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Current understanding of the epigenetic regulator roles in plant growth and development
has largely derived from studies in the dicotyledonous model plant Arabidopsis thaliana.
Rice (Oryza sativa) is one of the most important food crops in the world and has more
recently becoming a monocotyledonous model plant in functional genomics research.
During the past few years, an increasing number of studies have reported the impact of
DNA methylation, non-coding RNAs and histone modifications on transcription regulation,
flowering time control, and reproduction in rice. Here, we review these studies to provide an
updated complete view about chromatin modifiers characterized in rice and in particular on
their roles in epigenetic regulation of flowering time, reproduction, and seed development.
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INTRODUCTION
Epigenetics is defined as nucleotide sequence-independent
changes in the gene expression that are mitotically and/or mei-
otically heritable. The fundamental repeating unit of chromatin is
nucleosome. The nucleosome contains 145–147 base pairs (bp) of
DNA wrapped around an octamer of histone proteins, compris-
ing two copies of each of the four core histones, H2A, H2B, H3,
and H4 (McGinty and Tan, 2014). The linker histone H1 asso-
ciates with DNA inbetween the two nucleosomes and participates
in higher order chromatin structure formation and remodeling.
The structure of chromatin can be subjected to panoply of epi-
genetic regulations including DNA methylation, histone covalent
modifications, histone variants, and ATP-dependent chromatin
remodeling. DNA methylation has been widely considered as
a heritable epigenetic mark that regulates expression of genes
in both plants and mammals (Law and Jacobsen, 2010; Furner
and Matzke, 2011; Wu and Zhang, 2014). Histone modifications
including methylation, acetylation, phosphorylation, ubiquitina-
tion, and sumoylation, play critical roles in regulating chromatin
structure and gene expression, mainly by altering nucleosome
stability and positioning that affect DNA accessibility for regu-
latory proteins or protein complexes involved in transcription,
DNA replication and repair (Pikaard and Scheid, 2013; To and
Kim, 2014; Van Lijsebettens and Grasser, 2014). ATP-dependent
chromatin remodeling factors control relocation or dissociation
of nucleosomes, and histone chaperones bind histones and play
crucial roles in nucleosome assembly/disassembly in diverse chro-
matin metabolism and epigenetic regulation (Zhu et al., 2012;
Gentry and Hennig, 2014).

Rice (Oryza sativa ) is a worldwide crop and represents a
valuable model plant for monocots, to which many of our food
crops belong. Compared to the extensively studied dicot model
plant Arabidopsis thaliana, rice has only been more recently stud-
ied in epigenetic modifications (reviewed in Chen and Zhou,

2013). Genome-wide analyses of DNA methylations have revealed
conservation as well as distinct differences between rice and
Arabidopsis, and that a much higher level of DNA methylation
is observed in association with more numerous transposable ele-
ments present in the rice genome (Yan et al., 2010; Zemach et al.,
2010; Chodavarapu et al., 2012; Li et al., 2012). Genome-wide
analyses by chromatin immunoprecipitation combined with high-
throughput sequencing (ChIP-Seq) have shown that several types
of histone modifications, e.g., histone H3 lysine 9 acetylation
(H3K9ac) and H4K12ac, H3K4 di-/tri-methylation (H3K4me2/3),
H3K27me3, and H3K36me3, are broadly distributed with dis-
tinct patterns within the rice genome (He et al., 2010; Malone
et al., 2011; Du et al., 2013). In this review, we summarize and
discuss regulators involved in different types of chromatin mod-
ifications and their roles in rice plant flowering time control and
reproduction.

REGULATION OF DIFFERENT TYPES OF CHROMATIN
MODIFICATIONS IN RICE
Different types of chromatin modifications are regulated by spe-
cific factors that are generally conserved in rice and other plant
species (www.chromdb.org). So far, only some of the rice chro-
matin modifiers are functionally characterized by analysis of
loss-of-function mutants and RNAi or overexpression transgenic
plants (Table 1).

DNA METHYLATION
In plants, DNA methylation occurs at cytosine residues in
symmetric, CG and CHG, as well as asymmetric, CHH, con-
texts (where H = A, T or C; Law and Jacobsen, 2010). In
Arabidopsis, CG methylation is maintained by METHYLTRANS-
FERASE 1 (MET1; Saze et al., 2003), whereas CHG methylation
is mediated by CHROMOMETHYLASE 3 (CMT3; Lindroth
et al., 2001). The maintenance of CHH methylation is carried
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Table 1 | Chromatin modifiers functionally characterized in rice.

Name Gene locus Molecularfunction Biological role Reference

DNA

methylation

OsMET1b/OsMET1-2 LOC_Os07g08500 DNA methyltransferase Seed development Hu et al. (2014), Yamauchi et al.

(2014)

OsDRM2 LOC_Os03g02010 De novo DNA

methyltransferase

Pleiotrpic effects on

development

Moritoh et al. (2012), Pang et al.

(2013)

OsDDM1 LOC_Os09g27060 DNA methylation

maintenance

Transposon repression,

growth inhibition

Higo et al. (2012)

DNA

demethylation

OsROS1a LOC_Os01g11900 DNA demethylase Plant reproduction Zemach et al. (2010), Ono et al.

(2012)

OsROS1c LOC_Os05g37350 DNA demethylase Transposon activation La et al. (2011)

Histone

methylation

SDG714 LOC_Os01g70220 H3K9 methyltransferase Transposon repression,

trichome development

Ding et al. (2007b)

SDG728 LOC_Os05g41170 H3K9 methyltransferase Transposon repression,

seed development

Qin et al. (2010)

SDG725 LOC_Os02g34850 H3K36 methyltransferase Hormone regulatory

gene activation,

flowering

Sui et al. (2012, 2013)

SDG724 LOC_Os09gl3740 H3K36 methyltransferase Flowering Sun et al. (2012)

SDG723/OsTrx1 LOC_Os09g04890 H3K4 methyltransferase Flowering Choi et al. (2014)

Histone

demethylation

JMJ706 LOC_Os10g42690 H3K9 demethylase Floral organ development Sun and Zhou (2008)

JMJ705 LOC_Os01g67970 H3K27 demethylase Biotic stress response,

plant reproduction

Li et al. (2013)

JMJ703 LOC_Os05g10770 H3K4 demethylase Stem elongation,

transposon repression

Chen et al. (2013), Cui et al.

