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Leaf senescence is the last stage of leaf development and is accompanied by cell death.
In contrast to senescence in individual organisms that leads to death, leaf senescence
is associated with dynamic processes that include the translocation of nutrients from old
leaves to newly developing or storage tissues within the same plant. The onset of leaf
senescence is largely regulated by age and internal and external stimuli, which include the
plant hormone ethylene. Earlier studies have documented the important role of ethylene
in the regulation of leaf senescence. The production of ethylene coincides with the onset
of leaf senescence, whereas the application of ethylene to plants induces precocious
leaf senescence. Recently, many studies have described the components of ethylene
signaling and biosynthetic pathways that are involved in modulating the onset of leaf
senescence. Particularly, transcription factors (TFs) integrate ethylene signals with those
from environmental and developmental factors to accelerate or delay leaf senescence.This
review aims to discuss the regulatory cascade involving ethylene andTFs in the regulation
of onset of leaf senescence.
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INTRODUCTION
Leaf senescence occurs alongside color changes in leaves and is
an easily visible phenomenon in the life cycle of a plant. Leaf
senescence involves degradation of chlorophylls, carbohydrates,
lipids, proteins, and nucleic acids and contributes to the mobi-
lization of such nutrients from old leaves to growing or storage
tissues. The importance of the efficient regulation of leaf senes-
cence was reported by a study on the domestication of cultivated
wheat. Loci tightly linked to the enrichment of several impor-
tant nutrients in cereal grains encode transcription factors (TFs)
that regulate the onset of leaf senescence in ancestral wheat
plants (Uauy et al., 2006; Waters et al., 2009). The onset of leaf
senescence is largely affected by the age of the plant, but is
also influenced by changes in environmental conditions. Ethy-
lene and other plant hormones accelerate or delay leaf senescence
so that plants are better able to cope with severe environmental
changes and achieve the maximum yield of seed and biomass
production (Buchanan-Wollaston et al., 2003; Lim et al., 2007;
Figure 1).

Upon leaf senescence, physiological events progress, which
include chlorophyll breakdown, photosynthesis cessation, protein
and nucleic acids degradation, catabolites and nutrients transport,
and cell death responses, and the genes responsible for each event
are dynamically up- or downregulated at the transcriptional level.
Earlier studies have identified a group of senescence-associated
genes (SAGs) that are induced upon senescence, and recent stud-
ies have shown specific roles for SAGs in leaf senescence (Gan
and Amasino, 1997; Buchanan-Wollaston et al., 2005; Veyres et al.,
2008). Indeed, treating plants with ethylene induces the expression
of SAG genes (Jing et al., 2002). Dynamic changes in the expres-
sion profile of genes during leaf senescence can be visualized at

the transcript and metabolite levels (Lin and Wu, 2004; Buchanan-
Wollaston et al., 2005; van der Graaff et al., 2006; Balazadeh et al.,
2008; Breeze et al., 2011; Watanabe et al., 2013).

Extensive transcriptome analysis revealed differential expres-
sion patterns of various families of TFs during leaf senescence
(Lin and Wu, 2004; Buchanan-Wollaston et al., 2005; Breeze et al.,
2011). Analysis of the promoters of differentially expressed genes
during leaf senescence has found enrichment of certain TF motifs
such as, NO APICAL MERISTEM, Arabidopsis TRANSCRIPTION
ACTIVATION FACTOR, CUP-SHAPED COTYLEDON (NAC),
APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF), and
WRKY families (Breeze et al., 2011). Genetic and molecular studies
also provide strong evidence that the activities of NAC, AP2/ERF,
WRKY, and several other TF family members influence the onset
of leaf senescence (Buchanan-Wollaston et al., 2003; Lim et al.,
2007). Significantly, ethylene modulates the activity of these TFs.
These findings illustrate that ethylene-mediated modulation of TF
activities underlie the onset of leaf senescence.

