri-
ent uptake fluxes as constraints, (for a practical introduction,
to the method, see Grafahrend-Belau et al., 2014). By assuming
metabolic steady state, and that fluxes are distributed so as to
maximize some cellular objective, feasible flux space is reduced,
and a subset of biologically likely internal flux distributions are
predicted.

Flux balance analysis can be directly used in a number of areas,
including understanding metabolic efficiency (Chen and Shachar-
Hill, 2012), interpreting ‘omics data’ (Toepfer et al., 2013; Simons
et al., 2014b), and predicting novel metabolic pathways (Hay and
Schwender, 2011; Bordbar et al., 2014b). Furthermore extensions
to the method interpret structural properties related to control of
flux (Notebaart et al., 2008; Sajitz-Hermstein and Nikoloski, 2013),
predict how flux distribution changes in response to genetic and
environmental changes (Segre et al., 2002; Cheung et al., 2014),
and suggest optimal intervention strategies to engineer metabolite
production (Zomorrodi et al., 2012; Tomar and De, 2013; Ohno
et al., 2014), as well as having a number of other applications (Papp
et al., 2011; Bordbar et al., 2014a). This array of methods has been
recently reviewed (Lewis et al., 2012), but continues to rapidly
expand.

PROBLEMS WITH GENOME SCALE MODELS
In spite of a profligacy of analytical methods and well-documented
metabolic engineering case studies in microbes, application of FBA
based methods to plants has been limited to date. This is likely
due to challenges in genome scale model construction, and the
assumptions of the FBA method, as will be discussed below.

Model construction
Despite a large number of available tools (Kim et al., 2012), con-
struction of a genome scale model is not a facile task, and
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particularly in plants remains a laborious undertaking (Saha et al.,
2014; Simons et al., 2014a). Here we highlight some of the diffi-
culties biological unknowns cause in creating even single cell type
models of plants.

Although primary metabolism is well understood, the gener-
ally poorer understanding of the huge plant secondary metabolism
(Shachar-Hill, 2013), is reflected in the focus of models published
to date (Poolman et al., 2009; Williams et al., 2010; Cheung et al.,
2013). The problem of unknown metabolites was recently high-
lighted for sulfur metabolites in particular (Glaeser et al., 2014),
and the potentially large numbers of missing reactions suggested
by the large proportion of genome content with unknown func-
tion (Seaver et al., 2012) could also adversely affect prediction
quality.

All published genome scale models of plant metabolism include
compartmentalization to some extent, but the problem of biolog-
ical unknowns again raises concern over the quality of some of the
assignations. Wide variation between models in which compart-
ments reactions occur (Poolman et al., 2009; Masakapalli et al.,
2010; Mintz-Oron et al., 2012) suggests that despite databases of
subcellular enzyme location (Heazlewood et al., 2007; Sun et al.,
2009), and parsimony based methods for extending database cov-
erage (Mintz-Oron et al., 2012), the number of reactions which
can be confidently assigned to particular compartments, and in
particular to the vacuole, is probably much lower than occur in
reality (Krueger et al., 2011). This reflects the current difficulty of
experimentally determining subcellular reaction location.

Additionally, transport between compartments is often poorly
understood; even in well-studied parts of metabolism, it is not
always clear which metabolites can move between compartments,
and the energetic costs of transport reactions are rarely known.
This is shown in the sulfur assimilatory pathway by the only recent
identification of PAPS transport between the plastid and cytosol
(Gigolashvili et al., 2012).

FBA analysis
Objective functions. In addition to defining network structure,
some biological knowledge of the system is required to choose an
appropriate objective function. One commonly used objective is
maximization of biomass production (Feist and Palsson, 2010),
which is equivalent to finding the most efficient way of generat-
ing biomass from nutrients taken up by the cell (Zarecki et al.,
2014). Although maximization of biomass is generally accepted
as a good objective function for bacteria in log phase, the accu-
racy of fluxes predicted using it vary with environment, growth
phase, and species, suggesting that this is not always appropriate
(Schuster et al., 2008; Feist and Palsson, 2010).

A number of other objective functions have been considered
in the literature, most often tied either explicitly or implicitly to
efficiency in some regard (Chen and Shachar-Hill, 2012), although
recently other objectives have been proposed which either aim to
maximize growth rate (Zarecki et al., 2014) or minimize conflict
with ‘omic data’ (Becker and Palsson, 2008; Collins et al., 2012).
Much literature assessing the performance of these various differ-
ent objective functions in correctly predicting observed growth,
gene essentiality or flux states in bacteria (Burgard and Maranas,
2003; Schuetz et al., 2007; Feist and Palsson, 2010), and plants

(Cheung et al., 2013) has been produced, however, it is not clear
that organisms act to optimize a single objective function, even
under constant conditions (Nagrath et al., 2007; Schuetz et al.,
2012; Harcombe et al., 2013).

Combined objectives give the most accurate predicted flux
distributions, and both in bacteria (Schuetz et al., 2012), and
Eukaryotes (Nagrath et al., 2007), cell fluxes apparently occupy
a Pareto surface, at which several objectives trade-off against each
other, as further increase in one objective leads to a decrease in
another. It is not obvious how this problem of competing objec-
tives can be addressed by FBA; defining an appropriate objective
function becomes much more difficult, because although frame-
works for optimizing multiple objectives are well established (Oh
et al., 2009; Zomorrodi and Maranas, 2012; Zomorrodi et al.,
2014), the lack of a predictive understanding of which trade-offs
are likely to apply, limits their application, as it is likely to vary
with species, environment, and developmental state.

