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INTRODUCTION
THE PLANT IMMUNE SYSTEM

To defend themselves against invading pathogens plants utilize a complex regulatory
network that coordinates extensive transcriptional and metabolic reprogramming. Although
many of the key players of this immunity-associated network are known, the details
of its topology and dynamics are still poorly understood. As an alternative to forward
and reverse genetic studies, chemical genetics-related approaches based on bioactive
small molecules have gained substantial popularity in the analysis of biological pathways
and networks. Use of such molecular probes can allow researchers to access biological
space that was previously inaccessible to genetic analyses due to gene redundancy or
lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant
defense responses, but are distinct from known natural elicitors of plant immunity. While
the discovery of some synthetic elicitors had already been reported in the 1970s,
recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive
high-throughput screens for bioactive plant defense-inducing compounds. Along with
powerful reverse genetics tools and resources available for model plants and crop systems,
comprehensive collections of new synthetic elicitors will likely allow plant scientists to
study the intricacies of plant defense signaling pathways and networks in an unparalleled
fashion. As synthetic elicitors can protect crops from diseases, without the need to be
directly toxic for pathogenic organisms, they may also serve as promising alternatives to
conventional biocidal pesticides, which often are harmful for the environment, farmers and
consumers. Here we are discussing various types of synthetic elicitors that have been used
for studies on the plant immune system, their modes-of-action as well as their application
in crop protection.

Keywords: plant activators, systemic acquired resistance, plant innate immunity, pesticide, crop protection, salicylic
acid, chemical genetics, plant defense

basal defense can limit the spread of virulent pathogens in their
hosts, it is typically insufficient to prevent disease.
A second class of plant immune receptors, encoded by disease

Plants serve as a source of nutrients for a wide variety of het-
erotrophic microorganisms that can cause diseases in their hosts.
Physical barriers, such as a waxy cuticular layer and rigid cell
walls, as well as preformed antimicrobial chemicals can provide
some protection against attacking phytopathogens (Niirnberger
and Lipka, 2005). In addition, plants have evolved an inducible
immune system that is based on the specific recognition of
pathogen-derived molecules (Chisholm etal., 2006; Jones and
Dangl, 2006). Two classes of plant immune receptors are critical
for defense activation (Jones and Dangl, 2006; Dodds and Rathjen,
2010). Pattern recognition receptors (PRRs) directly interact with
highly conserved microbe associated molecular patterns (MAMPs)
activating pattern-triggered immunity (PTI; Gomez-Goémez and
Boller, 2002; Zipfel et al., 2004; Segonzac and Zipfel,2011). PTI can
be attenuated or blocked by effector molecules that are secreted
into plant cells by microbial pathogens that are well-adapted
to their hosts (Abramovitch and Martin, 2004). The remain-
ing weakened host immunity operating during such compatible
plant/pathogen interactions [a state also referred to as effector-
triggered susceptibility (ETS)] is called basal defense (Glazebrook
etal., 2003; Chisholm etal., 2006; Jones and Dangl, 2006). While

resistance (R)-genes, recognize the presence or activity of effectors
and induce effector-triggered immunity (ETI), a manifestation
of the well-described phenomenon of gene-for-gene resistance or
race-specific resistance which leads to incompatible interactions
(Flor, 1971; Nimchuk et al., 2003; Jones and Dangl, 2006; Elmore
etal., 2011). ETT is a strong immune response that efficiently pro-
tects plants from avirulent pathogens and is often associated with
the hypersensitive reaction (HR), a form of programmed death
of plant cells at infection sites. Purified molecules or crude bio-
chemical preparations from pathogens triggering PTI have also
been referred to as general elicitors, while those triggering ETI,
or race-specific resistance, have been termed race-specific elicitors
(Wevelsiep etal., 1991).

Numerous studies have shown that ETI, basal defense and PTI
utilize a common set of signaling components including multiple
regulatory proteins, reactive oxygen intermediates (ROIs) as well
as the phytohormones salicylic acid (SA), ethylene (ET) and jas-
monic acid (JA; Nimchuk etal., 2003; Glazebrook, 2005; Spanu,
2012). Levels of ROI, SA, ET, or JA often increase in plant tissues
after pathogen infections. While basal defense seems mainly to be
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a weakened form of PTI, ETI has been proposed to result from
boosted basal defense- or PTI-associated responses (Tao etal.,
2003; Jones and Dangl, 2006; Shen et al., 2007).

Inducible immune responses are tightly associated with exten-
sive transcriptional- and metabolic-—reprogramming controlled by
a complex regulatory network (Glazebrook etal., 2003; Tsuda
etal., 2009; Sato etal., 2010). While historically 10 classes of
pathogenesis-related (PR) genes had been recognized, which
exhibit transcriptional up-regulation in defense-related biological
situations (Kombrink and Somssich, 1997), more recent genome-
wide transcript profiling studies have revealed that 100-1000s
of genes typically respond to defense induction by transiently
altered transcript levels. Numerous signal transducers and tran-
scription factors have been implicated in the plant defense network
(Katagiri, 2004; Eulgem, 2005; Jones and Dangl, 2006). This net-
work can be subdivided into various defined sectors that can
interact with each other (Tsuda etal., 2009; Sato etal., 2010).
For example, distinct defense signaling sectors dependent on early
MAMP-activated MAP kinases (MAPKSs) or the hormones SA or
JA, have been described. Interestingly, some of these sectors were
found to largely interact in an additive or synergistic fashion dur-
ing PTI, while they are partially antagonistic to each other during
ETI (Tsuda etal., 2009). The latter phenomenon seems to allow
for compensatory effects if a defined sector is disabled due to
interferences with pathogen effectors.

The complexity of this network is likely the result of two
separate co-directional evolutionary pressures. Firstly, the asym-
metrical arms race between plants and pathogens/pests man-
ifested in continuous co-evolution of effectors and their host
targets may have resulted in an ever-increasing diversity of
plant defense regulators and regulatory circuits. Secondly, the
need to fine-tune defense outputs appropriate for the respec-
tive attacker(s), which may exhibit biotrophic, hemibiotrophic,
or nectrotrophic lifestyles, requires a complex regulatory system
that allows for extensive crosstalk and compensatory interac-
tions (Tsuda etal, 2009). An additional level of complexity
likely arose from the need to link effector recognition mecha-
nisms, which appear to be of recent evolutionary origin to more
ancient regulatory processes mediating PTI (Chisholm etal., 20065
Holub, 2008).

While PTI, basal defense and ETT are transient local responses
limited to pathogen infected tissues, plants can also activate
long-lasting systemic immunity. Such systemic immunity can be
initiated by local compatible or incompatible interactions result-
ing in systemic acquired resistance (SAR) or triggered by certain
strains of non-pathogenic plant growth-promoting rhizobacteria
(PGPR) leading to induced systemic resistance (ISR; Pieterse et al.,
1998; van Wees etal., 2000). SAR mediates long-lasting broad-
spectrum resistance to a wide range of pathogens in uninfected
tissues and organs (Ward etal., 1991; Fu and Dong, 2013). In
addition to local pathogen infections, exogenous application of SA
or SA analogs (see below) can induce SAR-like responses (White,
1979; Metraux etal., 1991; Ward etal., 1991). SAR and related
systemic immune responses have been demonstrated in several
plant systems, such as cucumber, watermelon, tobacco, and Ara-
bidopsis thaliana (Arabidopsis; White, 1979; Kuc, 1982; Metraux
etal.,, 1991; Ward etal., 1991). Typically SAR is associated with a

local and systemic increase of SA levels that conditions enhanced
expression of several classical PR genes (Rasmussen etal., 1991;
Ward etal., 1991; Vernooij etal., 1994; Wildermuth etal., 2001;
Durrant and Dong, 2004). Some of these PR genes, such as PRI,
PR2, and PR5 serve as robust markers for this systemic immune
response (Kombrink and Somssich, 1997).

