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Uniparental transcripts during embryogenesis may arise due to gamete delivery during
fertilization or genomic imprinting. Such transcripts have been found in a number of
plant species and appear critical for the early development of embryo or endosperm in
seeds. Although the regulatory expression mechanism and function of these genes in
embryogenesis require further elucidation, recent studies suggest stage-specific and highly
dynamic features that might be essential for critical developmental events such as zygotic
division and cell fate determination during embryogenesis. Here, we summarize the current
work in this field and discuss future research directions.
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INTRODUCTION
During sexual reproduction of flowering plants, male and female
gametes are formed in the haploid gametophytic generation
(Walbot and Evans, 2003; Chang et al., 2011). In angiosperm, the
typical female gametophyte contains two kinds of female gametes,
a haploid egg cell and a diploid central cell with two identical
copies of the maternal genome. The male gametophyte is found
in pollen, which carries one generative cell or two sperm cells.
During pollen generation, sperm cells are transported though
the pollen tube to the female gametophyte. Upon double fer-
tilization, two sperm cells enter the embryo sac. One sperm
cell fuses with the egg cell, and the other fuses with the cen-
tral cell. This integration of the two gamete genomes results in
the formation of a diploid embryo and a triploid endosperm,
respectively. After fertilization, the embryo forms basic mor-
phological and physiological structures (Le et al., 2007), during
which the endosperm plays a nutritive role, similar to the pla-
centa of mammals, to support embryonic development (Lopes
and Larkins, 1993; Olsen, 2004). During this process, both paternal
and maternal genetic information may contribute to the fertiliza-
tion and development of the embryo, which leads to generation
of the sporophyte. These parental information includes RNA that
transcribed in sperm and/or egg cells, proteins that synthesized
and deposited in gametes, paternal or maternal genome, and
mitochondria and plastid genome. After fertilization they are
brought into and integrated in zygote (Figure 1). Due to technical
limitations the contribution of gamete-delivered proteins, mito-
chondria and plastid genome to zygote development and early
embryogenesis are hardly investigated. Current studies as pioneer
works mainly focus on de novo expression of imprinted genes and
gamete-delivered transcripts.

The molecular mechanisms of fertilization and early embryoge-
nesis, especially the role of parent-of-origin genes, have been well
studied in animals. However, little is known about these processes
in plants due to technical limitations. Gametogenesis, fertilization
and embryogenesis occur deep in the plant saprophytic tissues,
thus rendering it difficult to observe the developmental events and
investigate the molecular mechanisms of these processes directly.
Modern technological advances have allowed the isolation and
analysis of gametes, zygotes, and early embryos in a wide vari-
ety of plants including maize, tobacco, Arabidopsis, rice, and
wheat (Engel et al., 2003; Zhao et al., 2011; Nodine and Bar-
tel, 2012; Anderson et al., 2013; Domoki et al., 2013). Therefore,
great advances have been made toward understanding the role of
uniparental transcripts in plant embryogenesis.

In animals, maternal allele products synthesized during game-
togenesis exert control in all aspects of embryonic development
prior to the global activation of the zygotic genome (Tadros and
Lipshitz, 2009). However, in plants, the parental contribution
in early embryogenesis has not yet been fully understood. Early
reports indicated that the transcripts in early embryos were mainly
originated from the maternally inherited alleles and the transcrip-
tion of paternal alleles was delayed (Vielle-Calzada et al., 2000;
Baroux et al., 2001; Golden et al., 2002; Grimanelli et al., 2005).
Baroux et al. (2008) further suggested that early embryogenesis in
plants was maternally controlled similar to that in animals, as early
studies indicated that maternal transcripts could support embry-
onic development until the proembryo stage. At the same time,
some other researches presented evidences of early activated pater-
nal genome (Weijers et al., 2001; Scholten et al., 2002; Lukowitz
et al., 2004; Sheldon et al., 2008). Recently, paternal transcripts
were proved to be critical for the normal development of early
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FIGURE 1 | Fertilization integrates the maternal and paternal genetic information.