Degeneracy. Another problem is degeneracy, FBA is often unable
to distinguish between a number of flux distributions, which all
maximize the objective function. Although this degeneracy of pre-
dicted distributions is often considered undesirable (Pozo et al.,
2014), it is in fact likely to reflect biological reality. Degenerate
optimal solutions are consistent with robustness, which seems to
be a common feature of biological networks (Kitano, 2004), and
a population of cells is unlikely to be adequately described by a
single flux distribution (Labhsetwar et al., 2013).

The real difficulty associated with degenerate flux distributions
is that experimentally measured fluxes in bacteria often actu-
ally exist in suboptimal regions, which allow large flux variation
(Schuetz et al., 2012; Harcombe et al., 2013; Roman et al., 2014)
without further compromising the best combination of assumed
objectives. Although the extent to which apparent sub-optimal
distributions arise through the averaging of measured fluxes in a
heterogeneous population, rather than sub-optimality in a single
cell is unclear, the FBA assumption that flux is distributed in order
to maximize an objective function may only be a useful approx-
imation in specific cases. FBA based methods are beginning to
appear that address the need to consider only partially optimized
distributions (Wintermute et al., 2013), but sub-optimal distribu-
tions are a major challenge for the FBA framework, which given the
sophistication and size of plant metabolic networks, and numer-
ous differentiated cell types, is likely to be particularly relevant to
their study.

In spite of these difficulties, an increasing number of stud-
ies have accurately predicted flux distributions in plants cells
using FBA (Dal’Molin et al., 2010a; Williams et al., 2010; Hay
and Schwender, 2011; Saha et al., 2011; Cheung et al., 2013). Pre-
cise external flux measurements have been shown to be more
important for accurately predicting internal fluxes than the objec-
tive function used (Cheung et al., 2013), and although current
approaches to use transcriptomics data to improve flux pre-
diction accuracy have been recently questioned (Machado and
Herrgard, 2014), fluxomics data generated by metabolic flux analy-
sis [recently reviewed from a sulfur perspective by Rennenberg and
Herschbach (2014)] can be used to add additional constraints, and
further improve prediction accuracy (Hay and Schwender, 2011).
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It seems only a matter of time before FBA is used to facilitate
engineering outcomes in plant cell cultures.

SULFUR AND BEYOND – TOWARD WHOLE PLANT FLUX
MODELS
There is great interest in bridging the gap between the long tra-
dition of eco-physiological agronomic models (Keurentjes et al.,
2013), and molecular models. Combined, these two approaches
could provide an integrated understanding of control of econom-
ically important traits (Baldazzi et al., 2012; Poorter et al., 2013).
This fusion requires the ability to model differentiated tissue, at
least at the organ level, and consider dynamic changes to flux.

Genome scale plant models to date have generally focused on
cell cultures grown in suspension (Williams et al., 2010; Cheung
et al., 2013) and so bypassed the problem of differentiation, but
a particular challenge in whole plant models is the large number
of cell types present. Although attempts to address this remain
fairly crude, and restricted to models of only a few cell types or
organs, the framework, in which proteomics data is integrated
into constraint-based models to generate tissue, or organ specific
sub-models (Mintz-Oron et al., 2012), which can then be cou-
pled together, and used to predict fluxes through heterogeneous
material (Dal’Molin et al., 2010b; Grafahrend-Belau et al., 2013) is
established.

The greatest limitation of the FBA method is that it can only
consider a steady state snapshot of flux distribution, especially as
the extent to which metabolism at the whole plant level is ever in
steady state remains unclear. Although recent work in plants has
studied responses to light–dark cycles using a purely FBA approach
(Cheung et al., 2014), and FBA metrics have been identified which
correlate with metabolite concentration dynamics (Reznik et al.,
2013), the application of a purely FBA based methodology to
study dynamic systems is limited. In bacteria, there has been a
movement toward integrating FBA models within a kinetic model.
This is used to dynamically modify the exchange reaction con-
straints while FBA is repeatedly performed, allowing internal flux
dynamics to be approximated (Varma and Palsson, 1994; Mahade-
van et al., 2002). Output from the FBA simulation may then be
fed back, to modify the kinetic model, or not (Feng et al., 2012).
This hybrid modeling approach allows prediction of genome scale
fluxes over time (Vargas et al., 2011; Jouhten et al., 2012), with
only a few parameters required to capture input and output fluxes,
biomass prerequisites, and maintenance costs.

This dynamic flux balance analysis (dFBA) approach makes
a pseudo steady state assumption, that intracellular metabolism
equilibrates several orders of magnitude faster than extracellular
changes. Although it is likely that the pseudo steady state assump-
tion might not be justified in all aspects of plant metabolism, a
recent extension to the method potentially relaxes this requirement
(Birch et al., 2014). Grafahrend-Belau et al. (2013) recently used
dFBA to link a multi organ model of barley metabolism with an
agronomic model, and provide insight into the dynamic interac-
tion of source and sink organs in relation to senescence. Although
fairly unsophisticated in the models used and interaction frame-
work considered, the first steps toward a whole plant model have
been taken, and dFBA is likely to find wider application in the
coming years.

CONCLUDING REMARKS
Flux is perhaps the most important metric to determine for a prac-
tical, applied understanding of plant biology. Through the study of
sulfur metabolism we have seen that to understand flux requires
a fusion of experimental and modeling approaches, but that to
date, no integration of the two satisfactorily solves the problem to
provide an accurate predictive framework. Each approach consid-
ered continues to advance independently both theoretically and
experimentally, but currently perhaps most promising is the join-
ing of kinetic and constraint-based approaches, which although
an immature field, has the potential to finally deliver a useful facet
of the famous ‘virtual plant.’
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