While local and systemic accumulation of SA is critical for SAR
induction, this hormone seems not to serve as a mobile signal
mediating immunity in uninfected distal tissues. Several other
small molecules have been proposed to fulfill such a role, such as
methyl-salicylic acid (MeSA), azelaic acid, glycerol-3-phosphate,
the abietane diterpenoid dehydroabietinal, JA, and the amino acid-
derivative pipecolic acid (Park etal., 2007; Fu and Dong, 2013). A
central regulator of SAR is the transcriptional co-factor NON-
EXPRESSOR OF PR GENESI (NPR1; Dong, 2004). By interact-
ing with TGA bZIP transcription factors, NPR1 seems to mediate
up-regulation of the vast majority of SAR-associated genes (Fu
and Dong, 2013). NPRI activity has been proposed to be con-
trolled by the SA-binding proteins NPR3 and NPR4, which can
physically bind to NPR1 in a SA-concentration-dependent manner
(Fu etal., 2012).

In contrast to SAR, induction of ISR is not associated with
the accumulation of SA and PR transcripts (Sticher etal., 1997;
van Wees etal., 2000). ISR has been shown to be triggered by the
Pseudomonas fluorescens strain WCS417r (WCS417r) and other
non-pathogenic rhizobacteria in several plant species including
Arabidopsis (Wei etal., 1996; Sticher etal., 1997; Pieterse etal.,
1998; Yan etal., 2002; Vallad and Goodman, 2004). In Arabidop-
sis, WCS417r-induced ISR acts against P. syringae pv. tomato,
is dependent on JA and ET signaling, but does not require SA.
Intriguingly, ISR is blocked in the Arabidopsis nprl mutant. Thus,
NPRI also plays an important role in the ISR signaling pathway
(Pieterse et al., 1998; Glazebrook, 2001).

Upon perception of several exogenous defense-related stim-
uli, plants can establish an enhanced capacity to activate immune
responses. This sensitization process, which is called prim-
ing, can be triggered by treatment of plants with necrotizing
pathogens, beneficial microorganisms, wounding or with vari-
ous natural and synthetic compounds (Conrath etal., 2002, 20065
Conrath, 2006; Beckers and Conrath, 2007; Goellner and Con-
rath, 2008). Once a pathogen infects primed plants, defense
responses are activated faster and more robustly (Conrath etal,,
2006; Goellner and Conrath, 2008). Although this phenomenon
has been known for years, its molecular basis is still only partly
understood (Conrath, 2006, 2011; Conrath etal., 2006). Chro-
matin modifications, accumulation of dormant mitogen-activated
protein kinases and alterations of primary metabolism have been
shown to be associated with this process (Conrath etal., 2002,
2006; Beckers et al., 2009; Conrath, 2011; Jaskiewicz et al., 2011).

A BRIEF HISTORY OF SYNTHETIC ELICITORS

Synthetic elicitors are small molecules that can induce plant
immune responses and are structurally distinct from natural
plant defense inducers, such as general or race-specific elici-
tors or endogenous plant defense signaling molecules. Synthetic
elicitors may trigger defense reactions by mimicking interac-
tions of natural elicitors or defense signaling molecules with
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their respective cognate plant receptors or by interfering with
other defense signaling components. Often the term “plant
activators” is used for molecules that can protect plants from
diseases by inducing immune responses. However, this term
does not discriminate between synthetic and natural elicitors.
One of the first synthetic elicitors was identified by Gianinazzi
and Kassanis (1974), who found Polyacrylic acid derivatives
of 3500 Da or lower molecular weights to mediate resistance
of tobacco (Nicotiana tabacum) against tobacco mosaic virus
(TMV) or tobacco necrosis virus (TNV) and to activate PRI
gene expressions in tobacco (Gianinazzi and Kassanis, 1974;
Kassanis and White, 1975). At the same time, 2,2-dichloro-3,3-
dimethylcyclopropane-carboxylic acid (WL28325) was described
as a compound suitable for controlling rice blast in rice. WL28325
affects the phenol metabolism of rice plants by enhancing per-
oxidase activities (Langcake and Wickins, 1975a,b). Two years
later, 3-allyloxy-1,2-benzisothiazole-1,1-dioxide, widely called
Probenazole (PBZ), was described. It activates defense-related
enzymes and triggers dramatic increases of tolerance against
rice blast in rice. It has effectively been used in agriculture
for over three decades against rice blast (Watanabe etal., 1977;
Schreiber and Desveaux, 2008).

Exogenous application of SA and other benzoic acid deriva-
tives, such as acetylsalicylic acid (Aspirin), was reported to induce
resistance of tobacco against TMV and to cause the accumula-
tion of PR-proteins (White, 1979). This discovery was a major
breakthrough and paved the way for the identification of more
potent related compounds by the Switzerland-based pharma-
ceutical corporation Ciba-Geigy (now Syngenta). Ciba-Geigy
researchers reported 2,6-dichloro-isonicotinic acid (INA) and its
ester derivative CGA 41397 as potent SAR-inducers in 1987.
They also identified benzo(1,2,3)thiadiazole-7-carbothioic acid
S-methyl ester (BTH), which has similar effects as INA, but was
later found to be more suitable for applications in crop protec-
tion (Metraux et al., 1990; Ward et al., 1991; Friedrich etal., 1996;
Gorlach etal., 1996; Lawton etal., 1996; Uknes etal., 1996). As
INA and BTH mimic the defense-associated effects of SA, but are
less phytotoxic and more efficient than this natural plant defense
hormone, they have been abundantly used as defense triggers in
basic and applied studies on plant immunity. As outlined in detail
below, these two compounds have been among the most frequently
used synthetic elicitors in research for the past 15-20 years. How-
ever, recent improvements in combinatorial chemistry (Blackwell
and Zhao, 2003; Stockwell, 2004; Dean, 2005; Raikhel and Pirrung,
2005) have enabled scientists outside the private sector to perform
systematic screens for synthetic elicitors. Thus, a plethora of new
compounds with defense-inducing properties distinct from INA
and BTH or other established synthetic elicitors is currently emerg-
ing (Table 1). Such second-generation synthetic elicitors will equip
researchers with an extensive repertoire of new chemical tools to
dissect the plant defense network in an unprecedented fashion and
to explore their use as active ingredients of novel types of pesticide
alternatives and other agrochemicals.

