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Sun leaves up-regulate the photorespiratory pathway to
maintain a high rate of CO2 assimilation in tobacco
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The greater rate of CO2 assimilation (An) in sun-grown tobacco leaves leads to lower
intercellular and chloroplast CO2 concentrations and, thus, a higher rate of oxygenation of
ribulose-1,5-bisphosphate (RuBP) than in shade-grown leaves. Impairment of the photores-
piratory pathway suppresses photosynthetic CO2 assimilation. Here, we hypothesized that
sun leaves can up-regulate photorespiratory pathway to enhance the An in tobacco. To
test this hypothesis, we examined the responses of photosynthetic electron flow (JT)
and CO2 assimilation to incident light intensity and intercellular CO2 concentration (C i) in
leaves of ‘k326’ tobacco plants grown at 95% sunlight (sun plants) or 28% sunlight (shade
plants). The sun leaves had higher photosynthetic capacity and electron flow devoted to
RuBP carboxylation (JC) than the shade leaves. When exposed to high light, the higher
Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) content and lower C i in the
sun leaves led to greater electron flow devoted to RuBP oxygenation (JO). The JO/JC ratio
was significantly higher in the sun leaves than in the shade leaves under strong illumination.
As estimated from CO2-response curves, the maximum JO was linearly correlated with
the estimated Rubisco content. Based on light-response curves, the light-saturated JO was
linearly correlated with light-saturated JT and light-saturated photosynthesis.These findings
indicate that enhancement of the photorespiratory pathway is an important strategy by
which sun plants maintain a high An.
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INTRODUCTION
In natural habitats, plants are subject to temporal and spa-
tial variations in light intensity. Many species modulate the
biochemical composition and morphology of leaves or whole
plants to acclimate to their light environments (Terashima and
Hikosaka, 1995; Niinemets et al., 1998; Terashima et al., 2005;
Yamori et al., 2010a). In general, the leaves of plants grown
under high light (sun leaves) have higher levels of cytochrome
f (Cyt f ), ATP synthase, Rubisco, and other Calvin Cycle
enzymes (Evans, 1987; Terashima and Evans, 1988; Hikosaka,
1996; Hikosaka and Terashima, 1996; Yamori et al., 2010a).
Those leaves that acclimate to more intense light usually have
higher capacities for electron transport and CO2 assimilation
(Yamori et al., 2010a). Timm et al. (2012) have reported that
over-expression of the H-protein of glycine decarboxylase (a key
enzyme in the photorespiratory pathway) leads to considerably
increased net photosynthesis in Arabidopsis thaliana, suggest-
ing that enhancement of photorespiratory pathway potentially
improves the An. However, the relationship between photores-
piration and photosynthesis in plants acclimated to high light is
unclear.

Abbreviations: An, rate of CO2 assimilation; Ca, atmospheric CO2 concentration;
Ci , intercellular CO2 concentration; g s, stomatal conductance; JC, electron flow
devoted to carboxylation of RuBP; Jmax, maximum rate of RuBP regeneration;
JO, electron flow devoted to oxygenation of RuBP; JT, photosynthetic electron
flow; Rubisco, ribulose-1,5-bisphosphate carboxylase/oxygenase; RuBP, ribulose-
1,5-bisphosphate; V cmax , maximum rate of RuBP carboxylation.

In some species, the greater An by plants grown under and
adapted to high light means that they have lower intercellular and
chloroplast CO2 concentrations than those acclimated to low light
(Hanba et al., 2002; Oguchi et al., 2005; Yamori et al., 2010a). When
the chloroplast CO2 concentration is low, the specificity of Rubisco
to O2 increases and then induces a rise in the rate of oxygenation
of RuBP. Under such conditions, the higher Rubisco content in
sun leaves accelerates the rate of RuBP oxygenation. During RuBP
oxygenation, one molecule of glycolate-2-phosphate and one of
glycerate-3-phosphate are formed (Ogren, 1984). Glycolate-2-
phosphate cannot be used by plants for biosynthetic reactions
and is a potential inhibitor of chloroplast functioning (Anderson,
1971). Therefore, it must be converted into glycerate-3-phosphate
through the photorespiratory pathway (Leegood et al., 1995). To
avoid this side effect of glycolate-2-phosphate, it is speculated
that the capacity of photorespiratory pathway is greater in sun
leaves than in shade leaves. Results from previous studies have
shown that the effect of the light environment on the capacity
of that pathway is controversial. For example, growth irradiance
can influence photorespiration in leaves from Arisaema heterophyl-
lum and Swietenia, but not from Dipteryx (Muraoka et al., 2000;
Marenco et al., 2001).