(2013)

JMJ701 LOC_Os03g05680 H3K4 demethylase Flowering Yokoo et al. (2014)

Polycomb

silencing

OsiEZ1/SDG718 LOC_Os03g19480 H3K27 methyltransferase Flowering Liu et al. (2014)

OsCLF/SDG711 LOC_Os06gl6390 H3K27 methyltransferase Flowering Liu et al. (2014)

OsFIE1 LOC_Os08g04290 Drosophila ESC homolog Pleiotrpic effects on

development

Zhang et al. (2012b), Nallamilli

et al. (2013), Folsom et al. (2014)

OsFIE2 LOC_Os08g04270 Drosophila ESC homolog Organ generation,

reproduction

Luo et al. (2009), Li et al. (2014)

OsEMF2b LOC_Os09g13630 Drosophila Su(z)12

homolog

Floral organ development Yang et al. (2013), Conrad et al.

(2014)

Histone

deacetylation

OsHDT1/HDT701 LOC_Os05g51840 H4 deacetylase Biotic stress response,

heterosis

Li et al. (2011a), Ding et al.

(2012a)

OsSRT1 LOC_Os04g20270 H3K9 deacetylase Cell death, transposon

repression

Huang et al. (2007), Zhong et al.

(2013)

Others CHD3/CHR729 LOC_Os07g31450 Chromodomain and

PHD-domain protein

Pleiotrpic effects on

development

Hu et al. (2012)

MEL1 LOC_Os03g58600 AGO-family protein Meiosis progression Nonomura et al. (2007), Komiya

et al. (2014)

SHO1 LOC_Os04g43050 Homolog of DICER-LIKE 4 Pleiotrpic effects on

development

Abe et al. (2010)

SHL2 LOC_Os01g34350 RDR6 homolog Floral organ development Toriba et al. (2010)

WAF1 LOC_Os07g06970 HEN1 homolog Pleiotrpic effects on

development

Abe et al. (2010)

BRK1 LOC_Os07g32480 H2A phosphorylation Meiosis progression Wang et al. (2012)
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out by CMT2 and DOMAINS REARRANGED METHYLTRANS-
FERASE 2 (DRM2), an ortholog of mammalian Dnmt3 (Law
and Jacobsen, 2010; Stroud et al., 2014). DRM2 is required for
de novo cytosine methylation in both symmetric and asymmetric
sequence contexts, which is guided to the target region by RNA-
directed DNA methylation (RdDM) pathway (Cao and Jacobsen,
2002; Law and Jacobsen, 2010; Stroud et al., 2014). While Ara-
bidopsis contains only one MET1 gene, rice has two MET1
genes, MET1a (also named OsMET1-1) and MET1b/OsMET1-2
(Teerawanichpan et al., 2004; Yamauchi et al., 2008). The tran-
scripts of MET1b accumulate more abundantly than those of
MET1a in all of the examined rice tissues, indicating that MET1b
may play a more important role in maintaining DNA methyla-
tion (Yamauchi et al., 2008). Consistently, more recent studies
demonstrate that MET1b is an essential gene and its loss causes
genome-wide reduction of CG methylation in rice seedlings (Hu
et al., 2014; Yamauchi et al., 2014). Rice contains also one DRM2
gene, OsDRM2, and the recombinant OsDRM2 protein expressed
in Escherichia coli or Saccharomyces cerevisiae exhibits stochas-
tic de novo DNA methyltransferase activity in vitro at CG, CHG,
and CHH (Sharma et al., 2009; Pang et al., 2013). Interestingly,
OsDRM2 was found to interact with the ATP-dependent RNA
helicase, OseIF4A, in both in vitro and in vivo assays (Dangwal
et al., 2013). The interaction specifically depends on the ubiquitin-
associated domain of OsDRM2, pointing to a mechanism in
which OsDRM2 is recruited to specific chromatin sites by eIF4A
together with other cellular proteins for catalyzing DNA methyla-
tion (Dangwal et al., 2013). Similar to the Arabidopsis DECREASE
IN DNA METHYLATION 1 (DDM1), which encodes a nucleosome
remodeling ATPase, OsDDM1 is also necessary for maintenance of
DNA methylation in transposons and repetitive sequences (Higo
et al., 2012). The rice genome contains three putative CMT3
homologs (Sharma et al., 2009), yet their functions remain to be
characterized.

DNA methylation can be removed passively through dilution
during replication as well as actively through catalysis by demethy-
lation enzymes (La et al., 2011; Ono et al., 2012). In Arabidopsis,
active demethylation is catalyzed by REPRESSOR OF SILENC-
ING 1 (ROS1; Gong et al., 2002; Agius et al., 2006), DEMETER
(DME; Choi et al., 2002; Gehring et al., 2006), and DEMETER-
LIKE 2 (DML2) and DML3 (Choi et al., 2002; Ortega-Galisteo
et al., 2008). Phylogenetic analysis showed that the rice genome
encodes six putative bi-functional DNA glycosylases that catalyze
cytosine DNA demethylation: four ROS1 orthologs (ROS1a to
ROS1d) and two DML3 orthologs (DML3a and DML3b), but no
DME orthologs (Zemach et al., 2010). ROS1c has been shown to be
involved in DNA demethylation and control of the retrotranspo-
son Tos17 activity (La et al., 2011). Quantitative RT-PCR analysis
revealed that ROS1a, ROS1d, and DML3a are expressed in differ-
ent examined plant tissues, including anthers and pistils, whereas
ROS1b and DML3b are scarcely expressed in these tissues (Ono
et al., 2012). Future studies are necessary to investigate the role of
these different genes in rice genome DNA methylation.

HISTONE METHYLATION
Histone methylation marks are established on lysine (K) and
arginine (R) residues by distinct enzymes, namely histone lysine

methyltransferases (HKMTs) and protein arginine methyltrans-
ferases (PRMTs), respectively (Liu et al., 2010; Yao and Shen,
2011). In general, H3K9, H3K27, and H4K20 methylations are
associated with transcriptional repression, whereas methylation
on H3K4 and H3K36 correlates with gene activation. Furthermore,
each K residue can be mono-, di-, or tri-methylated, and different
methylation status may have different functional implications (Yu
et al., 2009).