FUNCTIONAL ANALOGS OF SALICYLIC ACID
The natural plant defense hormone SA (2-hydroxybenzoic acid)
serves as an endogenous signal to activate certain immune

responses and to establish disease resistance. Various defense-
related stimuli have been shown to trigger enhanced SA levels in
local and systemic plant tissues. Exogenous application of SA can
induce ROI production, PR gene expression and immunity against
various pathogens with biotrophic or hemibiotrophic lifestyles
(Glazebrook, 2005; Vlot et al., 2009).

In plants, SA can be synthesized from the shikimate
pathway-derived primary metabolite chorismate either via phen-
lypropanoid derivatives in the cytoplasm or via isochorismic acid
in chloroplasts (Pieterse et al., 2012; An and Mou, 2014). Although
both metabolic pathways are not fully understood, several of their
enzymes have been identified. The production of SA and its levels
are normally tightly regulated (Wildermuth, 2006). Critical for the
production of the majority of defense-associated SA in Arabidop-
sis is isochorismate synthase 1 (ICS1), which is transcriptionally
induced by defense-related stimuli (Wildermuth etal., 2001). Two
distinct forms of SA glucosyltransferase (SAGT) enzymes convert
most of the produced SA to either salicyloyl glucose ester (SGE)
or SA-O-B-glucoside (SAG), which is stored in the vacuole. Addi-
tional SA derivatives are known in plants, such as MeSA. SAG,
SGE, and MeSA are likely biologically inactive (Vlot et al., 2009; Fu
and Dong, 2013).

Salicylic acid plays a pivotal role in defense signaling and several
proteins have been proposed to bind to SA and to potentially serve
as SA receptors. The first putative SA-binding protein reported in
the literature was SABP1 from tobacco, a potential catalase (Chen
etal., 1993). It was proposed that SA inhibits its ability to convert
H,0; to O, and H,O (Conrath etal., 1995; Du and Klessig, 1997;
Vlot etal., 2009). However, this claim is controversial, as much
higher SA-concentrations seem to be needed for catalase inhibition
than observed in defense-activated plants (Chamnongpol etal,,
1996; Tenhaken and Rubel, 1997). Similarly, it was shown that
SA can also bind to ascorbate peroxidase (APX) and inhibit its
activity upon application of high concentrations of exogenous SA
(Durner and Klessig, 1995; Vlot et al., 2009). An additional tobacco
SA-binding protein, SABP2, functions as a MeSA esterase. SABP2
shows a high binding affinity for SA, which inhibits its esterase
activity (Kumar and Klessig, 2003; Forouhar etal., 2005). SABP2
seems to play an important role in the activation of SAR in tobacco
by catalyzing the release of SA from the transport metabolite MeSA
in systemic tissues (Park et al., 2007). Another SA-binding protein,
SABP3, a tobacco chloroplastic carbonic anhydrase, is involved in
HR and has antioxidant function (Slaymaker et al., 2002; Vot et al.,
2009). However, it remains to be determined whether this function
can affect plant defense.

In Arabidopsis, NPR1 plays a critical role in the interpretation
of the SA signal. NPR1 is responsible for activating a large set
of defense genes in response to SA-related signals (Dong, 2004;
Fu and Dong, 2013). Moreover, the NPR1 paralogues NPR3 and
NPR4 function as SA receptors, and their interactions with NPR1
are directly regulated by binding to SA (Fu et al.,2012). In addition,
NPR1 itself has also been shown to be capable of binding SA
independently of NPR3 and NPR4 and to respond to interactions
with this ligand by conformational changes (Wu etal., 2012).

With several proteins capable of binding to SA, defense mecha-
nisms controlled by this phytohormone feature a set of “drug-able”
targets potentially interfering with SA-related synthetic molecules.
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Consequently, some synthetic elicitors have been found to mimic
a subset of known SA functions; likely by directly interfering with
known or unknown receptors of this defense hormone. Besides
such SA agonists, which molecularly mimic SA, other synthetic
elicitors may trigger transcriptional and physiological responses
related to those induced by SA without directly interfering with
SA targets. For this review we consider both types of SA mimics as
functional SA analogs. Synthetic elicitors of this type are described
in the section, below.

PROBENAZOLE (PBZ)

Several biologically active 1,2-benzisothiazole derivatives have
been found to exhibit a broad spectrum of pharmacological
activities and to serve as antibacterials, fungicides and anti-
inflammatory agents (De, 1981; Trapani etal., 1985; Zani etal,,
1996; Vicini etal., 2002). Some of them also show auxin-
like activity and have been used as herbicides (Giannella etal.,
1971; Branca etal., 1975). Inspired by the potency of some
of these compounds, researchers of Meiji Seika Kaisha Ltd. in
Japan performed systematic tests with representatives of this class
of molecules (Watanabe etal., 1977). They found 3-allyloxy-
1,2-benzisothiazole-1,1-dioxide (now widely known as PBZ), to
efficiently control rice blast (Magnaporthe oryzae; anamorph:
Pyricularia oryzae) infections in rice (Oryza sativa; Watanabe et al.,
1977; Schreiber and Desveaux, 2008). This compound showed
remarkable effects in suppressing rice blast at a dose of 896 uM
(200 ppm) when applied by drenching roots (Watanabe etal.,
1977) and has been commercially used under the name Oryze-
mate® for more than 30 years in the field protecting rice from rice
blast fungus and bacterial leaf blight as well as corn from south-
ern corn leaf blight (Iwata, 2001; Oostendorp etal., 2001). PBZ
does not influence the growth of various tested crops, such as
tomato, cucumber, Chinese cabbage, kidney bean, or rice, when
sprayed at a concentration of 2240 uM (500 ppm), but at 4480 uM
(1000 ppm) some abnormalities in plant development can be
observed (Watanabe et al., 1977).

Probenazole affects various stages of the blast fungus infec-
tion cycle and inhibits hyphal penetration into the host tissue,
lesion expansion and sporulation (Watanabe etal., 1977). From
PBZ-treated rice plants anticonidial germination substances were
isolated and characterized as toxic against fungi. These antifungal
plant metabolites included a mixture of fatty acids, such as octade-
catrienoic acid, palmitic acid, linoleic acid, and linolenic acid
(Sekizawa et al., 1981; Shimura et al., 1983). Moreover, activities of
defense-related enzymes, such as peroxidase, polyphenoloxidase,
PAL, tyrosine ammonia-lyase and catechol-O-methyltransferase,
increased dramatically in rice upon treatment with PBZ, as they do
in response to infection with rice blast fungus (Midoh and Iwata,
1996; Iwata, 2001).

A PBZ-induced ¢cDNA termed PBZ-responsive gene (PBZI)
has been cloned from rice. PBZ1 transcript accumulation was
found to serve as a robust marker for responses to this syn-
thetic elicitor. PBZ-induced PBZ1 mRNA accumulates in a
dose-dependent manner. PBZI expression is also induced by
rice blast fungus, but not wounding. PBZI belongs to the PR-
10 family of classical PR genes. One of the metabolites of PBZ,
1,2-benzisothiazole-3(2H)-one-1,1-dioxide (BIT) was found to be

as potent in inhibiting rice blast as PBZ, but does not induce
the accumulation of the PBZI transcripts (Midoh and Iwata,
1996; Nakashita etal., 2001, 2002b; Yoshioka etal., 2001). Thus,
induced PBZI expression seems not to be needed for rice blast
resistance.