This review aims to provide a detailed overview of the regula-
tory cascade involving ethylene and TFs in the regulation of the
onset of leaf senescence. This review first provides a brief overview
of the role of ethylene in this process and then focuses on the
detailed actions of NAC, AP2/ERF, WRKY, and other developmen-
tal regulators (Table 1). Emphasis is also placed on how ethylene
modulates TF activities and interacts with other hormones during
the development of leaf senescence.

ETHYLENE AS A REGULATOR OF THE ONSET OF LEAF
SENESCENCE
Earlier studies reported the involvement of ethylene in the regula-
tion of leaf senescence. Ethylene production is associated with the
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FIGURE 1 |The regulation of the onset of leaf senescence. Leaf
senescence occurs alongside color changes from green to yellow and
brown. The onset of leaf senescence is affected by the age of the plant, but
is also influenced by environmental conditions, developmental cues,
ethylene, and other plant hormones. Nutrients derived from senescing
leaves are translocated to newly growing or storage tissues within the
same plant.

onset and progression of leaf senescence in various plant species
(Abel et al., 1992). Application of ethylene to leaves stimulates
senescence, but inhibitors of ethylene perception or biosynthe-
sis delay leaf senescence (Aharoni and Lieberman, 1979; Kao
and Yang, 1983). Furthermore, downregulation of an ethylene
biosynthesis gene in tomato plants led to a decrease in ethy-
lene production and substantially delayed leaf senescence, clearly
suggesting that ethylene, produced as plants age, accelerates leaf
senescence (John et al., 1995).

Knowledge of the ethylene signaling pathway will help to
clarify the regulatory gene network involved in the onset of
leaf senescence. As shown in Figure 2A, receptors localized
on the endoplasmic reticulum (ER) membrane detect ethylene
(Kendrick and Chang, 2008). Since these receptors repress the
activity of downstream signaling components in the absence of
ethylene (Figure 2B), ethylene reverses this repression and thus
activates the signaling pathway. The signal generated follow-
ing the detection of ethylene is subsequently transmitted to a
complex composed of CONSTITUTIVE TRIPLE RESPONSE1
(CTR1), a Raf-like serine/threonine protien kinase, and ETHY-
LENE INSENSITIVE2 (EIN2), which is an integral ER membrane
protein (Ju et al., 2012; Qiao et al., 2012). In the absence of
the ethylene signal, CTR1 directly phosphorylates the cytoso-
lic carboxyl-terminal domain of EIN2 (EIN2-C), whereas the
ethylene signal prevents this phosphorylation and results in cleav-
age of EIN2-C, which then translocates to the nucleus and
activates ETHYLENE-INSENSITIVE3 (EIN3) and EIN3-LIKE
(EIL) TFs. The ethylene signal stabilizes EIN3 and EIL TFs,
which are short-lived proteins in the absence of ethylene (Guo
and Ecker, 2003; Potuschak et al., 2003), consequently induc-
ing various physiological responses including the onset of leaf
senescence.

Mutations in components of the ethylene signaling pathway
exhibit differential timing of the onset of senescence, clearly sug-
gesting that these components are involved in the regulation of

such process. Consistent with the repressive role of ethylene recep-
tors including ETHYLENE RESISTANT1 (ETR1) in the signaling
pathway, a dominant-negative version of the receptors, such as the
etr1 mutation, delays leaf senescence in Arabidopsis and petunia
plants (Grbić and Bleecker, 1995; Wang et al., 2013). In contrast,
an Arabidopsis null mutant that lacks two of five ethylene recep-
tor genes has a phenotype consistent with constitutive ethylene
response as well as accelerated leaf senescence (Qu et al., 2007). A
pivotal role of EIN2 in the positive regulation of leaf senescence
was documented by characterizing the genetic loci controlling the
onset of leaf senescence in Arabidopsis (Oh et al., 1997; Kim et al.,
2009). EIN3 positively regulates the onset of leaf senescence, since
the ein3 mutant delays leaf senescence whereas overexpression of
EIN3 gene accelerates it (Li et al., 2013; Kim et al., 2014). In con-
trast, the ctr1 mutant does not induce precocious leaf senescence
and the involvement of CTR1 in the regulation of leaf senescence
remains unclear. (Jing et al., 2005).