According to the C3 photosynthesis model, the An is limited
by both RuBP carboxylation and RuBP regeneration (Farquhar
et al., 1980). In both sun and shade leaves of tobacco plants grown
with high nitrogen supply, the An at Ca and high light tends to
be limited by RuBP regeneration (Yamori et al., 2010a). Because

www.frontiersin.org December 2014 | Volume 5 | Article 688 | 1

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/about
http://www.frontiersin.org/Journal/10.3389/fpls.2014.00688/abstract
http://community.frontiersin.org/people/u/183278
http://community.frontiersin.org/people/u/195698
http://community.frontiersin.org/people/u/196202
mailto:huangwei@mail.kib.ac.cn
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Physiology/archive


Huang et al. Photorespiratory pathway and CO2 assimilation

the Calvin Cycle intermediate glycerate-3-phosphate is critical for
RuBP regeneration, impairment of the recycling of glycolate-2-
phosphate into glycerate-3-phosphate depletes RuBP regeneration
and, ultimately, depresses the An (Somerville and Ogren, 1980,
1981, 1983; Takahashi et al., 2007). Therefore, we hypothesize that
up-regulation of the photorespiratory pathway may be an impor-
tant strategy by which plants grown under high light can accelerate
RuBP regeneration and subsequently maintains the high rate of
photosynthesis.

The aim of this study was to investigate further the role of
the photorespiratory pathway in photosynthesis. Plants of Nico-
tiana tabacum were grown at 24/18◦C (day/night) under either 95
or 28% sunlight. The An and JT to incident light intensity were
evaluated at 24◦C and a CO2 concentration of 400 μmol mol−1.
Those same parameters were also examined in response to inci-
dent CO2 concentration when plants were exposed to 24◦C and
1200 μmol photons m−2 s−1. Our results indicated that sun leaves
indeed up-regulate the photorespiratory pathway to maintain a
high photosynthesis rate.

MATERIALS AND METHODS
PLANT MATERIALS AND GROWTH CONDITIONS
Seedlings of the ‘k326’ cultivar of tobacco (Nicotiana tabacum)
were cultivated in plastic pots, and then transferred to a phytotron
at Kunming Institute of Botany, Yunnan, China (elevation 1900
m, 102◦41′E, 25◦01′N). Conditions included day/night tempera-
tures of 24◦C/18◦C, 60% relative air humidity, and a constant Ca

of 400 μmol mol−1. Sunlight was used as the source of illumi-
nation in the phytotron. Sun plants received approximately 95%
of full sunlight (maximum intensity at noon ≈1990 μmol pho-
tons m−2s−1). To establish shade conditions, we added a layer
of netting over other plants to reduce photosynthetic active radi-
ance to approximately 28% of full sunlight (maximum intensity
≈580 μmol photons m−2s−1). During the experimental period
(24 October to 24 December 2013), none of the plants experi-
enced any water or nutrient stresses. After 50 days, the mature
leaves that had been produced since transplanting were chosen for
photosynthetic measurements.