Microarray and RT-PCR analysis revealed up-regulation of
UDP-glucose:SA  glucosyltransferase (OsSGT1) transcripts in
response to PBZ treatment in rice (Umemura et al., 2009). RNAi-
mediated OsSGT1 knockdown in transgenic rice plants resulted
in reduced PBZ-mediated resistance against blast. Although
mechanistic details of its role in defense induction are unclear,
OsSGT1 appears to be critical for PBZ-mediated defense induction
(Umemura et al., 2009).

In Arabidopsis, both PBZ and its metabolite BIT stimulate
expression of PR genes and induce SA accumulation and SAR.
PBZ and BIT do not activate plant immunity in nprl mutants or
nahG plants. Thus, SA and NPR1 seem to be required for PBZ-
and BIT-mediated defense responses and both compounds mimic
effects of SA (Yoshioka etal., 2001; Nakashita et al., 2002b). How-
ever, in contrast to INA, BTH, and DCA, which are likely authentic
SA agonists (see below), PBZ and BIT appear to interfere with
defense signaling steps upstream from SA accumulation and not
to interact with downstream targets of SA.

2,6-DICHLORO-ISONICOTINIC ACID (INA)

Kunz etal. (1988) of Ciba-Geigy reported screening of a large
number of compounds for activation of resistance in cucumber
(Cucumis sativus) against the fungal pathogen Colletotrichum lage-
narium and identified 2,6-dichloro-isonicotinic acid (INA) and
its ester derivative CGA41397 (Kunz etal., 1988; Metraux etal.,
1991). High levels of protection of cucumber against C. lagenar-
ium, were achieved by foliar-spray application of 104 uM (20 ppm)
INA or CGA41397 as well as root drench application of 10-fold
lower concentrations of each compound. In these chemically-
treated plants, responses were similar to those observed in systemic
tissues of plants whose lower leaves were inoculated with TNV
or C. lagenarium that induce SAR in upper leaves. Under field
conditions, INA provided pathogen resistance in pear, pepper
and rice (Kuc, 1982; Metraux etal., 1991). INA was also shown
to induce SAR in tobacco and Arabidopsis (Ward etal., 1991;
Uknes etal., 1992) and provide significant protection of tobacco
against TMV, Cercospora nicotianae, Peronospora tabacina, Phy-
tophthora parasitica var nicotianae, and P. syringae pv. tabaci
(Ward etal., 1991).

In Arabidopsis INA can trigger long-lasting PR gene expression
and disease resistance. In this species it can reduce susceptibility
to virulent strains of the oomycete Hyaloperonospora arabidopsidis
(Hpa) or P. syringae pv. tomato DC3000 without directly affect-
ing viability of these pathogens (Uknes etal., 1992; Knoth etal,,
2009). As injection of 1 mM INA into tobacco leaves induces tran-
script accumulation of the same characteristic set of PR genes as
SA application, it is considered a functional SA analog. Although
INA partially mimics defense-associated effects of SA, it does not
trigger any changes of SA levels and, unlike SA or PBZ, induces
SAR in nahG transgenic tobacco and Arabidopsis plants (Delaney
etal., 1994; Vernooij etal., 1995). Thus, INA must be interfer-
ing with targets that operate downstream from SA accumulation
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and are likely involved in the interpretation of SA levels. Con-
sistent with this assumption, INA has been reported to mimic
several proposed biochemical and physiological effects of SA, such
as inhibition of catalase and APX activity or the induction of cel-
lular H,O, accumulation (Chen and Klessig, 1991; Chen etal,,
1993, 1995; Conrath etal., 1995; Durner and Klessig, 1995). The
modulation of ROI levels seems to be a critical aspect of INA
activity, since antioxidants can block the INA-dependent induc-
tion of PR gene expression (Chen etal., 1995; Durner and Klessig,
1995).

Through mutant screens to identify genes required for SAR
in Arabidopsis, the nprl/niml (non-expresser of PR genes 1, no
immunity 1) mutants that are insensitive to SA and INA were dis-
covered (Cao etal., 1994; Delaney etal., 1995). Both biologically-
and INA-induced SAR as well as basal defense were found to be
compromised in either one of these mutants. The nprl and niml
mutants are in different Arabidopsis accessions, but were found to
be allelic and to have defects in the same gene (Cao etal., 1994,
1997; Ryals etal., 1997). A large body of literature has reported
on molecular roles of NPRI as a transcriptional cofactor, since its
identification as a major regulator of SAR. These studies have been
summarized in several excellent reviews (Dong, 2004; Durrant
and Dong, 2004; Fu and Dong, 2013). Most importantly, NPR1,
together with NPR3 or NPR4, have been found to serve as SA
receptors (Fu etal., 2012; Fu and Dong, 2013). NPR3 can bind to
NPRI1 in a SA dose-dependent manner, while NPR4-NPRI inter-
actions are constitutive and inhibited by SA. In yeast two-hybrid
assays, in addition to SA, INA can promote NPR1-NPR3 interac-
tions. INA can also reduce the binding affinity of SA to NPR3 and
NPR4 by competing with this defense hormone (Fu etal., 2012).
Thus, INA appears to be a true SA agonist.

In addition to nprl mutants, triple or quadruple mutants of
closely related TGA-bZIP transcription factors, which are known
to physically interact with NPR1, are also blocked in INA-induced
PR gene expression and pathogen resistance (Zhang etal., 2003;
Wang etal., 2006). Thus, INA seems to mediate its defense-related
effects upon interactions with NPR1-related proteins, which con-
trol several TGA transcription factors. Interactions with other
SA-binding proteins, such as SABP1 and SABP2 may also to con-
tribute to the activity of this SA analog. So far, INA has been
applied to many plant species and was found to induce resistance
against a wide variety of pathogens (Hijwegen and Verhaar, 1993;
Conrath etal., 1995; Van Kan et al., 1995; Han et al., 2000; Lee et al.,
2009). However, because INA and its derivatives have phytotoxic
side effects in crops, none of these compounds has been commer-
cialized as agrochemicals (Oostendorp etal., 2001). Still, INA is
being continually used as an efficient chemical tool to study SAR.

BENZOTHIADIAZOLE (BTH)

Another SAR-inducer screening by Ciba-Geigy with a large
number of benzo[1,2,3]thiadiazole-7-carboxylic acid deriva-
tives resulted in the identification of benzo(1,2,3)-thiadiazole-
7-carbothioic acid S-methyl-ester [benzothiadiazole (BTH);
acibenzolar-S- methyl (ASM), CGA245704] as a potent inducer of
plant immune responses (Schurter etal., 1993; Kunz etal., 1997;
Oostendorp etal., 2001). BTH was subsequently shown to trig-
ger in various plant species resistance against a wide variety of

pathogens, such as TMV, Cercospora nicotianae, Erwinia caro-
tovora, Phytophthora parasitica and P. syringae pv. tabaci (Friedrich
etal., 1996; Gorlach etal., 1996; Lawton etal., 1996; Kunz etal.,
1997). As BTH did not show any direct effect on a number of
plant pathogens in vitro, BTH is not antimicrobial (Friedrich
etal., 1996). In Arabidopsis, BTH triggers NPRI-dependent SAR
(Lawton etal., 1996).