ETHYLENE-REGULATED NAC AND OTHER TFs CONTROL THE
ONSET OF LEAF SENESCENCE
Several reports have attempted to elucidate the mechanism
through which the ethylene signaling pathway modulates NAC
activities during the onset of leaf senescence (Kim et al., 2009,
2014; Li et al., 2013; Figure 2A). The NAC TF family includes
105 members in Arabidopsis that are important during devel-
opment and stress responses (Mitsuda and Ohme-Takagi, 2009).
Among NAC genes upregulated during leaf senescence, six NAC
genes including ORESARA1 (ORE1)/ANAC092, ANAC019, NAC-
like activated by AP3 (AtNAP), ANAC047, ANAC055, and ORE1
SISTER1 (ORS1)/ANAC059 are activated through the EIN2-
dependent pathway (Kim et al., 2009, 2014; Figure 2A). ORE1
positively regulates the onset of leaf senescence and activates the
expression of ORE1 itself, other NAC, nuclease, a sugar trans-
porter, and various SAG genes (Kim et al., 2009; Balazadeh et al.,
2010; Breeze et al., 2011; Matallana-Ramirez et al., 2013; Rauf
et al., 2013). ORE1 interacts with GOLDEN-LIKE2 (GLK2), the
GARP family TF required for chloroplast development (Rauf
et al., 2013). ORE1 attenuates GLK2 activity and may stop the
maintenance of chloroplast development. ORE1 activity is modu-
lated at both transcriptional and post-transcriptional levels (Kim
et al., 2009; Figure 2A). ORE1 mRNA is targeted by the micro
RNA miR164. The decrease in miR164 content with leaf aging
is largely dependent on the EIN2 gene and thus leads to the
accumulation of ORE1 mRNA in old leaves. Recent studies have
further revealed that EIN3 directly activates expression of ORE1
(Li et al., 2013; Kim et al., 2014). Interestingly, EIN3 represses
three miR164 precursor genes and is also involved in both pos-
itive and indirect regulation of the ORE1 gene (Li et al., 2013).
Consistent with the molecular evidence, ORE1 expression is
reduced in ein3 mutant during leaf senescence. These observations
suggest that EIN3, miR164, and ORE1 comprise a regulatory net-
work that operates downstream of the ethylene signaling pathway
(Figure 2A).

Among other NAC genes downstream of EIN2, the AtNAP
gene is under the direct control of EIN3, whereas ORS1,
ANAC019, ANAC047, and ANAC055 genes are activated in
an EIN3-independent manner (Kim et al., 2014; Figure 2A).
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Table 1 |Transcription factors (TFs) regulating the onset of leaf senescence.

Namea Accession numberb,c,d,e,f Family Functiong Reference

ARF2a AT5G62000b ARF Positive Ellis et al. (2005), Lim et al. (2010)

NtERF3 D38124d AP2/ERF Positive Koyama et al. (2013)

AtERF4 AT3G15210b AP2/ERF Positive Koyama et al. (2013)

AtERF8 AT1G53170b AP2/ERF Positive Koyama et al. (2013)

SlERF36 SGN-U564952c AP2/ERF Positive Upadhyay et al. (2013)

RAV1 AT1G13260b AP2/ERF Positive Woo et al. (2010)

GmRAV NM_001250671d AP2/ERF Positive Zhao et al. (2008)

EDF1 AT1G25560b AP2/ERF Negative Chen et al. (2011)

EDF2 AT1G68840b AP2/ERF Negative Chen et al. (2011)