CHLOROPHYLL FLUORESCENCE AND GAS EXCHANGE MEASUREMENTS
An open gas exchange system incorporating infrared CO2 and
water vapor analyzers (Li-6400XT; Li-Cor Inc., Lincoln, NE, USA)
was used to determine the An in the phytotron. During the mea-
surement period, the relative air humidity was 60% and the air
temperature was 24◦C. To generate a light response curve, the
leaves of both sun and shade plants were exposed to high light (i.e.,
1200 μmol photons m−2 s−1) for 20 min to obtain a steady state.
Afterward, photosynthetic parameters were evaluated every 2 min
at a controlled Ca of 400 μmol mol−1 and photosynthetic photon
flux densities(PPFDs) of 2000, 1600, 1200, 800, 500, 300, 200, 100,
50, 20, or 0 μmol photons m−2 s−1. The CO2 assimilation rate
versus Ci was measured (von Caemmerer and Farquhar, 1981) at
1200 μmol photons m−2 s−1. For each A/Ci curve, photosyn-
thetic rate reached a steady state at 400 μmol mol−1, subsequently
decreased to a lower limit of 50 μmol mol−1 and then increased
stepwise to an upper limit of 2000 μmol mol−1. Each stepwise
measurement was completed within 2–3 min. Using those A/Ci

curves, we calculated the maximum rates of RuBP regeneration
(Jmax) and RuBP carboxylation (V cmax) according to the method
of Long and Bernacchi (2003). The leaf Rubisco content was esti-
mated according to the empirical equation of Yamori et al. (2010a)
as y = 35.3x + 6.6, where y is V cmax (μmol CO2 m−2 s−1) and x
is Rubisco content (μmol m−2).

Chlorophyll fluorescence was measured simultaneously with
gas exchange measurements using a fluorometer chamber (6400-
40; Li-Cor Inc.). The fluorescence parameters Fs and Fm

′ were
determined as previously described (Baker and Rosenqvist, 2004),
with Fs representing the steady fluorescence and Fm

′ the maximum
fluorescence after light-adaptation. The effective quantum yield
of PSII was calculated as �PSII = (Fm

′ – Fs)/Fm
′ (Genty et al.,

1989).

ESTIMATING THE RATE OF PHOTOSYNTHETIC ELECTRON FLOW
The total JT through PSII (JT) was calculated as JT = �PSII ×
PPFD × 0.85 × 0.5 (Krall and Edwards, 1992). Because leaf
absorbance (Labs) in tobacco differs little between sun and shade
leaves (Miyake et al., 2005), we assumed here that Labs was 0.85 in
both types. The constant of 0.5 was used based on the assump-
tion of an equal distribution of photons between photosystems
I and II (Miyake et al., 2005). The light saturation point (LSP)
is the PPFD that causes 95% of the maximum An while the
light compensation point (LCP) is the PPFD under which the
net photosynthetic rate is 0. If CO2 assimilation is limited in the
leaves, the water–water cycle cannot eliminate excess excitation
energy by acting as a major alternative electron sink (Driever
and Baker, 2011). Therefore, we allocated the electron flow
through PSII to RuBP carboxylation (JC) and oxygenation (JO).
These were estimated according to the method of Valentini et al.
(1995):

JO = 2/3 × (JT − 4 × (An + Rd))

JC = 1/3 × (JT + 8 × (An + Rd))

where An is CO2 assimilation and Rd represents the rate
of mitochondrial respiration. We estimated Rd from the lin-
ear region of the light response curve between PPFDs of
20 and 100 μmol photons m−2 s−1 (Zhang et al., 2009,
2013).

STATISTICAL ANALYSIS
The results were displayed as mean values of four independent
measurements. Data were subjected to independent t-test using
the SPSS 16.0 for windows (SPSS Inc., Chicago, IL, USA). A
level of P < 0.05 was used to determine whether differences were
significant between sun and shade leaves.

RESULTS
Compared with the shade plants, the sun plants had significantly
higher values for LSP, LCP, apparent quantum efficiency, and satu-
rating photosynthetic rate (Table 1) as well as relatively higher
g s than the shade leaves (Figure 1A). When exposed to light
intensities above 300 μmol photons m−2 s−1, values for Ci were
significantly lower in sun leaves (P < 0.0001; Figure 1B). At 1200
μmol photons m−2 s−1, the Ci was 193 and 261 μmol mol−1

in the sun and shade leaves, respectively. When light intensities
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Table 1 | Parameters describing photosynthetic CO2 assimilation.