At the molecular level, BTH induces the same characteristic set
of SAR-related responses that are induced by pathogens or SA,
including up-regulation of PR genes. Thus, like INA, BTH appears
to be a functional analog of SA (Friedrich et al., 1996; Wendehenne
etal., 1998). INA and BTH share several characteristic functional
features. Both compounds do not induce accumulation of SA in
plants (Vernooij etal., 1995; Friedrich etal., 1996) and share the
ability to induce SAR and PR gene expression in transgenic nahG
lines (Vernooij etal., 1995; Lawton etal., 1996). Thus, both INA
and BTH seem to activate SA-response mechanisms by interfering
as SA agonists with targets operating downstream from SA accu-
mulation. Like SA and INA, BTH was also proposed to inhibit both
APX and catalase functions (Du and Klessig, 1997; Wendehenne
etal., 1998). However, BTH is a much more effective inhibitor of
catalase than SA and the catalase inhibition mechanisms of BTH
and SA are different. While SA seems to inhibit catalase function in
an H,O;- and time-dependent manner, BTH inhibits this activ-
ity independently from time and H,O;. INA was not included
in these experiments. For APX inhibition, however, BTH and SA
exhibit similar dose-response curves (Wendehenne etal., 1998).

Recent data suggested that BTH is converted into acibenzolar
by SABP2 and this product is critical for SAR induction. When
BTH was sprayed on SABP2-silenced tobacco plants, it failed to
induce PRI protein expression and SAR. On the contrary, when
the same transgenic plants were treated with acibenzolar, SAR was
fully induced (Tripathi etal., 2010).

In rice, it was shown that the OsWRKY45 transcription factor
plays a pivotal role in BTH-induced defense responses against rice
blast disease. This BTH-triggered defense mechanism seems inde-
pendent of NH1, a rice ortholog of A. thaliana NPR1 (Shimono
etal.,2007). WRKY45 knockdown lines exhibited strongly reduced
levels of BTH-induced resistance to the fungal pathogen M. oryzae
and the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo;
Shimono etal., 2007). Interestingly, OsWRKY45 is an ortholog of
AtWRKY?70, which also can act in an NPR1-independent man-
ner in SA signaling in Arabidopsis (Li etal., 2004; Knoth etal.,
2007, 2009). In addition to BTH, PBZ and Tiadinil (TDL; see
below) partly induced blast resistance in rice through a WRKY45-
dependent pathway (Shimono etal., 2012). Recently, WRKY45-
regulated BTH-responsive genes were identified by microarrays
(Nakayama etal., 2013).

BTH can also prime plant defense reactions. Low doses of
BTH that are insufficient to trigger detectable levels of defense
responses, can prime parsley cells and increase their sensitiv-
ity for MAMP-triggered coumarin phytoalexin secretion. This
effect is associated with potentiated activation of genes encod-
ing phenylalanine ammonia-lyase (PAL), which is critical for
coumarin biosynthesis. In addition to BTH, also SA and INA
can prime parsley cells for the activation of coumarin secre-
tion by low MAMP doses (Kauss etal., 1992; Katz etal., 1998;
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Thulke and Conrath, 1998; Conrath etal., 2002). BTH can also
prime Arabidopsis plants for enhanced pathogen-responsiveness
of PAL gene expression. BTH-mediated defense priming in
Arabidopsis is dependent on NPR1 (Kohler etal., 2002; Goell-
ner and Conrath, 2008). An interesting mechanism involving
two known defense-associated MAPKs, MPK3, and MPKE,
seems to contribute to this priming phenomenon in Arabidop-
sis. BTH induces the accumulation of mRNA and inactive protein
forms of both MAPKs. Subsequent stress treatment results in
phosphorylation and activation of MPK3 and MPK6 (Beckers
etal,, 2009). In addition, epigenetic chromatin marks appear
to be involved in defense-priming processes. The AfWRKY29,
AtWRKY6, and AtWRKY53 genes showed a typical priming
response and were strongly transcribed after stress application
following pre-treatment with BTH. BTH pre-treatment also trig-
gered in these experiments various histone modifications that are
typically found at actively transcribed genes, such as H3K4me3,
H3K4me2, H3ac, or H4ac at AfWRKY29 and H3K4me3 or
H3K4me2 at AftWRKY6 and AtWRKY53. BTH-induced trimethy-
lation of H3K4 is reduced in the priming-deficient nprl mutant.
On the contrary, the constitutively primed cprl and snil
mutants exhibit high levels of H3K4me3 in the absence of BTH
treatment. Thus, elevated H3K4me3 levels are closely associ-
ated with BTH-induced defense gene priming (Jaskiewicz etal.,
2011).

In contrast to INA, BTH was found to be suitable for agricul-
tural crop protection. It became a commercial product under the
trade name of BION® (in Europe) in 1989 and Actigard® (in the
US) in 1990 (Schurter etal., 1993; Kunz etal., 1997; Oostendorp
etal., 2001). BTH activates very wide spectrum of resistances of
various plant species against fungal, bacterial, or viral pathogens
and several insects and nematodes.

N-(3-CHLORO-4-METHYLPHENYL)-4-METHYL-1,2,3-THIADIAZOLE-5-
CARBOXAMIDE (TIADINIL, TDL)

Thiadiazoles are known to have many pharmacological activities
(Camoutsis et al., 2010; Chaudhary etal., 2010; Kharb etal., 2011;
Singh etal., 2011). Tests of various 1,2,3-thiadiazole derivatives
for their ability to control rice blast disease by Nihon Nohyaku
Co., Ltd. (Japan) resulted in the discovery of N-(3-chloro-
4-methylphenyl)-4-methyl-1,2,3-thiadiazole-5-carboxamide ( Tia-
dinil, TDL), which provided protection against this disease
without exhibiting any antimicrobial activity (Tsubata et al., 2006).
Since 2003, this compound has been commercially available under
the trade name V-GET®in Japan. Its metabolite 4-methyl-1,2,3-
thiadiazole-5-carboxylic acid (SV-03), exhibited similar levels of
anti-rice blast activity as TDL (Tsubata etal., 2006; Toquin etal.,
2012). In addition to rice blast, TDL is also used to control the
pathogenic fungi Colletotrichum theaesinensis and Pestalotiopsis
longiseta on tea leaves (Yoshida etal., 2010).

In tobacco, TDL and SV-03 induce SAR and increased local
resistance to TMYV, the virulent bacterial pathogen P. syringae
pv. tabaci and powdery mildew (Oidium lycopersici) without
affecting these pathogens directly. Both compounds also induce
PRI, PR2 and PR5 gene expression in Arabidopsis and enhance
basal resistance of this species to P. syringae pv. tomato DC3000
(Yasuda et al., 2004, 2006; Yasuda, 2007). TDL or SV-03 treatment

does not induce accumulation of SA in tobacco. Moreover,
TDL or SV-03-treated nahG transgenic tobacco plants exhibit
enhanced resistance to TMV and P. syringae pv. tabaci and
induced PR gene expression. However, TDL- or SV-03-triggered
defense responses are blocked in Arabidopsis npr1 mutants. Taken
together, these results suggest that, similar to BTH and INA,
TDL and SV-03 trigger disease resistance by interfering with
signaling steps downstream of SA (Yasuda etal., 2006; Yasuda,
2007).