SUB1A LOC_Os09g11480e AP2/ERF Negative Fukao et al. (2012)

CBF2 AT4G25470b AP2/ERF Negative Sharabi-Schwager et al. (2010)

CBF3 AT4G25480b AP2/ERF Negative Sharabi-Schwager et al. (2010)

CRF6 AT3G61630b AP2/ERF Negative Zwack et al. (2013)

CIB Glyma11g12450f bHLH Positive Meng et al. (2013)

EIN3 AT3G20770b EIN3 Positive Li et al. (2013), Kim et al. (2014)

GLK2 AT5G44190b GARP Negative Rauf et al. (2013)

GBF1 AT4G36730b GBF Positive Smykowski et al. (2010)

GAIa AT1G14920b GRAS Negative Chen et al. (2014)

GRF3 AT2G36400b GRF Negative Debernardi et al. (2014)

Knotted1 AY312169d homeodomain Negative Ori et al. (1999)

KNAT2 AT1G70510b homeodomain Negative Hamant et al. (2002)

FYF AT5G62165b MADS Negative Chen et al. (2011)

MYBR1/MYB44 AT5G67300b MYB Negative Jaradat et al. (2013)

NAM-B1 DQ871219d NAC Positive Uauy et al. (2006)

AtNAP AT1G69490b NAC Positive Guo and Gan (2006), Zhang and Gan (2012)

ORE1 AT5G39610b NAC Positive Kim et al. (2009)

ANAC019 AT1G52890b NAC Positive? Hickman et al. (2013)

ANAC055 AT3G15500b NAC Positive? Hickman et al. (2013)

OsNAP LOC_Os03g21060e NAC Positive Zhou et al. (2013), Liang et al. (2014)

ORS1 AT3G29035b NAC Positive Balazadeh et al. (2011)

VNI2 AT5G13180b NAC Negative Yang et al. (2011)

JUB1a AT2G43000b NAC Negative Wu et al. (2012)

TCP2 AT4G18390b TCP Positive Schommer et al., 2008

TCP3 AT1G53230b TCP Positive Schommer et al. (2008), Koyama et al. (2013)

TCP4 AT3G15030b TCP Positive Schommer et al. (2008), Koyama et al. (2013)

TCP5 AT5G60970b TCP Positive Koyama et al. (2013)

TCP10 AT2G31070b TCP Positive Schommer et al. (2008), Koyama et al. (2013)

TCP13 AT3G02150b TCP Positive Koyama et al. (2013)

TCP19 AT5G51910b TCP Negative Danisman et al. (2012)

TCP20 AT3G27010b TCP Negative Danisman et al. (2012)

TCP24 AT1G30210b TCP Positive Schommer et al. (2008)

WRKY6 AT1G62300b WRKY Positive Robatzek and Somssich (2002)

WRKY53 AT4G23810b WRKY Positive Miao and Zentgraf (2007)

WRKY54 AT2G40750b WRKY Negative Besseau et al. (2012)

WRKY57 AT1G69310b WRKY Negative Jiang et al. (2014)

WRKY70 AT3G56400b WRKY Negative Besseau et al. (2012)

SlZF2 ADZ15317d Zn finger Negative Hichri et al. (2014)

aAbbreviations: GIBBERELLIC ACID INSENSITIVE (GAI) and JUNGBRUNNEN1 (JUB1). Other TF names are defined in the main text. b,c,d,e,fAccession numbers: The
sequence data can be found in bArabidopsis Genome Initiative, cSol genomic network, dGenbank, eMichigan State University Rice Genome Annotation Project, and
fPhytozome libraries. gFunction: Positive and negative indicate TFs that accelerate and delay leaf senescence, respectively.
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FIGURE 2 | Scheme of the ethylene signaling pathway leading to the

