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Subtilisin-like proteases (subtilases) are serine proteases that fulfill highly specific functions
in plant development and signaling cascades. Over the last decades, it has been shown

that several subtilases are specifically induced following pathogen infection and very
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LINKING PROTEOLYSIS TO PATHOGEN RECOGNITION: THE
ROLE OF PLANT SUBTILISIN-LIKE PROTEASES

Proteolysis is fundamental for the normal functioning of multi-
cellular organisms and plays key roles in a variety of processes
such as development, physiology, defense and stress responses,
and adaptation to the changing environment. The serine proteases
are one of the best characterized groups of proteolytic enzymes in
higher organisms.

Subtilisin-like proteases (subtilases) are serine proteases char-
acterized by a catalytic triad of the three amino acids, aspartate,
histidine, and serine (Dodson and Wlodawer, 1998). According to
the MEROPS classification (http://merops.sanger.ac.uk), Eukary-
otic subtilases constitute the S8 family within the SB clan of serine
proteases (Rawlings et al., 2006). Plant subtilases correspond to
S8A subtilisin subfamily and form an extensive group of enzymes,
whereas S8B (kexin-type) proteins appear to be absent from
plants (Tripathi and Sowdhamini, 2006). Subtilases are especially
abundant in plants, with 63 genes known in the Oryza sativa,
56 genes in Arabidopsis thaliana and at least 15 in Lycopersicon
esculentum genomes (Meichtry et al., 1999; Rautengarten et al,,
2005; Tripathi and Sowdhamini, 2006).

The knowledge of the phylogenetic relationships of subtilase
genes may help to unravel their basic functions based on the
annotation of the orthologous sequences. When analyzing the 56
Arabidopsis sequences (Figure 1), based on sequence similarity, we
were able to discriminate the six subfamilies already described by
Rautengarten et al. (2005). These authors have shown that within
the 56 Arabidopsis subtilase genes, 55 presented the characteristic
conserved motifs (S8 domain and the aspartate, histidine, and
serine residues) and 53 presented the protease-associated (PA)
domain, associated to the determination of substrate specificities
and protein—protein interactions (Rautengarten et al., 2005). Our

recently an Arabidopsis subtilase (SBT3.3) was hypothesized to function as a receptor
located in the plasma membrane activating downstream immune signaling processes.
Despite their prevalence and potential relevance in the regulation of plant defense
mechanisms and crop improvement, our current understanding of subtilase function is
still very limited. In this perspective article, we overview the current status and highlight
the involvement of subtilases in pathogen recognition and immune priming.
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blast2GO annotation of the 56 Arabidopsis sequences showed that
some biological processes and functions were common to the
sequences within each subfamily: SBT3 was associated to “detec-
tion of biotic stimulus and detection of external stimulus”; SBT4
was associated to “petal and stamen development” and SBT5 was
associated to “oxidoreductase activity” Although several studies
have been made in order to characterize plant subtilases (Tornero
et al., 1997; Berger and Altmann, 2000; Schaller, 2004; Liu et al.,
2009; Budic et al., 2013; Ramirez et al., 2013) the function of the
majority of them remains unknown.

In plant—pathogen interactions, the first evidence for the
importance of plant subtilisin-like proteins was reported in
tomato, where expression of the subtilases P69B and P69C
was induced following pathogen attack and salicylic acid (SA)
application (Tornero et al., 1996a; Jorda et al., 1999). Further-
more it was shown that these subtilases are glycosylated and
secreted to the plant extracellular matrix (ECM) where they
accumulate (Yamagata et al., 1994; Tornero et al., 1996a,b, 1997;
Siezen and Leunissen, 1997; Taylor et al., 1997). Considering that
ECM is where the first host—pathogen interaction, recognition
and signaling events take place (Dixon and Lamb, 1990), the
accumulation of subtilases in plant ECM may account for an
important role during pathogenesis. It was also shown that P69C
specifically processes a LRP protein in disease tomato plants that
belongs to the extracellular leucine-rich repeat (LRR) family of
proteins. LRR proteins mediate molecular recognition and/or
interaction processes in the ECM of eukaryotic cells to initiate
different signaling processes (Tornero et al.,, 1996b). Recently,
when comparing resistant and susceptible grapevine genotypes,
a subtilisin-like protein sharing sequence similarity with the
tomato P69C was shown to be constitutively expressed in the
resistant genotype, its expression being induced after Plasmopara
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FIGURE 1 | Bootstrapped consensus neighbor-joining (NJ) tree
generated from the alignment of the 56 protein sequences annotated
as AtSBT, using Mega 6.06 software. SBT1, SBT2, SBT3, SBT4, SBT5,
and SBT6 are highlighted with different colors with NJ tree demonstrating
that each subfamily is well resolved phylogenetically (bootstrap values >50).