The thiadiazole derivative, 1,3,4-oxadiazole, has also been
shown to exhibit antifungal and antibacterial activities (Kharb
etal.,, 2011; Singh etal,, 2011). By combining different hetero-
cyclic thiadiazole-related moieties, including oxadiazoles, new
compounds were designed and evaluated regarding their perfor-
mance in crop disease protection. Although only three out of
the 23 tested compounds elicited SAR more efficiently than TDL,
combining thiazole- and oxadiazole moieties may be a promising
approach in designing new crop protectants (Fan etal., 2009).

ISOTIANIL

As a result of a comprehensive search for isothiazole-based
compounds, Isotianil was discovered by Bayer AG (now Bayer
CropScience AG) in Germany in 1997 and developed jointly with
the Japanese company Sumitomo Chemical Co., Ltd. as a crop
protectant against rice blast and bacterial leaf blight in rice. It
also activates defense responses against a wide range of addi-
tional pathogens in various plants. Moreover, Isotianil does not
show any direct antimicrobial activity against bacteria and fungi
(Ogava etal., 2011; Toquin etal., 2012). In 2010, it was registered
under the name Stout® in Japan and China, where it substan-
tially increased rice production (Ogava etal., 2011; Brozek etal,,
2012; Yoshida etal., 2013). Its efficiency against rice blast seems
unusually high, as lower dosages of Isotianil are needed than of
any other existing plant defense activator, such as PBZ and TDL
(Ogava etal., 2011).

At the molecular level, Isotianil treatment triggers accu-
mulation of defense-related enzymes such as lipoxygenase or
PAL in rice. Affymetrix whole genome microarray analysis
revealed that Isotianil treatment induces some defense-related
genes, including OsWRKY45, that are involved in SA signal-
ing (Ogava etal, 2011; Toquin etal.,, 2012). Further microar-
ray analyses showed that Isotianil likely primes rice for more
intense defense activation in response to pathogen infections.
At this point no published information on its mode-of-action is
available.

N-CYANOMETHYL-2-CHLOROISONICOTINAMIDE (NCI)

A screen of 2-chloroisonicotinamide derivatives for effective rice
blast control agents were performed by Nihon Nohyaku Co.,
Ltd. (Japan), resulted in the identification of N-cyanomethyl-2-
chloroisonicotinamide (NCI) as a potent defense inducer (Yoshida
etal., 1989, 1990a,b). NCI showed one of the highest anti-blast
activities compared to other N-alkyl-2-chloroisonicotinamides
and its efficacy was equal to that of PBZ. It does not show antifun-
gal activity against rice blast in vitro at concentrations as high as
1100 uM (500 ppm). Its activity is long-lasting, as it was found to
be still effective against rice blast 30 days after a single application.
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NCI treatment inhibits mycelial development of P. oryzae at inner
epidermal cells and increases the number of small brownish lesions
that are correlated with active immunity of rice. These results
suggest that NCI efficiently induces plant defense mechanisms
(Yoshida etal., 1990a).

In tobacco, NCI can induce SAR and mediate local resistance
to TMV, Oidium lycopersici and P. syringae pv. tabaci. It also
induces expression of PR1, PR2 and PR5 and is active in transgenic
nahG tobacco plants. Thus, it does not require SA for activation
of defense (Nakashita etal., 2002a). In Arabidopsis, NCI reduces
growth of virulent P. syringae and induces resistance indepen-
dently from SA accumulation, ET and JA, but requires NPR1.
Thus, like INA and BTH, NCI seems to interfere with defense sig-
naling steps operating between SA and NPR1 (Yasuda et al., 2003a;
Yasuda, 2007).

3-CHLORO-1-METHYL-1H-PYRAZOLE-5-CARBOXYLIC ACID (CMPA)

A screen by Nishioka etal. (2003) targeting new chemicals to
control blast disease in rice resulted in the discovery of pyrazolecar-
boxylic acid derivatives as potent inducers of systemic immunity.
The most efficient anti-blast compound identified in this screen
was 3-chloro-1-methyl-1H-pyrazole-5-carboxylic acid (CMPA).
CMPA does not directly affect pathogen viability up to a concen-
tration of 623 uM (100 ppm), while it can significantly induce
rice blast resistance at 10-fold lower concentrations. Thus, its anti-
blast activity is not dependent on antimicrobial activity and this
compound seems to activate systemic plant defense mechanisms
(Nishioka etal., 2003). Although, CMPA, BTH, and PBZ trigger
rice blast resistance with similar efficacies, CMPA induces PBZ1
transcript accumulation in rice at levels lower than PBZ or BTH
(Nishioka et al., 2005).

In tobacco, CMPA enhances resistance to P. syringae pv. tabaci
and Oidium sp.. CMPA also induces expression of PRI, PR2, and
PR5 in wild-type as well as nahG transgenic tobacco. Therefore,
CMPA seems not to require SA to induce SAR-like disease resis-
tance and may interfere with defense signaling downstream from
SA. Consistent with this assumption, CMPA was found to act
through NPR1 in Arabidopsis (Yasuda et al., 2003b; Yasuda, 2007).

3,5-DICHLOROANTHRANILIC ACID (DCA)

The compound 3,5-dichloroanthranilic acid (DCA) is one of
114 synthetic elicitor candidates that were identified by a com-
prehensive screening of 60,000 diverse compounds for inducers
of the pathogen-responsive CaBP22::GUS reporter gene in Ara-
bidopsis (Knoth etal., 2009; Knoth and Eulgem, 2014). DCA
efficiently triggers resistance of Arabidopsis against virulent strains
of the oomycete Hpa and P. syringae DC3000. It up-regulates
transcript levels of various known SA-responsive defense-related
genes, such as PRI, WRKY70, and CaBP22. Like INA and
BTH, its activity does not require accumulation of SA. How-
ever, unlike these well-characterized SA analogs, DCA-mediated
immunity is not fully blocked in nprl Arabidopsis mutants.
DCA-triggered immune responses are to a large extent inde-
pendent from NPRI, but partially blocked in wrky70 mutants.
Thus DCA partially targets a WRKY70-dependent branch of
the defense signaling network that does not require NPRI1
(Knoth etal., 2009).

Microarray analyses revealed that DCA, INA, and BTH trig-
ger partially overlapping transcriptional responses in Arabidopsis
(Wang et al., 2006; Knoth etal., 2009; Bhattarai etal., 2010). For
example, transcripts of a set of 202 genes were found to be com-
monly up-regulated by each one of these three synthetic elicitors.
However, DCA, INA, and BTH also induce unique transcriptional
changes. Taken together, these and other observations suggest that
each of these SA analogs interferes with targets in the SA response
pathway in a unique manner.