onset of leaf senescence. (A) In mature leaves, the detection of ethylene
activates the downstream signaling pathway leading to SAG induction and
leaf senescence. (B) In young and mature leaves, the receptors constitutively
repress the downstream signaling in the absence of ethylene. (C) In young
leaves, the detection of ethylene activates the downstream signaling
pathway, but does not itself induce leaf senescence. Note that EIN2 and
EIN3 are active and induce some ethylene responses, but not leaf

senescence by an uncharacterized mechanism, in which some regulators of
leaf development are likely involved. Arrows and bars at the end of each line
show positive and negative regulations, respectively. Solid lines and black
gene names designate the active form, while dotted lines and gray gene
names indicate the inactive form. Several transcription factors (TFs) and
signals such as jasmonic acid are not drawn in this scheme owing to space
limitations. A detailed description on the scheme is presented in the main
text.

AtNAP positively regulates the onset of leaf senescence and
activates a component of the abscisic acid (ABA) signaling path-
way, which promotes both leaf senescence and stress responses
(Guo and Gan, 2006; Zhang and Gan, 2012). A rice homolog
gene, OsNAP1, acts as a positive regulator of leaf senescence
and its product directly targets an ABA biosynthesis enzyme
gene (Zhou et al., 2013; Liang et al., 2014). ORS1 positively
regulates the onset of leaf senescence (Balazadeh et al., 2011).
ANAC019 and ANAC055 seem to function under the control of
C-REPEAT/DEHYDRATION RESPONSIVE ELEMENT BIND-
ING FACTORS (CBFs) of AP2/ERF TFs and other TFs during
stress response and leaf senescence (Hickman et al., 2013; See
below). A role for ANAC047 in leaf senescence is yet to be
determined.

Five additional NAC genes including VND-INTERACTING2
(VNI2) are thought to function downstream of ORE1 and AtNAP
(Kim et al., 2014). VNI2 negatively regulates the onset of leaf
senescence via the direct activation of COLD REGULATED (COR)
and RESPONSIVE TO DEHYDRATION (RD) genes that are also
responsive to environmental stimuli (Yang et al., 2011). By con-
trast, the functions of other NAC genes remain to be clarified. The
regulation of EIN2, EIN3, NAC TFs, and the ABA response path-
way are likely to be important in the integration of various inputs
from diverse environmental factors as well as the age of the plant
(Figure 2A).

ETHYLENE-RESPONSIVE TFs IN THE REGULATION OF ONSET
OF LEAF SENESCENCE
Ethylene activates a substantial number of AP2/ERF genes, and
several of these regulate the onset of leaf senescence. The

AP2/ERF TFs comprise 146 members that include both acti-
vators and repressors of transcription (Mitsuda and Ohme-
Takagi, 2009). A subgroup of transcriptional repressors with
the ERF-associated repression (EAR) motif, such as NtERF3,
AtERF4, and AtERF8, positively regulate the onset of leaf senes-
cence in Arabidopsis (Ohta et al., 2001; Koyama et al., 2013;
Figure 2A). The finding of EIN2-dependent AtERF4 expres-
sion in leaves suggests that there is AtERF4 activity down-
stream of EIN2 (Fujimoto et al., 2000). AtERF4 and AtERF8
are degraded by a proteasomal-dependent pathway, but accu-
mulate within the plant as a result of increasing age (Koyama
et al., 2013). These ERF TFs directly repress expression of the
EPITHIOSPECIFIER PROTEIN/EPITHIOSPECIFYING SENES-
CENCE REGULATOR (ESP/ESR) gene, a negative regulator of
the onset of leaf senescence (Miao and Zentgraf, 2007; Koyama
et al., 2013). The ESP/ESR transcript is highly expressed in
young leaves, but decreased in old ones (Koyama et al., 2013).
ESP/ESR inhibits the activity of WRKY53, a positive regulator
of the onset of leaf senescence, at both transcriptional and post-
translational levels (Miao and Zentgraf, 2007; See below). These
findings imply that AtERF4 and AtERF8 activate WRKY53 by
removing the ESP/ESR-mediated inhibition. Therefore, AtERF4,
AtERF8, ESP/ESR, and WRKY53 form another regulatory net-
work for the onset of leaf senescence (Figure 2A). Moreover,
AtERF4 and AtERF8 repress the expression of AUXIN/INDOLE-
3-ACETIC ACID (AUX/IAA) genes. AUX/IAA TFs generally
suppress auxin responses that include positive effects on leaf
senescence. Therefore, it is possible that the AtERF4- and
AtERF8-mediated AUX/IAA repression enhances auxin response
and then stimulates the onset of leaf senescence. In addition,