All known plant HKMTs contain an evolutionarily conserved
SET domain (reviewed in Berr et al., 2011). The rice genome
encodes at least 37 SET domain proteins, grouped into dis-
tinct families (Ng et al., 2007; Huang et al., 2011; Thorstensen
et al., 2011). To date, several members belonging to different
families are characterized (Table 1). Analyses of SET DOMAIN
GROUP 714 (SDG714) and its close homologs (e.g., SDG728)
showed that these rice SDG proteins have either specific or
redundant functions in regulating histone H3K9 methylation
and retrotransposon repression (Ding et al., 2007a,b, 2010; Qin
et al., 2010). Knockdown of SDG714 leads to decreased H3K9
methylation levels accompanied by a reduction of CG and
CHG methylation, suggesting that H3K9 methylation and DNA
methylation act closely together to stably repress the transpo-
sition of transposons to maintain genome stability (Ding et al.,
2007b). Ectopic expression of SDG714 in Arabidopsis can cause
a global elevation of H3K9me2 (Ding et al., 2010). Knockdown
of SDG725 impairs deposition of H3K36me2/3 at several exam-
ined gene loci (Sui et al., 2012, 2013). SDG724 is also involved
in H3K36me2/3 deposition (Sun et al., 2012). SDG723/OsTrx1
is a close homolog of the Arabidopsis H3K4-methyltransferase
ATX1 and can methylate in vitro H3 within oligonucleosomes
(Choi et al., 2014). The rice genome contains two genes encod-
ing putative H3K27 methyltransferases, OsiEZ1/SDG718 (also
named OsSET1) and OsCLF/SDG711, which likely work in
protein complexes in Polycomb silencing pathway (see Section
below).

Histone lysine methylation can be removed by histone
demethylases, which consist of two classes: Lysine Specific
Demethylase 1 (LSD1) and Jumonji C (jmjC) domain-containing
proteins (Tsukada et al., 2006; Mosammaparast and Shi, 2010).
LSD1, a flavin-dependent amine oxidase, has been the first
histone demethylase reported (Shi et al., 2004) and Arabidopsis
contains three LSD1 homologs, which are involved in flower-
ing time regulation (Jiang et al., 2007; Liu et al., 2007; Shafiq
et al., 2014). Three rice genes (Os02g0755200, Os04g0560300,
and Os08g0143400) encode LSD1 homologs, but their functions
remain uncharacterized. There are at least 20 jmjC domain-
containing proteins in rice, and the first characterized JMJ706
specifically demethylates H3K9me2/me3 (Sun and Zhou, 2008).
More recently, several other rice jmjC-encoding genes have been
characterized. JMJ705 encodes a histone lysine demethylase that
specifically removes H3K27me2/3, and the expression of JMJ705 is
induced by stress signals and during pathogen infection (Li et al.,
2013). For active histone marks, JMJ703 is involved in the removal
of H3K4me1/me2/me3 (Chen et al., 2013; Cui et al., 2013), and
JMJ701 in removal of H3K4me3 (Yokoo et al., 2014). So far,
however, histone demethylase(s) involved in removal of H3K36
methylation is(are) unknown.
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POLYCOMB SILENCING
Polycomb Group (PcG) proteins were first identified as mas-
ter regulators and suppressors of homeotic genes in Drosophila
melanogaster. Polycomb Repressive Complex 2 (PRC2) has four
core components: ENHANCEROF ZESTE (E[z]), SUPPRESSOR
OF ZESTE 12 (Su[z]12), EXTRA SEX COMBS (ESC), and the
55 kDa WD40-repeat protein N55 (Schuettengruber and Cavalli,
2009). PRC2 mediates H3K27me3 deposition via the catalytic
subunit E[z], a SET-domain containing protein (Czermin et al.,
2002). The four core subunits of the PRC2 complex are well
conserved in animals as well as in plants (Chen and Rasmuson-
Lestander, 2009; He et al., 2013). While in Drosophila all but one
subunit is encoded by a single gene, most of the plant PRC2
core subunits are encoded by small gene families. In Arabidop-
sis, MEDEA (MEA)/FERTILIZATION INDEPENDENT SEED 1
(FIS1), CURLY LEAF (CLF), and SWINGER (SWN) are the
three homologs of E[z]; FIS2, VERNALIZATION 2 (VRN2), and
EMBRYONIC FLOWER 2 (EMF2) are the three homologs of
Su[z]12; MULTICOPY SUPPRESSOR OF IRA1 (MSI1) to MSI5
are the five homologs of N55; and FERTILIZATION INDEPEN-
DENT ENDOSPERM (FIE) is the only homolog of ESC. Remark-
ably, MEA/FIS1 and FIS2, which are important for endosperm and
seed development in Arabidopsis, are absent from rice, and rice
has two E[z] homologs: OsiEZ1/SDG718 and OsCLF/SDG711,
two Su[z]12 homologs: OsEMF2a and OsEMF2b, but also two
FIE homologs: OsFIE1 and OsFIE2 (Luo et al., 2009). Functional
roles of some of these rice PcG proteins have been characterized
(Table 1). The expression of OsiEZ1/SDG718 and OsCLF/SDG711
is induced by and represses flowering genes in long day and short
day, respectively (Liu et al., 2014). While OsFIE2 is expressed
broadly in all examined rice tissues, OsFIE1 is expressed specif-
ically in the rice endosperm and its expression in vegetative
tissues is likely to be silenced by promoter DNA methylation
(Zhang et al., 2012b; Nallamilli et al., 2013). Furthermore, OsFIE1
is imprinted and only the maternal allele is expressed in endosperm
(Luo et al., 2009). More recently, it was reported that OsFIE1 is
responsive to temperature changes and its expression negatively
correlates with the duration of the syncytial seed developmental
stage during heat stress (Folsom et al., 2014). DNA methylation,
H3K9me2 and/or H3K27me3 are likely involved in regulation of
varied repressive status of OsFIE1 (Zhang et al., 2012b; Nallamilli
et al., 2013; Folsom et al., 2014). Functional characterization of
OsEMF2b revealed that PRC2 plays a major role in modulation
of the expression of E-function MADS-box transcription factor
genes required for floral organ specification and floral meris-
tem determinacy (Luo et al., 2009; Yang et al., 2013; Conrad et al.,
2014). Very importantly, OsFIE2 interacts with OsiEZ1/SDG718
and the OsFIE2-associated complex purified from transgenic rice
suspension cells (containing OsEMF2b, OsCLF, OsiEZ1/SDG718)
can methylate H3K27 in in vitro histone methyltransferase assay
(Nallamilli et al., 2013).