embryo (Ueda et al., 2011; Babu et al., 2013). More impressively,
interleukin-1 receptor-associated kinase (IRAK)/Pelle-like kinase
gene, SHORT SUSPENSOR (SSP) transcripts were found to be
produced in mature pollen and were believed to be carried into
the egg cell via fertilization in Arabidopsis thaliana (Bayer et al.,
2009). SSP functioned during the asymmetric first division in the
zygote, indicating that the paternal transcripts from sperm cells
may be involved in many aspects of zygotic development and early
embryogenesis in plants. Our previous work also confirmed that
paternal transcripts in sperm cells could be found in zygotes soon
after fertilization (Xin et al., 2011), suggesting the possibility that
sperm-delivered paternal transcripts may be involved in zygotic
development.

Meyer and Scholten (2007) reported the relative expression
levels of parental transcripts in zygotes, suggesting equivalent
parental contribution in maize zygotic development. Maternally
expressed in embryo 1 (mee1) in maize was the first reported
imprinted gene in a plant embryo, although its function is
unclear (Jahnke and Scholten, 2009). Using deep sequencing in
a genome-wide analysis, Autran et al. (2011) assessed the parental
contributions in early embryogenesis and found that the maternal
transcripts predominated at early embryonic stages in Arabidop-
sis. With development, the relative paternal contribution arose
due to the gradual activation of the embryonic genome. Sub-
sequently, Nodine and Bartel (2012) found that a majority of
genes were expressed equally from both parents at the begin-
ning of embryogenesis in Arabidopsis. Interestingly, some of these
works focused on the quantitative ratio of maternal and pater-
nal transcripts, some mainly analyzed the regulatory roles of
these genes. It is not surprised to see various conclusions. Even
more, a latest report indicated that the different results might be
due to the different material (e.g., ecotypes) they used in their
experiments (Del Toro-De León et al., 2014). Despite all these
discussions, it is believed that some transcripts are derived pri-
marily from one parent or from imprinted genes in embryos soon
after fertilization (Autran et al., 2011; Nodine and Bartel, 2012).
These studies indicate that the parent-of-origin gene transcripts
indeed exist in the zygote or early embryo. Such transcripts could
arise from both the gamete-delivered and de novo expression
of imprinted genes. Each type of uniparental transcript may
play specific roles in plant development, since they are regulated
by different molecular mechanisms. This review highlights the

characteristics of uniparental transcripts during early embryoge-
nesis.

GAMETE-CARRIED MATERNAL OR PATERNAL TRANSCRIPTS
INVOLVED IN EARLY EMBRYOGENESIS
MATERNAL TRANSCRIPTS
The embryo originates from a fertilized egg cell, termed a zygote.
Two sequential events occur during the integration of a sperm
and an egg cell: plasmogamy and karyogamy. Not only do the
two genomes integrate, but also various components of the cyto-
plasm mix during the fertilization process. For example, sperm
mitochondria could be found in fertilized egg cells of tobacco
(Yu and Russell, 1994) although mitochondria is usually inherited
maternally.

During early embryogenesis in most animal species, mater-
nal transcripts deposited in the egg cells are involved in various
developmental processes before activation of the zygotic genome,
such as formation of embryonic axes, cell differentiation, and
morphogenesis (Johnston, 1995; Wylie et al., 1996; Nishida, 1997;
Angerer and Angerer, 2000; Mohr et al., 2001; Pellettieri and Sey-
doux, 2002). Although various experimental data support the
hypothesis that maternal control may also exist during early
embryogenesis in plants (Baroux et al., 2008), little is known about
transcripts stored in egg cells and their role in early embryogenesis
(Xin et al., 2012).