Frontiers in Plant Science | Plant Physiology November 2014 | Volume 5 | Article 650 | 4

http://www.frontiersin.org/Plant_Physiology/
http://www.frontiersin.org/Plant_Physiology/archive


Koyama Ethylene and transcription factors in leaf senescence

a tomato homolog of AtERF4, SlERF36, accelerates leaf senes-
cence when overexpressed in tomato plants (Upadhyay et al.,
2013).

By contrast, RAV1 and GmRAV1, which possess another type
of repression domain (Ikeda and Ohme-Takagi, 2009), negatively
regulate the onset of leaf senescence, because overexpression of
these RAV1 genes delays leaf senescence in Arabidopsis (Woo et al.,
2010). Other two Arabidopsis RAV genes, namely, ETHYLENE
RESPONSE DNA BINDING FACTOR1 (EDF1) and EDF2, are pro-
posed to regulate the onset of leaf senescence downstream of the
MADS box TF, FOREVER YOUNG FLOWER (FYF; Chen et al.,
2011). These RAV genes are transcriptionally induced by ethy-
lene (Alonso et al., 2003). Based on studies investigating EAR- and
RAV-type AP2/ERF TFs, the ethylene signal appears to balance
positive and negative regulations thus determining the rate of leaf
senescence.

Transcriptional activators of ERF TFs are also involved in regu-
lating the onset of leaf senescence. SUBMERGENCE1A (SUB1A)
negatively regulates the onset of leaf senescence in rice (Fukao
et al., 2012), while CYTOKININ RESPONSE FACTOR6 (CRF6)
negatively regulates leaf senescence (Zwack et al., 2013). Over-
expression of CBF2 and CBF3 genes delays leaf senescence in
Arabidopsis (Sharabi-Schwager et al., 2010). Since CBFs target
COR15 and RD29 genes and possibly control ANAC019 and
ANAC055 (Yang et al., 2011; Hickman et al., 2013), CBFs seem
to regulate the onset of leaf senescence via these downstream
genes. However, there have been no reports on the involvement of
ethylene in the regulation of these ERF activators.

WRKY TFs INTEGRATE ETHYLENE AND JASMONIC ACID
SIGNALS DURING LEAF SENESCENCE
Jasmonic acid (JA) is another important factor regulating the onset
of leaf senescence, because a mutant that lacks a JA-biosynthetic
enzyme gene delays leaf senescence and application of JA to leaves
accelerates senescence (He et al., 2002; Seltmann et al., 2010). JA
often cooperatively interacts with ethylene to underpin many
physiological responses (Lorenzo et al., 2004; Zhu et al., 2011).
It has been well documented that JA, along with the age of the
plant, induce transcription of many WRKY genes. (Lin and Wu,
2004). Among WRKY TFs activated by JA, WRKY53 positively
regulates the onset of leaf senescence and its activity is modu-
lated by ESP/ESR at both transcriptional and post-translational
levels (Miao and Zentgraf, 2007; Figure 2A). ESP/ESR physi-
cally interacts with WRKY53 and, presumably, prevents WRKY53
binding to DNA. ESP/ESR also inhibits the accumulation of
WRKY53 transcripts in leaves. It has also been reported that
WRKY6, WRKY54, WRKY57, and WRKY75 regulate leaf senes-
cence (Robatzek and Somssich, 2002; Besseau et al., 2012; Li
et al., 2012b). Since WRKY6 and WRKY53 have been shown to
increase many WRKY transcripts in addition to SAGs (Robatzek
and Somssich, 2002; Miao et al., 2004), some self-amplification
of WRKY activity may contribute to the robust control of leaf
senescence.