Sun leaves Shade leaves Significance

LSP (μmol photons

m−2 s−1)

1164 ± 48.9 797 ± 18.5 0.0004

LCP (μmol photons

m−2 s−1)

32 ± 2.8 20 ± 3.6 0.04

Apparent quantum

efficiency

0.0685 ± 0.003 0.046 ± 0.003 0.0001

Saturating

photosynthetic rate

(μmol CO2 m−2 s−1)

23.8 ± 0.5 13.6 ± 0.8 0.0001

The light saturation point (LSP) is the PPFD at which the An is 95% of the max-
imum, and the light compensation point (LCP) is the PPFD under which the net
photosynthetic rate is 0. Data are mean values ± SD (n = 4). Significant differ-
ences between sun and shade leaves were examined by independent t-tests
(P < 0.05).

were above 200 μmol photons m−2 s−1, the sun leaves showed a
higher An (P < 0.0001; Figure 1C). Under strong illumination,
i.e., 2000 μmol photons m−2 s−1, photosynthetic rate was 21.8
and 13.1 μmol CO2 m−2 s−1 in sun and shade leaves, respectively.
These results indicated that the sun leaves generally had greater
photosynthetic capacity, which led to their lower Ci values.

The JT through PSII was significantly higher in the sun leaves
when light intensities were above 200 μmol photons m−2 s−1

(P < 0.0001; Figure 2A). Maximum values for JT were 217 and
95 μmol electrons m−2 s−1 in sun and the shade leaves, respec-
tively. Similarly, significantly more electron flow was devoted
to RuBP carboxylation and oxygenation in the sun leaves, with
maximum values of 135 and 69 μmol electrons m−2 s−1 for
JC (P < 0.0001; Figure 2B), and 82 and 26 μmol electrons
m−2 s−1 for JO (P < 0.0001; Figure 2C) in sun and shade leaves,
respectively. We found it interesting that, at light intensities above
800 μmol photons m−2 s−1, the sun leaves had significantly higher
JO/JC ratios than did the shade leaves (P < 0.0001; Figure 2D);
maximum ratios were 0.6 (sun) and 0.4 (shade). These results
demonstrated that capacity by the photorespiratory pathway was
enhanced in the sun leaves.

The A/Ci curves indicated that sun leaves had higher rates
of CO2 assimilation when Ci was higher than 90 μmol mol−1

(Figure 3). The maximum photosynthetic rates in sun and shade
leaves were 51.3 and 25.1 μmol CO2 m−2 s−1, respectively
(Figure 3). Values for JT and JC were largely higher in the sun
leaves under any CO2 concentration (Figures 4A,B), and they
rose rapidly in parallel with Ci when it was below 300 μmol mol−1

(Figures 4A,B). When Ci was higher than 400 μmol mol−1, JT

was hardly increased in either type of leaf while JC increased only
slightly. As Ci rose, JO gradually declined in both sun and shade
leaves. However, JO values were always higher in the sun leaves,
especially when the CO2 concentration was low. For example,
at a Ci of 55 μmol mol−1, JO was 80 and 31 μmol electrons
m−2 s−1 in sun and shade leaves, respectively (Figure 4C). At
low Ci, the affinity of Rubisco to O2 was markedly increased,
and operation of the photorespiratory pathway consumed most

FIGURE 1 | Responses of gs (A), C i (B), and CO2 assimilation (An, C) to

incident photosynthetic photon flux density (PPFD) for sun and shade

leaves of tobacco. Values are means ± SE (n = 4). Significant differences
between leaf types (indicated by asterisks) were examined by independent
t -test (P < 0.05).

of the products of linear electron flow. Consequently, JO was
maintained at a high level under low-Ci conditions (Figure 4C).
When Ci was above 1200 μmol mol−1, the affinity of Rubisco
to CO2 was largely increased, such that operation of the Calvin
cycle consumed most of the products of linear electron flow.
Thus, JO was maintained at a low level when the Ci was elevated
(Figure 4C).