Using microdissection, Sprunck et al. (2005) constructed a
cDNA library from wheat egg cells, and a total of 404 clusters were
found to function in metabolic activity, mRNA translation and
protein turnover. Subsequently, another 226 expressed sequence
tags (ESTs) were studied in wheat egg cells (Domoki et al., 2013).
In a similar analysis carried out in tobacco, thousands of ESTs were
detected, which may be involved in a variety of developmental pro-
cesses (Ning et al., 2006; Zhao et al., 2011). In addition, microarray
technology combined with laser-assisted microdissection (LAM)
was used to analyze the expression profile in Arabidopsis egg cells
(Wuest et al., 2010). Transcriptomic analysis of egg cells isolated by
manual manipulation was performed in rice (Ohnishi et al., 2011;
Abiko et al., 2013), and genome-wide deep sequencing was used to
characterize the gene expression profile in rice egg cells (Anderson
et al., 2013). The functional categories of approximately 27,000
genes detected proved to be comprehensive. However, a compar-
ison of the egg-specific expression of transcriptomes in rice and
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Arabidopsis revealed relatively different sets of genes in egg cells of
rice and Arabidopsis (Ohnishi et al., 2011).

The role of mRNA stored in egg cells has been investigated.
Although downregulation of RNA polymerase II by RNA interfer-
ence (RNAi) impeded de novo transcription, the development of
Arabidopsis embryos continued until the preglobular stage (Pillot
et al., 2010). In tobacco, zygotic development continued without
de novo transcription until 72 h after pollination (HAP). The cyto-
logical observation of developmental events in transcriptionally
inhibited zygotes showed that maternal transcripts stored in egg
cells were functionally competent in gamete fusion, zygote volume
reduction, complete cell wall formation, large vacuole disappear-
ance, and limited cell enlargement during early developmental
stages. However, de novo transcripts would then seize control
of embryogenesis to trigger subsequent developmental processes
(Zhao et al., 2011).

Interestingly, small RNA-mediated transposon silencing is
thought to be an essential regulatory mechanism in male and
female gametes (Slotkin et al., 2009; Martínez and Slotkin, 2012).
Anderson et al. (2013) evaluated the expression of genes involved
in the miRNA and siRNA pathways in transcriptomes of rice
gametes and showed that all important components involved in
these pathways were active in egg cells rather than in sperm cells.
Thus, transposon silencing is mediated by small RNAs produced
in egg cells; moreover, it is regulated in the zygote by small RNAs
inherited from the egg cells (Anderson et al., 2013).

Currently, the roles of female gamete transcripts in zygotes and
early embryogenesis are unclear. Although de novo transcription
in the zygotic genome is activated within hours after fertilization in
maize, tobacco and Arabidopsis, the maternal transcripts deposited
in the egg cells still play a key role in the initial stages of zygotic
development (Meyer and Scholten, 2007; Zhao et al., 2011; Nodine
and Bartel, 2012).

PATERNAL TRANSCRIPTS
The sperm cell, the other contributor to zygote, has a simple struc-
ture including the karyoplasm and very little cytoplasm. Due to
the condensed chromatin observed in sperm cells, it was generally
thought that inactive male transcription made no contribution
to early embryogenesis prior to zygotic genome activation. This
view might be supported in animals, since almost all mRNAs
in zygotes are inherited from egg cells (Ostermeier et al., 2004;
Krawetz, 2005). However, the cytoplasm of sperm cells may play
an important role during early embryogenesis after fertilization
in plants, as the extracted sperm nuclei in maize was insufficient
to achieve successful fertilization in vitro (Matthys-Rochon et al.,
1994).