ADDITIONAL FUNCTIONAL ANALOGS OF SA

Besides the functional analogs of SA that are discussed above, addi-
tional derivatives of this defense hormone were tested (Conrath
etal., 1995; Knoth etal., 2009). This includes 3,5-dichlorosalicylic
acid, 4-chlorosalicylic acid, and 5-chlorosalicylic acid, which
mimic SA, induce PRI gene expression and enhance disease
resistance to TMV infection in tobacco (Conrath etal., 1995).
Furthermore, 3-chlorobenzoic acid and 3,5-dichlorobenzoic acid
induce basal defense against Hpa as well as CaBP22::GUS expres-
sion in Arabidopsis (Knoth etal., 2009). In contrast, the SA-related
compounds benzoic acid, 2-aminobenzoic acid, 3-hydroxybenzoic
acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-
dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, and 4-
amino-SA did not show any defense-inducing activity (Chen
and Klessig, 1991; Conrath etal., 1995; Durner and Klessig,
1995).

Furthermore, several agonists of the peroxisome proliferator-
activated receptor were found to mimic effects of SA in local HR
responses, but not PR gene expression or SAR, in soybean. The
latter finding suggested that the roles of SA in local and systemic
defense induction are distinct (Tenhaken et al., 2001).

IMPRIMATINS

A screen of 10,000 small molecules to identify plant immune prim-
ing compounds by Noutoshi et al. (2012d) and coworkers resulted
in the identification of three distinct classes of compounds that
can prime Arabidopsis cells to exhibit enhanced immunity against
virulent and avirulent P. syringae. These immune-priming com-
pounds were termed Imprimatins. Based on structural similarities
they were classified as Imprimatin A, -B or -C, representatives,
respectively (Table 2; Noutoshi etal., 2012¢,d,e,f).

A common feature of Imprimatin A and Imprimatin B com-
pounds is that they only prime plants for enhanced defense
reactions and cannot directly induce immune responses (Noutoshi
etal., 2012e,f ). Application of each of these compounds increases
levels of endogenous SA and decreases levels of the inactive SA
metabolite SAG suggesting they inhibit SAGTs (Noutoshi etal.,
2012e,f). Supporting this view, single and double knockout
mutants of the Arabidopsis SAGT genes UGT74F1 and UGT76B1
showed increased disease resistance and free SA levels and resemble
in this respect wild-type Arabidopsis plants treated with Impri-
matins A}, Ay, A3, By, or B, (Noutoshietal.,2012¢). The enzymatic
activities of UGT74F1 and UGT76B1 were also blocked in vitro by
each of these Imprimatins at concentrations effective for immune
priming These results suggest that Imprimatin A and -B repre-
sentatives have a unique mode-of-action in defense priming and
specifically inhibit SAGTs (Noutoshi etal., 2012e,f ).
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Table 2 | Imprimatins.

Main type Common name Systematic name
Imprimatin A Imprimatin A4 2-[(E)-2-(2-bromo-4-hydroxy-5-
methoxyphenyl)ethenyl]
quinolin-8-ol)
Imprimatin A, 7-chloro-2-[(E)-2- (4-nitrophenyl)ethenyl]-
4H-3,1-benzoxazin-4-one)
Imprimatin Az 4-[(E)-2-(quinolin-2-yl)ethenyl]phenol)
Imprimatin B Imprimatin B4 2-(3-(2-furyl)-3-phenylpropyl)
benzo[clazoline-1,3-dione)
Imprimatin By 3-(2-furyl)-3-phenylpropylamine)
Imprimatin C  Imprimatin C4 [(E)-[1-amino-2-(2-oxopyrrolidin-1-

yl)ethylidenelamino]

4-chlorobenzoate)
Imprimatin Cy [(E)-[1-amino-2-(2-oxopyrrolidin-1-
yl)ethylidene]lamino]3,4-

dichlorobenzoate)

Two members of class C of Imprimatins, C; and C,, were found
to be SA analogs, as they activate downstream SA signaling steps
and induce expression of known SA-responsive genes. However,
their defense-inducing activity is weaker than that of SA. Fur-
ther structure-function analyses suggested that these compounds
may be converted in Arabidopsis to 4-chlorobenzoic acid and 3,4-
chlorobenzoic acid, which can mimic the defense-related effects
of Imprimatins C1 and C2 (Noutoshi etal., 2012c¢).

SULFONAMIDES

SULFANILAMIDES

In order to identify small molecules that reduce susceptibility
of Arabidopsis to virulent P. syringae, a small collection of 200
molecules from the LATCA library (Library of Active Compounds
in Arabidopsis; Zhao etal., 2007) was screened for candidates that
reduce cotyledon bleaching in liquid grown seedlings. P. syringae
induced bleaching of Arabidopsis cotyledons is a robust disease
symptom that develops within 4-5 days post-inoculation with
this pathogen (Schreiber etal., 2008). Among other candidates,
the sulfanilamide compounds, sulfamethoxazole (Smex), sulfadi-
azine (Sdiz), and sulfapyridine (Spyr) were found to reduce this
bleaching phenotype. Although, sulfanilamides have been widely
used as antibiotics, the authors showed that these three candidates
did not directly reduce bacterial viability and growth at concen-
trations that suppress their virulence. Thus, these compounds
seem to act by inducing plant immune responses (Schreiber etal.,
2008).

Sulfamethoxazole was found to be the most potent one of
the three identified sulfanilamides. Smex can prevent cotyledon
bleaching at a concentration of 100 uM. Interestingly, Smex does
not induce PRI expression and is active in nprl mutants. Thus,
Smex is likely to induce defense mechanisms unrelated to the
canonical SA defense pathway. Smex-mediated disease protection
is also independent from JA, ET, and ABA signaling and does

not require an oxidative burst (Schreiber and Desveaux, 2008;
Schreiber et al., 2008).

Sulfanilamides are structural analogues of p-aminobenzoic acid
(PABA), which can inhibit dihydropteroate synthase, an enzyme
that catalyzes an important step in the folate biosynthetic path-
way. Smex-mediated inhibition of folate biosynthesis may induce
plant defense mechanism independently from PRI expression
(Schreiber etal., 2008, 2012). A screen performed by the same
lab to identify compounds that protect Arabidopsis against the
fungal pathogen Fusarium graminearum resulted, besides Smex,
in the identification of the indole alkaloid gramine as a plant
defense inducer. Both gramine and Smex reduced severity of F.
graminearum infection in wheat as well (Schreiber etal., 2011).

OTHER SULFONAMIDES

Noutoshi etal. (2012a), additional sulfonamide compounds were
also reported to induce disease resistance in plants. By using the
same chemical screening strategy that was used for Imprimatins,
chemical libraries representing 2677 bioactive molecules and small
natural compounds were screened to identify immune-priming
molecules. Four different sulfonamide compounds, sulfameter
(SFM), sulfamethoxypyridazine (SMP), sulfabenzamide (SBA),
and sulfachloropyridazine (SCP) were identified in this screen-
ing and further characterized. They increased the occurrence
of cell death of Arabidopsis suspension cell cultures infected by
an avirulent P. syringae strain and were classified as immune-
priming compounds. However, unlike Smex, these compounds
can induce PRI gene expression and, unlike Imprimatin A or B
representatives, they do not inhibit SAGTs (Noutoshi et al., 2012a).