HISTONE ACETYLATION
Histone lysine acetylation is generally associated with transcrip-
tion activation and is dynamically regulated by the antagonistic
activities between histone acetyltransferases (HATs) and histone
deacetylases (HDACs; Chen and Tian, 2007). All four core histones

can be acetylated and a nucleosome contains 26 putative acetyla-
tion sites (Lusser et al., 2001). Global analysis of lysine acetylation
demonstrates the involvement of protein acetylation in diverse
biological processes in rice (Nallamilli et al., 2014). The rice
genome contains eight HATs and 19 HDACs (Hu et al., 2009; Liu
et al., 2012). The eight HATs can be divided into four groups,
namely the CREB-Binding Protein (CBP) group, the TAFII-
associated factor (TAFII250) group, the GCN5-related N-terminal
acetyltransferase (GNAT) group, and the MYST (named for the
founding members MOZ, Ybf2/Sas3, Sas2, and Tip60) group
(Liu et al., 2012). The 19 HDACs are grouped into three dis-
tinct families, namely the Reduced Potassium Deficiency 3 (RPD3)
family, the Silent Information Regulator 2 (SIR2) family, and the
type-II HDAC (HD2) family which is plant specific (Ma et al.,
2013). Reversible and dynamic changes of H3 acetylation occurs
at submergence-inducible genes, alcohol dehydrogenase 1 (ADH1)
and pyruvate decarboxylase 1 (PDC1) in rice (Tsuji et al., 2006).
Forward genetic analysis has identified a rice mutant, rice plas-
ticity 1 (rpl1), which displays increased environment-dependent
phenotypic variations and an elevation of overall H3K9 acetyla-
tion (Zhang et al., 2012a). Down-regulation of OsHDT1/HDT701,
which encodes a histone H4 deacetylase, causes elevated levels
of H4 acetylation and increased transcription of pattern recogni-
tion receptor (PRR) and defense-related genes (Ding et al., 2012a).
Knockdown of OsSRT1, a member of SIR2-like HDAC family,
results in an increase of H3K9 acetylation (H3K9ac), leading to
DNA fragmentation and cell death, and the OsSRT1 protein binds
to loci with relative low level of H3K9ac and regulates expression
of many genes related to stress and metabolism as well as several
families of transposable elements (Huang et al., 2007; Zhong et al.,
2013).

READERS OF HISTONE MODIFICATIONS
Specific recognition of histone modifications by readers can
recruit various components of the nuclear signaling network to
chromatin, mediating fundamental processes such as gene tran-
scription, DNA replication and recombination, DNA repair and
chromatin remodeling (Musselman et al., 2012). Some readers
are reported in Arabidopsis (reviewed in Berr et al., 2011), and
more recent works have identified several novel chromodomain
(CHD)- and/or plant homeodomain (PHD)-containing proteins
as readers of H3K4me2/me3 and H3K36me3 (Bu et al., 2014;
Lopez-Gonzalez et al., 2014; Molitor et al., 2014; Xu et al., 2014).
Interestingly, the rice CHD3 protein can bind both the active mark
H3K4me2 and the repressive mark H3K27me3 via its CHD and
PHD domain, respectively (Hu et al., 2012). Knockdown of CHD3
caused reduction of H3K4me3 and H3K27me3 at many genes. It
was thus suggested that the rice CHD3 may act as a bifunctional
reader capable to recognize and modulate both H3K4 and H3K27
methylations (Hu et al., 2012).

SMALL AND LONG NON-CODING RNAs
Non-coding small RNAs (sRNA) of 21–24 nucleotides (nt) in
length as well as long non-coding RNAs (lncRNAs, >200 nt
in length) are known to be involved in chromatin modifica-
tions and thus epigenetic inheritance (reviewed in Castel and
Martienssen, 2013; Bond and Baulcombe, 2014). Genome-wide
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profiling have identified several hundreds of different sRNAs,
and differences exist at their expression levels between differ-
ent rice subspecies, reciprocal hybrids, different plant tissues,
and under different growth conditions (Chen et al., 2010; He
et al., 2010; Jeong et al., 2010; Zhang et al., 2014). Remarkably,
the most abundant sRNAs identified in rice panicles are 24 nt
in length and mainly correspond to transposon-associated or
repeat-associated small interfering RNAs (siRNAs; Jeong et al.,
2011). The most intriguing role of siRNAs is in repression of
transposons and repeat elements in reproductive tissues and epige-
nomic reprogramming during gametogenesis (Gutierrez-Marcos
and Dickinson, 2012; Castel and Martienssen, 2013; Bond and
Baulcombe, 2014). ARGONAUTE (AGO) proteins play important
roles in microRNA-mediated post-transcriptional gene silenc-
ing (PTGS) and siRNA-mediated RdDM (Vaucheret, 2008). A
germ line specific AGO-encoding gene, MEIOSIS ARRESTED
AT LEPTOTENE1 (MEL1), has been reported in rice, and the
mel1 mutant shows chromosome abortion during early mei-
otic stages, leading to impaired male and female fertilities
(Nonomura et al., 2007). More recently, forward genetic analysis
has identified a lncRNA, which could be subsequently processed
to small RNAs, as a key regulator of male fertility in rice (Ding
et al., 2012b,c). Meanwhile, Zhou et al. (2012) reported that a
spontaneous mutation of a small RNA could cause male steril-
ity in rice. Nevertheless, the precise role of lncRNA and sRNA,
particularly at rice chromatin structure levels, requires future
investigations.