Several reports provide intriguing insights into the interac-
tions between WRKY TFs and the ethylene signaling pathway.
Nematode-induced WRKY53 expression in leaves requires a func-
tional EIN2 gene, suggesting the involvement of EIN2 in the

modulation of WRKY53 activity (Murray et al., 2007). WRKY75
is also involved in the ethylene-dependent defense-signaling path-
way (Chen et al., 2013). WRKY33, whose transcript is markedly
increased during leaf senescence, directly activates ethylene
biosynthetic genes and is involved in ethylene production (Breeze
et al., 2011; Li et al., 2012a). Thus, it is possible that WRKY TFs are
activated by the cooperative action of the ethylene and JA signaling
pathways in the regulation of the onset of leaf senescence.

In addition, the single stranded-DNA binding protein
WHIRLY1A and a histone methyltransferase target the WRKY53
gene in Arabidopsis (Ay et al., 2009; Miao et al., 2013). A basic
loop-helix-loop TF activates the WRKY53 gene and positively reg-
ulates the onset of leaf senescence in soybean (Meng et al., 2013).
However, an association between ethylene and these WRKY53
regulators remains to be addressed.

THE ONSET OF LEAF SENESCENCE IS AFFECTED BY TFs THAT
ARE REQUIRED FOR LEAF DEVELOPMENT
In contrast to the pivotal role of ethylene in the onset of leaf
senescence, it is known that ethylene inhibits leaf expansion in
young plants, but does not always induce leaf senescence (Kieber
et al., 1993; Hua and Meyerowitz, 1998). Moreover, Arabidopsis
ctr1 mutant has constitutive responses to ethylene resulting in
the formation of a small rosette, but does not appear to induce
precocious leaf senescence (Kieber et al., 1993; Jing et al., 2005).
These apparent discrepancies suggest that the mechanism leading
to leaf senescence might require some developmental regulators
even when the ethylene signaling pathway is activated (Figure 2C).
Whereas the functional interaction between ethylene and develop-
mental regulators during leaf senescence is not fully understood,
it is expected that such regulators have pivotal roles in the onset of
leaf senescence.

KNOTTED1-like homeodomain (KNOX) TFs, which are
required for shoot meristem and leaf development, negatively reg-
ulate the onset of leaf senescence (Ori et al., 1999; Hamant et al.,
2002; Hay and Tsiantis, 2010). When KNOX genes are ectopically
expressed in tobacco and Arabidopsis leaves, they markedly delay
the onset of leaf senescence (Ori et al., 1999; Hamant et al., 2002).
Ectopic KNOX expression confers an undifferentiated cell fate in
leaves and inhibits their differentiation (Hay and Tsiantis, 2010).
As a consequence, this disordered cellular regulation may indi-
rectly delay the onset of leaf senescence. Otherwise, KNOX TFs
regulate biosynthetic genes of cytokinin (Sakamoto et al., 2001;
Hay et al., 2002), which acts as a negative regulator of the onset of
leaf senescence, and therefore, possibly influences leaf senescence.
In agreement with the antagonism between KNOX genes and the
gibberellin (GA) signaling pathway observed in shoot meristem
and leaf development (Hay and Tsiantis, 2010), plants treated with
GA and Arabidopsis mutants of the GRAS-type TF genes, which
are negative regulators of the GA signaling pathway, accelerate leaf
senescence (Chen et al., 2014).