Recently, increasing evidence has confirmed the presence of
a number of transcripts in the sperm cell, refuting the hypoth-
esis that highly condensed chromatin in sperm cells impede
activation of transcription. Various cDNA libraries have been
constructed based on isolated sperm cells from rice (Gou et al.,
2001), tobacco (Xin et al., 2011), maize (Zea mays; Engel et al.,
2003), and Plumbago dimorphic (Gou et al., 2009). Additionally,
genome-wide expression has been detected in different plants.
Using microarray analysis, the transcriptomic profile in sperm
cells was investigated in rice and Arabidopsis (Borges et al., 2008;

Russell et al., 2012; Abiko et al., 2013). The transcriptomes of
rice sperm cells were studied by deep sequencing (Anderson
et al., 2013), and ∼25000 genes were analyzed. These studies
revealed a diverse and broad constitution of mRNAs in sperm
cells. Subsequently, sperm transcription profiles were compared
among different plant species. Only 35 genes were found in
common among 1,048 ESTs in tobacco (Xin et al., 2011), 5,829
genes in Arabidopsis (Borges et al., 2008), and 5,174 ESTs in
maize (Engel et al., 2003). Analysis of these 35 genes suggested
that active transcription in sperm cells is involved in many basic
pathways and processes such as metabolism, transcription, trans-
lation, signal transduction and intercellular trafficking (Xin et al.,
2011).

For years, plant scientists have questioned whether male tran-
scripts are delivered to the zygote during the fertilization process,
and if so, whether these sperm-carrying transcripts have a role
in zygote development or early embryogenesis. In our previous
work, we identified sperm-specific transcripts in zygotes at 96
HAP (Ning et al., 2006). Subsequently, two kinds of sperm tran-
scripts with unknown function were revealed in zygotes ∼10 h
after fertilization (HAF). These results strongly suggested that
paternal transcripts could be delivered into zygotes, where they
might play a role in zygote activation and/or early embryoge-
nesis (Xin et al., 2011). Similarly, Ohnishi et al. (2014) found
abundant expression of the Os07g0182900 rice gene in sperm
cells (Abiko et al., 2013), but not in unfertilized egg cells. The
fact that its transcripts could be detected in the zygote ∼10–
20 min after fertilization indicated that transcripts in plant zygotes
could be delivered from the sperm cells by plasmogamy. The
Os07g0182900 gene encoding cytosine-5 DNA methyltransferase
1 (MET1) may be involved in the transition from the zygote to
two-celled pre-embryo stage, as the process could be partially
inhibited by a specific inhibitor of MET1 (Abiko et al., 2013). In
Arabidopsis, the polarity of elongated zygotes contributed substan-
tially to regular embryonic development. Corrected asymmetric
cell division led to normal formation of the initial apical–basal
axis and the embryo and suspensor ancestors in plants (Jeong
et al., 2011; Zhang and Laux, 2011; Ueda and Laux, 2012).
Sperm transcripts are now believed to be essential in this critical
developmental process. Bayer et al. (2009) reported that tran-
scripts of the IRAK/Pelle-like kinase gene, SSP, were produced
in mature sperm cells and translated in zygotes after fertil-
ization. Defective SSP influenced the elongation of the zygote
and the formation of suspensor through the YODA-dependent
MAPKKK signaling pathway. These examples suggest that sperm
mRNAs might have vital functions in normal developmental
embryogenesis.

IMPRINTED GENES IN EARLY EMBRYOGENESIS
In mammals and flowering plants, genomic imprinting is a general
epigenetic mechanism associated with the differential expression
of parental alleles (Feil and Berger, 2007). The differential de novo
transcription of parental alleles is caused by different epigenetic
influences established in the germ line, rather than the nucleotide
changes or uniparental transcripts caused by gamete delivery.
Maternally expressed imprinted genes (MEGs) are expressed
maternally but silenced paternally, whereas maternally expressed
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imprinted genes (PEGs) are expressed paternally but silenced
maternally.