viticola inoculation (Figueiredo et al., 2008, 2012; Monteiro et al.,
2013).

IMMUNE RESPONSES AND PROGRAMMED CELL DEATH

Having in mind that plants face a constant array of invading
microorganisms and that only a small percentage of plant—
pathogen interactions leads to successful disease development,
plants have first to perceive the pathogen and then to acti-
vate an innate immune system in a timely, accurate, and
effective manner. Perception initially involves the detection of
broadly conserved molecules, known as microbe- or pathogen-
associated molecular patterns (MAMPs or PAMPs) by plasma
membrane proteins known as pattern recognition receptors
(PRRs). PAMP-triggered immunity (PTI) constitutes a front-
line pattern-triggered immune response that must be overcome
by microorganisms for successful colonization of plant tissues
(Jones and Dangl, 2006). PTI is characterized by the rapid pro-
duction of reactive oxygen species (ROS), activation of signal-
ing cascades and by an overall transcriptional reprogramming

favoring defense (Moore et al., 2011). A second intracellular class
of immune receptors is activated via recognition of pathogen
effectors, resulting in effector-triggered immunity (ETI). ETI is
mediated by the nucleotide-binding domain leucine rich repeat
(NB-LRR) disease resistance proteins and is often manifested
as a hypersensitive response (HR) associated with rapid cell
death, production of ROS and SA, and expression of defense-
related genes (Jones and Dangl, 2006). Apart from pathogen-
derived elicitors that can activate the plant innate immune
response, plant endogenous elicitors that trigger or amplify the
innate immune response have also been identified (Ryan and
Pearce, 2003; Huffaker et al., 2006; Huffaker and Ryan, 2007;
Pearce et al., 2010). Of those, a 12 amino acid peptide from
soybean derived from an extracellular subtilase(Glymal8g48580)
was shown to activate defense-related genes, leading to the
hypothesis that, upon pathogen attack, this endogenous pep-
tide would be available for receptor binding and initiation of
defense signaling pathways (Pearce et al., 2010; Yamaguchi et al.,
2011).

Another interesting feature of subtilisin-like proteins, which
was recently reviewed by Vartapetian et al. (2011), is their
involvement in plant programmed cell death (PCD). Cell death
has a central role in innate immune responses in both plants
and animals (Coll et al.,, 2011). Pathogen recognition leads to
inhibition of pathogen growth, which is often, but not always,
accompanied in plants by the triggering of the HR, a form
of PCD localized at the site of attempted pathogen invasion.
Current data indicate that the role played by caspases in ani-
mal PCD is taken, at least in part, by some subgroups of
plant subtilisin-like proteases namely by phytaspases (Chichkova
et al., 2010; Vartapetian et al.,, 2011). In 2012, it was shown
that using serine inhibitors partially inhibited the overall acti-
vation of PCD and thereby changed the level of susceptibility
of grapevine toward the oomycete P. viticola (Gindro et al.,
2012). In plant-oomycete interaction, the death stimuli may be
triggered by the pathogen effectors and, among these protein
effectors, protease inhibitors are crucial for successful suppres-
sion of plant defenses (van der Hoorn and Jones, 2004; van
der Hoorn, 2008). It has been suggested that the secretome of
P. viticola could inhibit the caspase-like proteases of grapevine
susceptible varieties, thereby inhibiting the plant’s normal defense
reaction. By contrast, resistant grapevine varieties would possess
caspase-like proteases that are not recognized by the secretome
of P. viticola due to slight structural modifications of the protein
patterns of these cultivars. In this case, plant defense mecha-
nisms would continue to operate, producing fatal consequences
for the pathogen and restricting its development (Gindro et al.,
2012).