Another class of regulators for both leaf senescence and devel-
opment is the TEOSINTE BRANCHED1, CYCLOIDEA, PCNA
BINDING FACTOR (TCP) TFs family. A combined analysis
of high-resolution temporal clustering of genes differentially
expressed during leaf senescence and TF-binding motif search-
ing in the promoters of each cluster demonstrates that the
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TCP-binding motif is significantly enriched in certain down-
regulated gene clusters (Breeze et al., 2011). This indicates the
co-regulation of these gene clusters and TCP activity. Consistent
with bioinformatic surveillance, reverse genetic analysis revealed
that inhibition of the CINCINNATA (CIN) subfamily of TCP
(CIN-like TCP) delays leaf senescence whereas overexpression of a
CIN-like TCP gene accelerates it (Schommer et al., 2008; Koyama
et al., 2013). A possible scenario to explain the positive roles of
CIN-like TCP TFs in the onset of leaf senescence is that CIN-
TCP TFs activate JA biosynthetic enzyme genes (Schommer et al.,
2008). Alternatively, CIN-like TCP TFs suppress an auxin signal-
ing pathway, which is a negative regulator of leaf senescence, and
also activates negative regulators of KNOX genes (Koyama et al.,
2007, 2010). Moreover, CIN-like TCPs act as heterochronic reg-
ulators of leaf development and consequently influence the onset
of leaf senescence (Efroni et al., 2008). By contrast, TCP19 and
TCP20, which are grouped into a class I subgroup, negatively reg-
ulate the onset of leaf senescence and results in the opposite effects
of CIN-like TCPs (Danisman et al., 2012).

In addition to KNOX and TCP TFs, Arabidopsis GROWTH-
REGULATING FACTOR (GRF) TFs and a tomato C2H2 type-
EAR repressor regulate both leaf development and senescence
(Debernardi et al., 2014; Hichri et al., 2014). Taking the roles of
the developmental regulators into account, these regulators, thus,
prevent precocious leaf senescence. Ethylene meditates various sig-
nals required for the induction of defense responses against biotic
and abiotic stressors (Kendrick and Chang, 2008); however, these
responses are not always followed by cell death. Therefore, such
developmental regulators are likely to determine the fate of leaves
upon ethylene exposure. In comparison to fully maturated leaves,
young leaves accumulate low amounts of carbon and nitrogen
sources that would be mobilized to growing and storage organs
and therefore it is reasonable that young leaves are kept away from
senescence even in the presence of ethylene.

CONCLUSIONS AND PERSPECTIVES
In addition to ethylene, JA and the developmental signals dis-
cussed in this review, additional factors such as cytokinin, auxin,
ABA, and hydrogen peroxide are involved in the regulation of leaf
senescence (Ellis et al., 2005; Lim et al., 2010; Smykowski et al.,
2010; Yang et al., 2011; Wu et al., 2012; Jaradat et al., 2013). Several
TFs are reported to regulate the onset of leaf senescence under
these additional signals and details of such TF are listed in Table 1.
Ethylene and these signals are integrated for the regulation of the
onset of leaf senescence; however, there have been no reports of
a direct interaction between ethylene and such TFs acting down-
stream of these signals. It is interesting to investigate whether these
TFs act in an ethylene-dependent manner during the onset of leaf
senescence.

This review focuses on the roles of TFs and ethylene in the
regulation of the onset of leaf senescence and emphasizes that
regulation occurs at multiple levels downstream of the ethylene
signaling pathway. Moreover, leaf development is tightly linked to
the onset of senescence and further clarification of such mecha-
nisms is in progress. Furthermore, the effect of ethylene on the
stimulation of leaf senescence is dependent on the duration of
ethylene exposure (Jing et al., 2005). Regulation of the appropriate

duration of ethylene exposure could represent another candi-
date for modulating the ethylene signal and thus, the onset of
leaf senescence. Further efforts to determine the mechanism that
transforms the ethylene signal into the onset of leaf senescence will
improve our current understanding of the roles of ethylene in leaf
senescence.
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