At 24◦C, Jmax was 86 for sun leaves and 37 μmol m−2 s−1 for
shade leaves, while respective V cmax values were 91 and 41 μmol
m−2 s−1 (Figure 5). Sun leaves had significantly higher values
for both Jmax and V cmax (P < 0.0001). The latter component is
linearly and positively correlated with Rubisco content (Yamori
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FIGURE 2 | Responses of total photosynthetic electron flow through PSII

(JT, A), electron flow devoted to RuBP carboxylation (JC, B), electron

flow devoted to RuBP oxygenation (JO, C), and JO/JC (D) to incident

PPFD for sun and shade leaves of tobacco. Values are means ± SE (n = 4).
Significant differences between leaf types (indicated by asterisks) were
examined by independent t -test (P < 0.05).

FIGURE 3 | Response of An to incident C i in sun and shade leaves of

tobacco. Values are means ± SE (n = 4).

et al., 2010a). Accordingly, we also established that sun leaves had
a higher Rubisco content. Corresponding Jmax/V cmax ratios were
0.94 for sun leaves and 0.92 for shade leaves. The lack of any signif-
icant difference in Jmax/V cmax ratio between leaf types indicated
that the ratio of electron transport capacity to Rubisco activity did
not vary between them.

The relationship between estimated Rubisco content and
JO-max was strong and linear, based on the A/Ci curves devel-
oped at 1200 μmol photons m−2 s−1 and 24◦C (Figure 6). This
indicated that the capacity of the photorespiratory pathway was
coordinated with the level of Rubisco. Our light response curves at
24◦C also demonstrated strong linear relationships among light-
saturated JO (JO-sat), light-saturated photosynthesis (Asat), and
light-saturated JT (JT-sat; Figure 7). These results suggested that
high photosynthetic capacity in the sun leaves was accompanied
by enhanced capacity for the photorespiratory pathway.

DISCUSSION
GROWTH LIGHT INTENSITY INFLUENCES THE CAPACITY OF THE
PHOTORESPIRATORY PATHWAY
Light response curves revealed that the sun leaves had greater
electron flow for photorespiration under high light when Ca was
400 μmol mol−1 (Figure 2C). Moreover, when exposed to high
light intensities above 800 μmol photons m−2 s−1 and at a Ca of
400 μmol mol−1, the JO/JC ratio was significantly higher for sun
leaves (Figure 2D). The A/Ci curves indicated that, under strong
illumination, sun leaves also had higher electron flow for pho-
torespiration associated with low Ci. These results demonstrated
that sun leaves have improved capacity for the photorespiratory
pathway when compared with shade leaves.

Photorespiration begins with the oxygenation of RuBP cat-
alyzed by Rubisco. The affinity of Rubisco is mainly affected
by temperature and Ci (von Caemmerer, 2000). Because our
sun and shade plants were grown in the same phytotron at
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FIGURE 4 | Responses of total J T through PSII (A), electron flow

devoted to RuBP carboxylation (JC, B), and electron flow devoted to

RuBP oxygenation (JO, C) to incident C i in sun and shade leaves of

tobacco. Values are means ± SE (n = 4).

24◦C, the difference in Rubisco affinity was mainly related to
Ci. The higher An in sun leaves also led to lower Ci under
more intense light. This reduction in Ci increased the affinity
of Rubisco for O2. Furthermore, as indicated by values for V cmax,
the sun leaves had a higher Rubisco content than did the shade
leaves (Yamori et al., 2010a). Consequently, the rate of RuBP
oxygenation was much higher in the sun leaves. The oxygena-
tion of RuBP produces glycolate-2-phosphate, which then inhibits
enzymes in the Calvin Cycle that are involved in regenerating RuBP
(Anderson, 1971). Even low levels of glycolate-2-phosphate syn-
thesis are detrimental to plants when this compound or other
intermediates of the photorespiration process are accumulated

FIGURE 5 | Maximum rates of RuBP regeneration (Jmax) and RuBP

carboxylation (V cmax), as well as Jmax/V cmax ratios for sun and

shade leaves. Values are means ± SE (n = 4). Both Jmax and V cmax were
significantly higher in sun leaves. The Jmax/V cmax ratio did not differ
significantly between sun and shade leaves. Significant differences
between leaf types (indicated by asterisks) were examined by independent
t -test (P < 0.05).