IMPRINTED GENES IN PLANT EMBRYOS
Imprinting is another cause of unequal contributions from
parental transcripts in the early embryo. A minority of imprinted
genes has been identified in endosperm using conventional meth-
ods, such as sequence homologies, small-scale transcriptional
surveys, assays for reduced DNA methylation and mutant identifi-
cation. The mee1 gene in maize provided the evidence confirming
the presence of imprinted genes in embryos (Raissig et al., 2011).
The differential methylation status between paternal and maternal
alleles regulates the maternal expression of mee1 in the embryo and
endosperm. Dynamic expression of mee1 was found in the early
embryo, but its function remains unclear (Jahnke and Scholten,
2009).

Recently, genome-wide approaches have been used to identify
imprinted genes in Arabidopsis, maize and rice (Gehring et al.,
2011; Hsieh et al., 2011; Luo et al., 2011; Waters et al., 2011; Wolff
et al., 2011; Zhang et al., 2011). Several 100 endosperm-specific
imprinted genes were newly detected in these species. However, the
presence of imprinted genes in the embryo remains controversial.
For example, Hsieh et al. (2011) identified 116 MEGs and 10 PEGs
in Arabidopsis endosperm 7–8 days after pollination (DAP), while
37 MEGs and one PEG were found in the embryo during the same
period. However, the imprinted genes in the embryo were consid-
ered to be false positives due to contamination with endosperm or
maternal tissue (Hsieh et al., 2011). Similarly, Gehring et al. (2011)
identified 165 MEGs and 43 PEGs in Arabidopsis endosperm at
6–7 DAP; additionally, 17 MEGs and one PEG were found in
embryos during the same period. However, the imprinted genes
in the embryo could have been due to endosperm contamina-
tion or biased expression dependent on an unchangeable allele
(Gehring et al., 2011). In monocots, Luo et al. (2011) found 262
imprinted loci in rice endosperm at 5 DAF. An imprinted gene was
detected in both the embryo and endosperm; however, this can-
didate requires further confirmation by confirming its expression
in gametes (Luo et al., 2011). Waters et al. (2011) found 54 MEGs
and 46 PEGs in maize endosperm at 14 DAP, with 29 MEGs and
nine PEGs in embryos during the same period. However, these
imprinted genes in embryos might be due to contamination, traf-
ficking of transcripts produced in the endosperm to the embryo,
or relatively stable transcripts inherited from the gametes (Waters
et al., 2011).

Currently, genomic imprinting in Arabidopsis embryos has
not been validated conclusively. Raissig et al. (2013) constructed
cDNA libraries using 2 to 4-cells embryos and globular embryos
isolated from the reciprocal cross of the Col-0 and the Ler acces-
sions. Imprinted gene candidates were then chosen, and their
relative expression levels between parental alleles were assessed
by reverse transcription polymerase chain reaction (RT-PCR) and
Sanger sequencing (Raissig et al., 2013). A total of 11 MEGs were
expressed at the 2 to 4-cells and globular embryo stages, and one
PEG was expressed at the 2 to 4-cells embryo stage. No tran-
scripts in the one PEG or in nine of the MEGs were detected
in the gametes, indicating that their imprinted expression in the
embryo was derived from de novo transcription and was reliable.

To avoid contamination, strict procedures were adopted in con-
structing the cDNA libraries. In addition, an independent assay
was used to confirm the genomic imprinting in embryos by fus-
ing the promoters of seven MEGs and one PEG with the reporter
gene β-glucuronidase (GUS). Promoter-GUS reporter lines (Col-
0 background) were crossed reciprocally with wild-type plants
(Col-0), and the analysis of stained F1 embryos showed that six
MEG reporter lines were either imprinted fully or showed a strong
bias for maternal expression (Raissig et al., 2013). Furthermore,
Raissig et al. (2013) detected imprinted expression of all embry-
onic MEGs and the PEG in other samples, as early Col-0 × Cvi
embryos (different accession, similar stage; Nodine and Bartel,
2012) and late torpedo-stage Col-0 × Ler embryos (same acces-
sions, but later stage; Gehring et al., 2011). The results confirmed
that the expression of most imprinted genes during early embryo-
genesis was maintained regardless of the different accessions or
later developmental stage (Raissig et al., 2013). Therefore, these
results indicated that genomic imprinting may not be restricted
to the endosperm and may be more extensive in embryos than
thought previously.