EPIGENETIC REGULATION OF RICE FLOWERING
Flowering represents the transition from vegetative to reproduc-
tive growth, a key developmental switch during the plant life
cycle. Flowering time is precisely controlled by complex gene net-
work that integrates environmental signals, such as day length
(photoperiod), light intensity and quality, and ambient tem-
perature, as well as endogenous cues involving plant hormones
(Albani and Coupland, 2010; Shrestha et al., 2014). Photoperiod
is one of the most predictable cues in nature, and according
to photoperiod responsiveness plants can be categorized into
three groups: long-day (LD) plants, short-day (SD) plants, and
day-neutral plants. Arabidopsis is a facultative LD plant whose
flowering is accelerated when grown under LD photoperiods.
Furthermore, flowering of most Arabidopsis ecotypes is pro-
moted by a prolonged exposure to the cold of winter (a process
known as vernalization), which has an epigenetic basis of com-
petence memory (Ream et al., 2012; Song et al., 2012). During
recent years, many chromatin modifiers have been shown as
involved in Arabidopsis flowering time regulation, with majority
of them acting via the transcriptional regulation of FLOWERING
LOCUS C (FLC), a key flowering repressor at which vernaliza-
tion and autonomous pathways converge (Berr et al., 2011; He,
2012; Ietswaart et al., 2012). In contrast to Arabidopsis, rice is a
facultative SD plant and does not require vernalization to induce
flowering and does not contain a FLC homolog. The complex gene
network of rice flowering pathways primarily consists of flower-
ing activators, and remarkably several chromatin modifiers have
been shown recently as involved in rice flowering time control
(Figure 1).

KEY TRANSCRIPTION FACTORS OF RICE FLOWERING PATHWAYS
Within the rice flowering pathways, the close paralogs Heading
date 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1) are
specifically upregulated upon the inductive SD photoperiods in
leaf phloem tissue and encode small globular proteins named flori-
gens, which move to the shoot apex to promote flowering (Tsuji
et al., 2013; Sun et al., 2014). There are at least two pathways that
control the Hd3a/RFT1 expression under either SD (Figure 1A)
or LD (Figure 1B) photoperiods: the Early heading date 1 (Ehd1)
and the Hd1 pathways (Tsuji et al., 2013; Sun et al., 2014). Ehd1
encodes a B-type transcription factor that plays a key role in acti-
vation of both Hd3a and RFT1 expression. The expression of Ehd1
is modulated by at least three different types of function factors
(Sun et al., 2014). The first type comprises day length-independent
activators, including Ehd2, also known as Rice Indeterminate1
(RID1) or Os Indeterminate1 (OsId1), and Ehd4, which encode
two different zinc-finger transcription factors and act in both SD
and LD conditions in Ehd1 induction (Figure 1). The second
type comprises SD-preferential activators, including the PHD-
finger factor Ehd3 and the MADS-box family transcription factor
OsMADS51, which induce Ehd1 expression specifically in SD con-
ditions (Figure 1A). And the third type comprises LD-preferential
repressors, including Grain number, plant height, and heading
date7 (Ghd7) that encodes a CCT-domain protein and LEC2-
FUSCA3-Like 1 (OsLFL1) that encodes a B3-type transcription
factor, both repress Ehd1 expression specifically in LD condi-
tions (Figure 1B). Further upstream, the LD-preferential regulator
OsMADS50 promotes flowering via repression of OsLFL1. Inter-
estingly, Ehd3, which acts as an activator of Ehd1 to promote
flowering in SD conditions (Figure 1A), displays a repressor func-
tion on Ghd7 and thus also promotes flowering in LD conditions
(Figure 1B). The rice circadian clock related protein GIGAN-
TEA (OsGI) activates the Ehd1 pathway partly via induction of
OsMAD51 expression (Figure 1B). While the Ehd1 pathway is
more unique to rice, the OsGI-Hd1-Hd3a pathway is very similar
to the Arabidopsis GI-CO-FT pathway, composing of the respective
orthologous proteins in the two plant species (Tsuji et al., 2013; Sun
et al., 2014). An atypical helix-loop-helix (HLH) protein (OsLF)
also is involved in the OsGI-Hd1-Hd3a pathway via Hd1 repres-
sion. Hd1 acts as an activator to promote rice flowering in SD
conditions (Figure 1A) but as a suppressor of rice flowering in
LD conditions (Figure 1B). Phytochrome signaling is crucial in
conversion of Hd1 activity because mutation of Phytochrome B
(PHYB) or phytochrome deficiency (e.g., in photoperiod sensitiv-
ity5 mutant) maintains Hd1 as an activator independent of day
length. Under LD conditions, the red-light photoreceptor PHYB
pathway may convert and maintain Hd1 as a repressor possible
via post-translational modification and/or protein complex for-
mation. Because of space limitation, the one who is interested in
more details about rice flowering pathways can read the two excel-
lent review articles here cited (Tsuji et al., 2013; Sun et al., 2014)
and the original research papers referred therein.

ACTIVE CHROMATIN MARKS ARE INVOLVED IN RICE FLOWERING TIME
REGULATION
Understanding how the rice flowering pathway genes are regulated
in the chromatin context has great importance. Recent studies have
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FIGURE 1 | Regulatory networks of genetic and epigenetic control of rice

flowering under short-day (A) and long-day (B) photoperiod conditions.

Rice flowering network is integrated by two florigen genes Hd3a and RFT1,
which are regulated by at least two pathways: the Hd1-dependent and the
Ehd1-dependent pathways. Expressions of Hd1 and Ehd1 are further

regulated by more upstream genes as indicated by different names in the
circles. Arrows indicate for transcriptional activation, whereas bars indicate for
transcriptional repression. Different color spheres surrounding the flowering
gene circles indicate for different regulations by the indicated histone
modifications at the gene locus, currently described in literatures.

found that histone acetylations, H3K4 and H3K36 methylations
are involved in active transcription of several genes within the rice
flowering pathways (Figure 1). It was reported that overexpression
of the HD2-family HDAC gene OsHDT1 in hybrid rice leads to
early flowering under LD conditions, probably through transcrip-
tional repression of OsGI and Hd1 (Li et al., 2011a). Interestingly,
the expression of OsHDT1 displays a circadian rhythm under
SD conditions, peaked at the end of day, which coincides with
rhythmic expression of OsGI and advances that of Hd1. Ectopic
OsHDT1 expression in transgenic rice attenuates the overdomi-
nance rhythmic expression of OsGI and Hd1 in hybrid rice, which
may explains the early flowering phenotype specifically observed
in hybrid but not parental rice lines (Li et al., 2011a). Histone H4
acetylation levels were observed to positively correlate with the
rhythmic expression of OsGI and Hd1, and OsHDT1 overexpres-
sion was shown to impair the acetylation increase at the peak time
(Li et al., 2011a).