FIGURE 6 | Relationship between estimated Rubisco content and

JO-max for sun and shade leaves, as estimated from A−C i curves

developed at 24◦C and a saturating light of 1200 μmol photons

m−2 s−1. Regression equation shown in figure is y = 33.03x + 0.47.

(Peterhansel and Maurino, 2011). To avoid the harmful effects of
glycolate-2-phosphate and other photorespiratory intermediates
such as glycine and glyoxylate (Chastain and Ogren, 1989; Camp-
bell and Ogren, 1990; Hausler et al., 1996; Eisenhut et al., 2007), the
photorespiratory pathway must be accelerated in the sun leaves.
Up-regulation of glycine decarboxylase can improve the rate of
photosynthesis by decreasing the glycine content (Timm et al.,
2012). Therefore, the increased capacity of the photorespiratory
pathway that we found in our sun leaves probably prevented the
accumulation of glycolate-2-phosphate and other photorespira-
tory intermediates, contributing in part to the maintenance of a
high rate of photosynthesis.

The photorespiratory pathway is a complex process that
depends on many enzymes involved in carbon and nitro-
gen metabolism, such as ferredoxin-dependent Glu, Ser
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FIGURE 7 | Relationship between JO-sat and An-sat (A) and J T-sat (B)

for sun and shade leaves. Values were estimated from light response
curves developed at 24◦C. Values for JO-sat, An-sat, and JT-sat represent
JO, An, and JT, respectively, under saturating light intensity of 2000 μmol
photons m−2 s−1. Regression equations are y = 0.15x + 9.3 (A) and
y = 2.18x + 38.82 (B).

hydroxymethyltransferase, Glu/malate transporter, glycerate
kinase, and glycine decarboxylase (Somerville and Ogren, 1980,
1981, 1983; Somerville and Somerville, 1985; Blackwell et al., 1990;
Wingler et al., 1997, 1999; Boldt et al., 2005). Because this pathway
involves several cellular components, transporters responsible for
supplying those enzymes are essential for photorespiratory pro-
cesses (Eisenhut et al., 2013; Weber and Bauwe, 2013). Recently,
the plastidial glycolate/glycerate transporter, PLGG1, was identi-
fied (Pick et al., 2013). Compared with shade leaves, sun leaves
probably have increased synthesis of those enzymes and trans-
porters, which then accelerates operation of the photorespiratory
pathway.

THE ROLE OF THE PHOTORESPIRATORY PATHWAY IN REGULATING CO2

ASSIMILATION
The estimated Rubisco content was positively correlated with the
capacity of the photorespiratory pathway in our experiments.
Under Ca, the higher Rubisco content and lower Ci in the sun
leaves induced a higher rate of RuBP oxygenation compared with
the shade leaves. The greater capacity of photorespiratory pathway
enhanced RuBP regeneration. Therefore, the positive relationship

between the estimated Rubisco content and JO−max suggested
that RuBP oxygenation and regeneration are balanced via the
photorespiratory pathway.

The limiting step for CO2 assimilation in leaves is mainly
affected by the Jmax/V cmax ratio (Yamori et al., 2010a,b, 2011).
Although our shade leaves had significantly lower values for
Jmax and V cmax, their ratio did not differ from that of the sun
leaves. According to the photosynthetic model of Yamori et al.
(2011), the low Jmax/V cmax ratio means that the An in sun
and shade leaves is mainly limited by RuBP regeneration. Two
pathways exist in C3 plants for RuBP regeneration: (1) recy-
cling of glycerate-3-phosphate into RuBP wholly through the
Calvin Cycle, and (2) recycling of glycolate-2-phosphate into
glycerate-3-phosphate and then into RuBP through the pho-
torespiratory pathway and the Calvin Cycle. The first pathway
is rapid and is completed in the chloroplasts. However, the
second is relative slow and involves three organelles – the chloro-
plasts, mitochondria, and peroxisomes (Takahashi et al., 2007;
Timm et al., 2012). Thus, the capacity of the photorespiratory
pathway tends to be a rate-limiting step for RuBP regeneration
in both sun and shade leaves when exposed to Ca and strong
illumination.