FUNCTION OF IMPRINTED GENES INVOLVED IN EMBRYOGENESIS
In mammals, 100s of imprinted genes have been identified
that are connected to the location of nutrient transfer from
mother to offspring, embryogenesis, and postnatal development
(Constância et al., 2004; Gregg et al., 2010). Abnormal imprint-
ing can harm fetal growth, hormone systems after birth, and
adult brain function. Whereas genome-wide approaches have
revealed many imprinted genes involved in transcriptional reg-
ulation, chromatin modification, hormone signaling, ubiquitin
degradation, small RNA pathways and metabolism (Gehring et al.,
2011; Hsieh et al., 2011; Luo et al., 2011; Raissig et al., 2011, 2013)
in plants, little is known regarding the involvement of imprinted
genes in plant development (Table 1).

To date, only four imprinted genes in endosperm are known
to be involved in embryogenesis (Raissig et al., 2011; Costa et al.,
2012). In Arabidopsis, the FERTILIZATION-INDEPENDENT
SEED (FIS) genes MEA (FIS1) and FIS2 belong to the Poly-
comb group family (PcG). MEDEA (MEA) is expressed in both
the embryo and endosperm; however, maternal imprinting has
been confirmed only in the latter, and it remains to be deter-
mined whether MEA is imprinted in the embryo (Raissig et al.,
2013). FIS2 is a maternally imprinted gene, and its expression was
detected both in the central cell before fertilization and endosperm
after fertilization (Luo et al., 2000). Double fertilization products
that contained maternal alleles of mea and fis2 resulted in failure of
endosperm cellularization. Moreover, embryogenesis ceased at the
heart/torpedo stage, resulting in seed abortion (Luo et al., 2000).
Another novel maternal imprinted gene MPC was found to be
active in the central cell before fertilization and in the endosperm
from fertilization to 4 DAP. Knockdown of MPC through RNAi
resulted in defective seed development, with delayed embryogen-
esis and abnormal embryo and endosperm morphology (Tiwari
et al., 2008). In maize, maternally expressed gene 1 (Meg1) encodes
a new kind of signaling peptide located in endosperm nutrient
transfer cells, where it regulates their establishment and differen-
tiation. Meg1 is the first identified imprinted gene in plants that
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participates in nutrient distribution to the embryo. Interestingly,
in contrast to imprinted genes in mammals, Meg1 promotes rather
than restricts the transfer of nutrient flow from the mother to fetus
(Costa et al., 2012).

The imprinted genes in the endosperm mentioned above have
defined roles in the endosperm; however, the role of the imprinted
genes in the embryo remain unknown. To identify the contri-
bution of imprinted genes in the embryo during embryogenesis,
T-DNA gene insertions were used to search for deviant phenotypes
relative to embryonic development, but no obvious phenotypes
were observed (Raissig et al., 2013). Interestingly, all the mater-
nally imprinted genes in the Arabidopsis embryo were expressed
in the seed coat, and some even showed a slightly biased expres-
sion toward the basal embryo and the suspensor (Raissig et al.,
2013). Notably, some maternally imprinted genes were involved in
metabolism (Raissig et al., 2013). Therefore, maternally imprinted
genes in the embryo might function at the interface between
the embryo and maternal tissue, possibly by linking seed coat
metabolism and embryo metabolism, and rendering the genes in
the embryo under maternal control (Raissig et al., 2013). This
result may support the maternal–offspring coadaptation the-
ory, which posits that maternally imprinted genes are critical
for the events during mother–offspring interactions (Bateson,
1994; Wolf and Hager, 2006). Further research on the roles
of imprinted genes in the embryo will lead to a better under-
standing of the function and evolution of genomic imprinting in
plants.