A positive DNA/histone methylation role in rice flow-
ering promotion was first indicated by the study of the

S-adenosyl-L-methionine synthetase gene mutants (Li et al.,
2011b). S-Adenosyl-L-methionine is a universal methyl group
donor for both DNA and protein methylations. Its deficiency
caused late-flowering of rice plants and reduction of Ehd1, Hd3a,
and RFT1 expression, which is associated with reduced levels of
H3K4me3 and DNA CG/CHG-methylations at these flowering
gene loci (Li et al., 2011b). More recently, it was reported that
suppression of OsTrx1, an ortholog of the Arabidopsis H3K4-
methyltransferase gene ATX1, delays rice flowering time under
LD conditions (Choi et al., 2014). The OsTrx1 suppression did
not affect the OsMADS50 and Hd1 pathways, but elevated Ghd7
expression and drastically reduced Ehd1, Hd3a and RFT1 expres-
sion, which is consistent with the plant late-flowering phenotype
(Figure 1B). The PHD domain of OsTrx1 can bind to native his-
tone H3 and the SET domain of OsTrx1 can methylate histone H3
from oligonucleosomes in vitro (Choi et al., 2014). Yet the role of
OsTrx1 in histone methylation in vivo remains undemonstrated.
Because the OsTrx1 and Ehd3 proteins bind each other, the authors
propose that OsTrx1 may promote rice flowering via interaction
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with Ehd3 (Choi et al., 2014). Mutant characterization of Photope-
riod sensitivity-14(Se14), which encodes the JmjC-domain protein
JMJ701, revealed that H3K4me3 elevation at the RFT1 promoter
region increases RFT1 expression, leading to rice plant early flow-
ering under LD conditions (Yokoo et al., 2014). It is currently
unknown whether or not OsTrx1 and JMJ701 could work as a
couple in an antagonistic manner to control H3K4me3 levels at
the RFT1 locus.

H3K36me3 is generally considered as acting more downstream
of H3K4me3 during transcription processes (Berr et al., 2011). The
first H3K36-methyltransferase characterized in rice is SDG725,
which has been shown to specifically methylate H3K36 from
mononucleosomes in vitro and is required for H3K36me2/me3
deposition at chromatin regions of genes related to brassinosteroid
biosynthesis or signaling pathways (Sui et al., 2012). Knockdown
of SDG725 caused a rice plant late-flowering phenotype (Sui
et al., 2012), and subsequent investigation revealed that SDG725 is
necessary for H3K36me2/3 deposition at several flowering genes
including Ehd3, Ehd2, OsMADS50, Hd3a, and RFT1 (Sui et al.,
2013). Characterization of the late-flowering mutant named long
vegetative phase 1 (lvp1) together with map-based cloning has
uncovered SDG724 as an essential regulator of the OsMAD50-
Ehd1-RFT1 pathway (Sun et al., 2012). The recombinant SDG724
protein can methylate H3 (with K site undetermined) from
oligonucleosomes and the lvp1 mutant plants show global reduc-
tion of H3K36me2/me3 levels. Remarkably, ChIP analysis revealed
specific reduction of H3K36me2/me3 at OsMADS50 and RFT1 but
not at Ehd1 and Hd3a in the lvp1 mutant plants (Sun et al., 2012).
Both the lvp1 (sdg724) mutant and the SDG725-knockdown
mutant exhibit late-flowering phenotypes under either SD or LD
conditions (Sun et al., 2012; Sui et al., 2013), pointing to a crucial
role of H3K36me2/me3 in promoting rice plant flowering irre-
spective of photoperiods. It is noteworthy that in Arabidopsis the
SDG8-mediated H3K36me2/me3 also plays a major role in flower-
ing time control, but in that case in prevention of early flowering
(Shafiq et al., 2014). Future studies are necessary to investigate
mechanisms underlying the overlap and specific targets of SDG724
and SDG725 in the rice flowering time control.

REPRESSIVE CHROMATIN MARKS ARE INVOLVED IN RICE FLOWERING
TIME REGULATION
The repressive mark H3K27me3 is known to play a key role in
FLC repression in vernalization-induced Arabidopsis plant flower-
ing (He, 2012; Ietswaart et al., 2012). Interestingly, recent studies
have shown that H3K27me3 deposited by PRC2-like complexes
also plays an important role in vernalization-independent rice
flowering time control (Figure 1). Loss-of-function of the PRC2
gene OsEMF2b causes late-flowering, which is associated with an
increase of OsLFL1 expression and a decrease of Ehd1 expression
(Yang et al., 2013). The OsEMF2b protein physically interacts with
OsVIL3 (named as OsVIL2 in Yang et al., 2013, but here corrected
to the first nomenclature used in Zhao et al., 2010; also called LC2),
a PHD-domain protein showing homologies to the Arabidopsis
VIN3-group proteins includingVERNALIZATION INSENSITIVE
3 (VIN3), VIN3-LIKE 1 (VIL1)/VRN5, and VIL2/VEL1. The
Arabidopsis VIN3-group proteins are know to be associated and
to work together with the PRC2 core complex (constituting

the so-called PHD-PRC2 complexes) and the VIN3 expression
is induced early during vernalization (reviewed in He, 2012;
Ietswaart et al., 2012). Consistent with the idea that OsVIL3/LC2
works together with PRC2, knockdown of OsVIL3/LC2 results
in rice late-flowering, increase of OsLFL1 and OsLF expression,
and decrease of Ehd1 as well as Hd3a and RFT1 expression (Wang
et al., 2013; Yang et al., 2013). The OsVIL3/LC2 protein binds at the
OsLFL1 and OsLF chromatin regions and the H3K27me3 enrich-
ments at OsLFL1 and OsLF are impaired in the osvil3/ lc2 mutant
(Wang et al., 2013; Yang et al., 2013). In addition to OsVIL3/LC2,
OsVIL2 plays a similar but non-redundant role in rice flower-
ing time control. Expression of both OsVIL3/LC2 and OsVIL2
is induced by SD conditions and the OsVIL3/LC2 and OsVIL2
proteins physically interact, thus leading to the proposition that
the OsVIN3/LC2-OsVIL2 dimer may recruit PRC2 in H3K27me3
deposition and OsLF suppression in rice photoperiod flower-
ing regulation (Wang et al., 2013). Very recently, OsiEZ1/SDG718
and OsCLF/SDG711 have been reported to display distinct roles
in photoperiod regulation of flowering (Liu et al., 2014). While
OsiEZ1/SDG718 is induced in SD conditions and represses OsLF
to promote flowering (Figure 1A), OsCLF/SDG711 is induced in
LD conditions and represses OsLF and Ehd1 to inhibit flowering
(Figure 1B). The OsCLF/SDG711 protein has been shown to tar-
get OsLF and Ehd1 loci to mediate H3K27me3 deposition and
gene repression (Liu et al., 2014).