So, up to this point, we have shown that several subtilisin-
like proteases are associated to plant—pathogen resistance, that
they are secreted to the ECM and may exert important functions
both in pathogen recognition and initiation of signaling cascades
leading to the activation of defense-related genes and that some
sub-groups of the subtilase family play an important role in PCD.
However, in plant—pathogen interactions one very interesting
feature of subtilases was only recently identified, and may be
linked to immune priming events.
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SUBTILASES LINKED TO IMMUNE PRIMING IN PLANTS

Plants are capable of establishing immune responses that are
highly specific, with restricted self-reactivity, and that often gen-
erate a lifelong “memory” of the encountered pathogens. So,
different immune strategies are used, being particularly relevant
the enhancement of the potential to mount defense responses to
subsequent infections where plants respond to much lower levels
of a pathogenic stimulus in a more rapid and robust manner—a
priming phenomenon (Beckers and Conrath, 2007). Even though
the molecular mechanisms of priming remain elusive, it was
proposed that cell priming involves accumulation of inactive
cellular proteins that play an important role in cellular signal
amplification (Bruce et al., 2007; Conrath, 2011). Subsequent
exposure to biotic or abiotic stress could activate these dormant
signaling proteins, thereby initiating signal amplification and lead
to more rapid and robust activation of defense, immunity, and
stress tolerance.

The study by Ramirez et al. (2013) identified the Arabidopsis
SBT3.3 gene, encoding a serine protease homologous to the
tomato P69C subtilase. Similarly to the tomato P69C, Arabidopsis
SBT3.3 protein may be linked to pathogen recognition and acti-
vation of signaling processes. It was shown that the expression
of SBT3.3 is rapidly demanded during the activation of innate
immunity preceding the activation of SA responsive genes and
responding very rapidly to H,O,, a common ROS species gen-
erated very early during PAMP recognition by PRR leading to
activation of innate immune responses. SBT3.3 substrate was
not yet identified but it was hypothesized that it may process
an extracellular domain (ectodomain) of a larger protein, likely
functioning as a receptor located in the plasma membrane.
After proteolytic shedding of the ectodomain, the receptor could
become activated and initiate a downstream immune signaling
process, similarly to what was described in animals (Ramirez
et al.,, 2013). It is also hypothesized that after initiation of the
signaling process, a positive feedback loop circuit would maintain
the SBT3.3 expression. Maintenance of this expression threshold
level should be sufficient to keep cells in a sustained sensitized
mode (Ramirez et al., 2013). This expression pattern would conse-
quently be the basis to explain the memory-based characteristics
of priming and induced resistance. Future challenges rely on the
identification of disease resistance subtilases target substrate and
in the elucidation of their participation in the immune priming
activation

CONCLUSION

One of modern’s agriculture demands is to enhance harvest yields
per acreage while reducing pre-harvest and post-harvest losses
caused by pathogens. Modern pest management strategies in
crop plants include classical and molecular marker-based resis-
tance breeding, genetic engineering of plant immunity and the
use of chemicals as pesticides or strengtheners of plant health.
Here, we have highlighted the involvement of plant subtilisin-like
proteins in both disease resistance and priming events. Despite
all the recent advances on subtilase characterization, very little
is known about their functions and substrates. Future research
efforts have to be made to characterize these proteases in a broad
spectrum of crop plants, to define their substrates and to prove

their involvement in plant immunity so that subtilases may be
considered has promising genomic tools to engineer durable,
broad-spectrum plant disease resistance.
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