REGULATION OF IMPRINTED GENES IN EMBRYOS
DNA methylation and histone modification are two distinct
epigenetic mechanisms involved in the regulation of genomic
imprinting in plants. The differential DNA methylation status of
parental alleles in the endosperm is due mainly to genome-wide
hypomethylation of maternal alleles in the central cell (Gehring
et al., 2009, 2011). DNA glycosylase DEMETER (DME) with 5-
methylcytosine excising activity (Kinoshita et al., 2004; Gehring
et al., 2006) and the repression of MET1 involved in maintain-
ing DNA methylation (Jullien et al., 2008; Hsieh et al., 2011) are
responsible for the DNA demethylation at CG sites. However,
sometimes DNA methylation alone is not sufficient to establish
different imprinting markers of some genes, and the Polycomb
repressive complex 2 (PRC2) that catalyzes the trimethylation of
histone H3 on lysine 27 (H3K27me3) is required (Baroux et al.,
2006; Makarevich et al., 2008; Hennig and Derkacheva, 2009).

To investigate the epigenetic mechanism of genomic imprint-
ing in the embryo, the fertilization-independent endosperm (fie)
mutant was crossed reciprocally with wild-type plants, and met1-
3 mutants were used to pollinate wild-type plants (Raissig et al.,
2013). F1 hybrid embryos were isolated, and mutant embryonic
cDNA libraries were created. The detection of the allele-specific
expression pattern of 11 embryonic MEGs in Arabidopsis demon-
strated that imprinted expression of MEGs in embryos are not
influenced by the paternal met1-3 allele. However, disruption of
the maternal FIE function changed the monoallelic expression of
two MEGs and one PEG. Thus, the function of PRC2 may be com-
prehensive in regulating imprinted expression in both the embryo
and endosperm (Raissig et al., 2013). Furthermore, the role of

asymmetric DNA methylation in the CHG context was negated
in the establishment of imprinting in the embryo. Finally, Raissig
et al. (2013) indicated that PRC2, but not MET1, played a role in
regulating the imprinted genes in the embryo. This is consist with
a previous conjecture that DNA methylation is unlikely to be a pri-
mary imprinting mark in maize embryos (Gutiérrez-Marcos et al.,
2006; Jahnke and Scholten, 2009). Other undiscovered mecha-
nisms may be involved in the establishment of genomic imprinting
in the embryo.

PERSPECTIVES
Technological advances in genome-wide sequencing technology
and acquisition of gametes, zygotes and early embryos will be
important for elucidating the role of parent-of-origin genes dur-
ing plant early embryogenesis. Such technological progress may
lead to the identification of more uniparental transcripts in early
embryos, whether gamete-delivered or imprinted gene-derived.
Currently, in both gametes and early zygotes, it remains tech-
nically difficult to identify the origin of transcripts, which may
be gamete-delivered during fertilization or transcribed de novo
after fertilization. In addition, little is known about the func-
tions of these parent-of-origin genes during fertilization and early
embryogenesis. Obviously, no matter how parental transcripts
may contribute to the transcriptome of early embryo, the function
analysis of the parent-of-origin genes in specific developmental
events at specific developmental stage will surely provide imper-
ative knowledge to understand the parental effect in early seed
formation.

Recently, the identification of imprinted genes in early embryos
in Arabidopsis has questioned the concept that imprinted genes
are restricted mainly to the endosperm. In light of so many
candidate imprinted genes in the embryos of dicots and mono-
cots, optimized methods are required to avoid contamination of
maternal tissues and false positives or negatives in data collec-
tion and reliable analysis. Determination of the relevant functions
of imprinted genes should shed light on our understanding of
epigenetic mechanisms in promoting embryogenesis, embryo pat-
tern formation, and cell fate determination during embryogenesis.
With further technological advancement, the role of methyla-
tion in gene imprinting during embryogenesis might be further
elucidated.
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