EPIGENETIC REGULATION OF RICE REPRODUCTION AND
SEED FORMATION
After flowering, plant sexual reproduction occurs in dedicated
floral organs through sporogenesis, gametogenesis, embryo- and
endosperm-genesis, resulting in seed formation. Studies in Ara-
bidopsis have unraveled diverse epigenetic regulatory mechanisms
as involved in different processes during floral organogenesis and
plant sexual reproduction (Shen and Xu, 2009; Engelhorn et al.,
2014; She and Baroux, 2014). Although more recent, studies in rice
also have started to uncover multiple types of epigenetic modifiers
involved in the regulation of plant reproduction (Figure 2).

EPIGENETIC REGULATION IN RICE REPRODUCTION
Compared to those of Arabidopsis, the rice inflorescence and flower
have greatly diverged structures that are regulated by a conserved
genetic framework together with rice specific genetic mecha-
nisms (Yoshida and Nagato, 2011). Several epialleles are found to
affect rice plant reproduction. The metastable epigenetic silenc-
ing of DWARF1, which is associated with DNA methylation and
H3K9me2 at the gene promoter region, causes dwarf tillers, com-
pact panicles (inflorescences) and small round rice grains (Miura
et al., 2009). The abnormal floral organ (afo) epimutation causes
increased DNA methylation and suppression of the transcription
factor gene OsMADS1, leading to pseudovivipary, a specific asex-
ual reproductive strategy (Wang et al., 2010). The transcription
factor gene SQUAMOSA PROMOTER BINDING PROTEIN-LIKE
14 (SPL14), also known as IDEAL PLANT ARCHITECTURE
1 (IPA1) or WEALTHY FARMER’S PANICLE (WFP), promotes
panicle branching and regulates a large number of genes, and dif-
ferences in DNA methylation at the locus as well as the micro
RNA 156 (OsmiR156) contribute to expression differences of
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FIGURE 2 | Schematic representation of structures involved in rice

reproduction together with chromatin modifier genes listed in

regulation of three different steps. Inflorescence produces spikelets (sp)
that generate numerous flowers. A mature flower contains different types of
organs including lemma (le), palea (pa), stemen (st), and pistil (pi). The female
gametophyte ovule is formed inside of ovary of the pistil and at maturation
contains four different types of cells: antipodal (ap), polar nuclei (pn), synergid

(sy), and egg cell (ec). The male gametophyte pollen is produced inside of
anther of the stamen and at maturation contains two sperm cells (sc) and one
vegetative cell (vn). Upon fertilization, one sperm cell fuses with egg cell to
produce embryo (em) and the other sperm cell fuses with the two polar nuclei
to produce endosperm (en), together forming a mature seed. Chromatin
modifier genes playing important regulatory roles in floral organogenesis,
gametophyte development, and fertilization/seed development are listed.

SPL14/IPA1/WFP in different rice varieties (Jiao et al., 2010; Miura
et al., 2010; Lu et al., 2013). Important roles of sRNA (both
miRNAs and siRNAs) in rice floral organ development are also
evidenced by mutants of several sRNA-pathway genes, including
SHOOT ORGANIZATION 1 (SHO1) encoding a DICER-LIKE 4
homolog, SHOOTLESS 2 (SHL2) encoding a RDR6 homolog),
and WAVY LEAF 1 (WAF1) encoding a HEN1 homolog (Abe et al.,
2010; Toriba et al., 2010). lncRNAs are also reported as involved in
plant reproductive process (Swiezewski et al., 2009; Heo and Sung,
2011). In rice, a point mutation that alter the secondary structure
of the lncRNA called Long-Day-specific Male-fertility-Associated
RNA (LDMAR) has been found to cause the photoperiod sensitive
male sterility (Ding et al., 2012b).

Importance of DNA methylation in regulation of rice repro-
duction has been further supported by mutant studies. Targeted
disruption of the DNA demethylase gene ROS1a leads to pater-
nal allele transmission defect, presumably because of a male
gametophytic defect prior to fertilization (Ono et al., 2012). Dis-
ruption of OsDRM2 led to pleiotropic developmental defects in
both vegetative and reproductive stages including semi-dwarfed
stature, reductions in tiller number, and complete sterility
(Moritoh et al., 2012). Consistently, transcriptome analysis of iso-
lated rice gametes by deep sequencing indicates that OsDRM2 is
expressed in male cells but low in vegetative cells (Anderson et al.,
2013).

Several modifiers of histone modifications are also critical for
rice reproduction (Figure 2). Loss-of-function of the rice PRC2
gene OsEMF2b results in complete sterility, and severe floral organ
defects and indeterminacy that resemble loss-of-function mutants
in E-class floral organ specification genes (Conrad et al.,2014). The
epimutation of OsFIE1 (Epi-df) that is caused by DNA hypomethy-
lation, reduced H3K9me2 and increased H3K4me3 at the gene
locus, leads to ectopic expression of OsFIE1, resulting in a dwarf
stature, diverse floral defects, and alteration of H3K27me3 levels

at hundreds of target genes (Zhang et al., 2012b). Mutation of the
H3K27-demethylase gene JMJ705 also causes partial sterility (Li
et al., 2013). The OsFIE2 RNAi lines display pleiotropic pheno-
types including vegetative and reproductive organ formation, a
decreased amount of pollen grains and a high proportion of male
sterility (Li et al., 2014). These studies indicate that a balanced level
of H3K27me3 is critical and that either its increase or decrease can
cause rice reproduction defects. The other chromatin repressive
mark H3K9me2/me3 is also important because mutation of the
H3K9-demethylase gene JMJ706 impairs spikelet development,
including defective floral morphology and altered organ number
(Sun and Zhou, 2008). Pleiotropic defective phenotypes including
panicle morphology, rachis branch and spikelet numbers have also
been described for mutants of the H3K36-methyltransferase gene
SDG725 and the H3K4-demethylase gene JMJ703 (Sui et al., 2012;
Cui et al., 2013), indicating that chromatin active marks also play
important function during rice reproduction.