This pathway capacity can control C3 photosynthesis (Timm
et al., 2012), because, if it is as low in the sun leaves as in the shade
leaves, the rate of RuBP oxygenation will greatly exceed the rate
of RuBP regeneration in the sun leaves. Thus, the Calvin Cycle in
the sun leaves might subsequently become restricted by a lack of
RuBP. To maintain a steady and high An, RuBP oxygenation and
regeneration must be balanced. For sun leaves, enhancement of the
photorespiratory pathway can accelerate the rate of RuBP regener-
ation and helps maintain a high An. These results, therefore, allow
us to conclude that increasing the capacity of the photorespiratory
pathway is an important strategy by which sun leaves from tobacco
can maintain a high An at Ca.

Although CO2 is released in the mitochondria through func-
tioning of the photorespiratory pathway, C3 plants trap the
photorespirated and respired CO2 within single mesophyll cells
(Busch et al., 2013). This trapping should then lead to a rise
in chloroplast CO2 concentrations and, ultimately, improve the
specificity of Rubisco to CO2. Consequently, C3 plants improve
their rates of photosynthesis by re-assimilating photorespirated
CO2 (Busch et al., 2013). In sun leaves, a higher rate of RuBP oxy-
genation and acceleration of the photorespiratory pathway can
increase the rate at which this photorespiratory CO2 is released,
thereby raising the An.

THE ROLE OF THE PHOTORESPIRATORY PATHWAY IN REGULATING
PHOTOSYNTHETIC ELECTRON FLOW
In higher plants, photosynthetic electron transfer from PSII to
PSI converts light energy into ATP and NADPH, which is reg-
ulated by the proton gradient between the thylakoid membrane
and stroma (�pH; Tikkanen and Aro, 2014). The generation of
�pH is dependent on (1) the accumulation of protons in the
lumen from both the water-splitting reaction of PSII and electron
transfer via Cytb6/f, and (2) the rate of proton efflux from the
lumen to stroma via ATP synthase. The energy transfer efficiency
from light harvesting complex to the photosystems is enhanced by
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a decrease in �pH but reduced by an increase in �pH (Tikkanen
and Aro, 2014). The Cyt b6/f complex couples electron trans-
fer to proton transfer, which is controlled by �pH. The higher
the �pH, the slower that electrons can be transferred from PSII
to PSI via Cyt b6/f (Tikkanen and Aro, 2014). When the pho-
torespiratory pathway is up-regulated by over-expression of the
H-protein of glycine decarboxylase, photosynthetic electron trans-
port from PSII to PSI must increase (Timm et al.,2012). Otherwise,
once photorespiratory pathway becomes impaired, the �pH rises
and causes electron transfer from PSII to PSI to be suppressed
(Takahashi et al., 2007). Here, enhancement of photorespiratory
pathway in the sun leaves accelerated the consumption of ATP and
NADPH, thus decreasing �pH and favoring the JT from PSII to
PSI (Figure 7B). Taken together, we concluded that the higher
capacity of the photorespiratory pathway in sun leaves regulated
the �pH and then accelerated electron transfer.

CONCLUSION
Our results strongly indicate that tobacco leaves grown under
stronger irradiance have a higher rate of RuBP oxygenation com-
pared with leaves exposed to low light levels. This is due to higher
Rubisco contents and diminished Ci. Meanwhile, the capacity of
the photorespiratory pathway is improved in plants grown under a
high light intensity, which enables them to hasten the recycling of
glycolate-2-phosphate into glycerate-3-phosphate. This then reg-
ulates the balance between RuBP oxygenation and regeneration
and helps to modulate the RuBP content in chloroplasts. There-
fore, enhancement of photorespiratory pathway is essential for sun
leaves to maintain a high An.
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