While precise reproduction processes affected by many of the
above mentioned modifiers remain to be elucidated, meiosis is
found to be regulated by several epigenetic factors. The rice
germline-specific AGO-family protein MEL1 binds preferentially
21 nt siRNAs derived mostly from intergenic regions (Komiya
et al., 2014), and its loss-of-function impairs both sporophytic
germ-cell development and meiosis (Nonomura et al., 2007). The
mel1 mutant displays aberrant vacuolation of spore mother cells,
and arrested chromosome condensation at early meiosis stages.
H3K9me2 distribution as well as the localization of ZEP1, a com-
ponent of transverse filaments of the rice synaptonemal complex,
are affected in mel1, indicating for a role of MEL1 in chromatin
structure organization and homologous chromosome synapsis in
early meiosis (Nonomura et al., 2007; Komiya et al., 2014). Histone
phosphorylation is also involved in rice meiosis process. The rice
Bub1-Related Kinase 1 (BRK1) is required for H2A phosphoryla-
tion and the centromeric recruitment of SHUGOSHIN 1 (SGO1),
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which is likely essential for generating proper tension between the
homologous kinetochores at metaphase I to facilitate the accurate
segregation of homologous chromosomes at anaphase I (Wang
et al., 2012).

EPIGENETIC REGULATIONS IN SEED DEVELOPMENT
Like other angiosperms, sexual double fertilization initiates rice
seed development, giving rise to two fertilization products, the
embryo and the endosperm. Epigenetic mechanisms are thought
to have important contribution to plant hybrid vigor (heterosis),
a phenomenon referring to the increased yield and biomass of
hybrid offspring relative to the parents (Chen and Zhou, 2013;
Groszmann et al., 2013). In line with this idea, divers epigenetic
pathways are found as involved in seed development and seed
quality control (Figure 2).

Genome-wide analyses in rice have revealed that sRNA expres-
sion, DNA methylation, and histone modifications (e.g., H3K9ac,
H3K4me3, and H3K27me3) significantly differ between hybrids
and their parents (He et al., 2010; Chodavarapu et al., 2012; Zhang
et al., 2014). Remarkably, the amount of 24 nt siRNAs, with most
of them likely involved in regulation of the starch and sucrose
biosynthesis pathway, declines with the process of rice grain-filling
and this decline is to a lower degree in inferior grains then supe-
rior grains (Peng et al., 2013). The siRNAs may act via or together
with DNA methylation in heterochromatin silencing. In line with
this idea, the maternal loss of ROS1a causes failure of early stage
endosperm development, leading to incomplete embryogenesis
producing irregular but viable embryos that failed to complete seed
dormancy (Ono et al., 2012). While the met1a null mutant displays
a normal phenotype, the met1b mutant exhibits abnormal seed
phenotypes, which is associated with either viviparous germina-
tion or early embryonic lethality (Hu et al., 2014; Yamauchi et al.,
2014). Levels of DNA methylation in met1b are broadly reduced
at genome-wide scale and in particular at repetitive centromeric
and transposon sequences as well as at the OsFIE1 gene locus in
the embryos (Hu et al., 2014; Yamauchi et al., 2014).

OsFIE1 is an imprinted gene in rice endosperm but the osfie1
mutant does not display any autonomous endosperm prolifera-
tion without fertilization, differing from the Arabidopsis fie, mea
and fis mutants that are generally recognized with an autonomous
endosperm proliferation phenotype (Luo et al., 2009). Neverthe-
less, over-expression of OsFIE1 causes precocious cellularization
and reduced seed size, and it has been proposed that that OsFIE1
has a role in regulating seed enlargement under heat stress
(Folsom et al., 2014). In addition, OsFIE2 has a critical role in nor-
mal endosperm development and grain-filling. Down-regulation
of OsFIE2 results in small seeds and partial loss of seed dormancy,
likely because of down-regulation of genes encoding the starch
synthesis rate limiting step enzymes and multiple storage proteins
(Nallamilli et al., 2013). Future studies are necessary to precise sim-
ilarities and differences of PRC2-mediated H3K27me3 repression
mechanisms involved in seed development between Arabidopsis
and rice.

Involvement of other histone methylation marks in seed devel-
opment are also evidenced from mutant studies (Figure 2).
Down-regulation of the H3K9-methyltransferase gene SDG728
reduces seed size and alters seed morphology (Qin et al., 2010).

Loss-of-function of the H3K4-demethylase gene JMJ703 causes
abnormal grain phenotypes, including reduced length, width,
and thickness (Cui et al., 2013). Also, knockdown of the H3K36-
methyltransferase gene SDG725 results in small seed size and
reduced seed weight (Sui et al., 2012).

CONCLUSION REMARKS
The availability of full genome sequences and diverse improved
powerful genomic and analytic tools have greatly advanced our
knowledge about rice epigenetic modifiers and their biological
roles. There are still a large number of modifiers unchar-
acterized, and molecular mechanisms of function of many
chromatin modifiers remain to be investigated into details. It
remains to be uncovered how the general histone modifica-
tion and DNA methylation enzymes exert specific functions
in plant growth and developmental processes and what effec-
tors are involved. In particular, H3K27me3 is recognized as
a crucial epigenetic mark associated with gene transcriptional
repression, and the classical model proposes a sequential mode
of action of the two Polycomb complexes: PRC2 is responsible
H3K27me3 establishment, and PRC1 recognizes the H3K27me3
mark and further catalyzed downstream H2A monoubiquiti-
nation. While PRC1-like components and histone monoubiq-
uitination have been recently studied in Arabidopsis (reviewed
in Molitor and Shen, 2013; Feng and Shen, 2014), effectors
acting together with H3K27me3 in rice remain unknown so
far. Utilization of advanced technologies in proteomics, deep
sequencing, and gene knockdown will facilitate future studies
in functional characterization of interesting genes, investigation
of protein complex composition and function, and gene net-
works controlling rice flowering and reproduction. The extensive
agriculture breading has greatly enriched the rice germplasm
resources with large collections of cultivated rice and their wild
relatives. Comparative studies of different rice varieties and
hybrids will likely impact on knowledge of genetics, epigenet-
ics, and inheritance of agriculture traits as well as fundamental
understanding of conservation and diversification of molecular
mechanisms.
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