DIURETICS
Diuretics are pharmaceutical drugs that are widely used in clin-
ical medicine, especially to treat hypertensive and oedematous
states (Plant, 2003). Three diuretics, 3-(butylamino)-4-phenoxy-
5-sulfamoylbenzoic acid (Bumetanide), 3-benzyl-1,1-dioxo-6-
(trifluoromethyl)-3,4dihydro-2 H-1,2,4-benzothiadiazine-7-sulfo
namide (Bendroflumethiazide) and 4-chloro-N-(2,6-dimethyl-
1-piperidyl)-3-sulfamoyl-benzamide (Clopamide; McNeil etal.,
1987; Breyer and Jacobson, 1990; Pacifici, 2012) were identified
as plant immune-priming compounds through the screening of a
chemical library of 2000 known bioactive compounds (Noutoshi
etal., 2012b). They stimulate pathogen-induced cell death in Ara-
bidopsisin a concentration-dependent manner. In Arabidopsis they
can enhance disease resistance to both avirulent and virulent P
syringae strains. Effects of 100 uM diuretic on defense induction
are comparable to those triggered by 50 uM SA and they do not
directly inhibit bacterial growth up to concentration of 200 uM.
Application of these diuretics significantly decreases the growth
of avirulent bacteria compared to mock treatment and mediates
enhanced PRI gene expression after infection with P. syringae.
These compounds potentiate disease resistance by enhancing plant
defense responses, but, unlike SA and its analogs, do not induce
PRI expression in the absence of pathogen infection (Noutoshi
etal., 2012b).

Diuretics exhibit pharmacological effects in humans by act-
ing on proteins of the SLC12A family, which are sodium-coupled
chloride co-transporters that are located along the renal tubule of
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the kidney nephron. Diuretics inhibit these co-transporters by
binding to their Cl~ binding site (Breyer and Jacobson, 1990;
Gamba, 2005). The Arabidopsis genome encodes only a single
protein closely related to SLC12A, Ar1g30450 (ArCCC1). Thus,
diuretics-triggered defense priming may be mediated via AtCCC1.
However, no results regarding this possible role of AtCCCI have
been reported.

Interestingly, diuretics contain a sulfonamide moiety similar to
those identified in the defense-inducing sulfanilamide compounds
sulfamethoxazole, sulfadiazine, and sulfapyridine (Schreiber et al.,
2008). Both diuretics and sulfanilamides can decrease bacterial
growth in planta. The presence of sulfonamide moieties seems
to be essential for their ability to induce defense reactions, as
diuretics without sulfonamide groups do not exhibit this activ-
ity (Schreiber etal., 2008; Noutoshi etal., 2012b). Further studies
with diuretics and sulfanilamides are needed to uncover their
modes-of-action.

ADIPIC ACID DERIVATIVES

In order to identify chemical mixtures that can delay senescence
and induce immunity in plants, various mixtures of adipic acid
monoethyl ester derivatives were tested. Application of a mixture
of furfurylamine and 1,2,3,4-tetra-O-acetyl-B-D-glucopy-ranose
(FGA) increased chlorophyll content, cell wall sugar content and
delayed the chlorophyll degrading rate along with senescence in
tomato and pepper (Flors etal.,, 2001). FGA also increased PAL
activity as well as the concentration of flavonoids and phenolic
compounds and strengthened plant immunity against various dif-
ferent pathogens such as Phytophthora citrophthora and Altemaria
solani in tomato (Solanum lycopersicum L.) as well as Alternaria
solani in pepper (Capsicum annuum L.; Flors etal, 2001).
Individual application of three novel amides of adipic acid, 5-
carbamoil ethyl pentanoate (N1), 5-(2-furfurylmethylcarbamoil)
ethyl pentanoate (N2) and 5-(3-aminopropylcarbamoil) ethyl
pentanoate (N3) was shown to strongly induce resistance against
Alternaria solani in pepper. However, many other adipic acid
derivatives were most effective when used as a mixture (Flors
etal., 2003a,b). Although these chemicals reduced pathogen
growth in their hosts, many of them did not show any direct
antimicrobial effect to pathogens and, therefore, likely induce
plant immune responses (Flors etal,, 2001, 2003a,b, 2004).
However, the mode-of-action underlying this function remains
unresolved.

JASMONIC ACID ANALOGS

Jasmonic acid and its methylester, methyl-jasmonate (Me]JA), are
important members of the family of jasmonates which are biologi-
cally active fatty-derived cyclopentanones, that are broadly present
in the plant kingdom. They are synthesized rapidly by the octade-
canoid (and possibly hexadecanoid) biosynthesis pathways upon
pathogen or insect attack and activate defense responses (Howe,
2010; Wasternack and Hause, 2013). Jasmonates are known to con-
trol stress responses against nectrotrophic pathogens, herbivores
and wounding, but are also known to perform various important
roles in plant development related to leaf senescence, growth inhi-
bition and floral development (He etal., 2002; Balbi and Devoto,
2008; Zhang and Turner, 2008; Oh et al., 2013; Santino et al., 2013).

Upon synthesis, JA can either be metabolized to MeJA or con-
jugated to L-isoleucine leading to jasmonoyl-isoleucine (JA-Ile),
which is an active form of JA (Svoboda and Boland, 2010; Pieterse
etal., 2012).

Together with Jasmonate ZIM-domain (JAZ)-type transcrip-
tional repressors, the F-box protein Coronatine Insensitivel
(COI1) functions as JA-Ile receptors. Recruitment of JAZ proteins
into COI1-containing SKP1-Cullin-F-box (SCF®O!!) complexes
results in proteasome-mediated degradation of these transcrip-
tional repressors. Consequently expression of a large number
of JA-responsive genes is de-repressed and defense responses
are activated (Browse, 2009; Pieterse etal., 2012; Monte etal.,
2014). Jasmonates typically promote defense responses against
necrotrophic microbial pathogens. For example, exogenous appli-
cation of JA or MeJA was shown to protect barley against Erysiphe
graminis f.sp. hordei (Schweizer etal., 1993). In Arabidopsis, MeJA
up-regulates transcript levels of the PDFI.2 gene family along
with 100s of additional genes (Schenk etal., 2000; Jung etal.,
2007; Scranton etal., 2013) and enhances resistance to various
necrotrophic pathogens, such as the fungi Alternaria brassicicola
and Botrytis cinerea (Thomma etal., 1998; Seo etal., 2001; Rowe
etal., 2010).

Systematic structural modifications of JA revealed the mini-
mal structural requirements required for its bioactivity allowing
for the synthesis of JA-mimics (Svoboda and Boland, 2010).
The synthetic JA mimic coronalon (2-[(6-ethyl-1-oxo-indane-4-
carbonyl)-amino]-3-methyl-pentanoic acid methyl ester) medi-
ated induction of stress responses in various plant species (Schiiler
etal., 2004). In addition, coronalon and its unsubstituted form
(1-oxo-indanoyl-L-isoleucine methyl ester) increased levels of
nicotine and trypsin proteinase inhibitors which are known MeJA-
activated defense products in N. attenuata. They also triggered
transcriptional up-regulation of the majority of genes that are
known to be responsive to MeJA (Pluskota etal., 2007). The
compound 1-oxo-indanoyl-L-isoleucine methyl ester was also
shown to enhance activity of defense-related enzymes such as PAL
or peroxidases and to induce resistance against downy mildew
(Deepak etal., 2007). Additional synthetic JA mimics were shown
to induce jasmonate signaling and immune responses in vari-
ous plant species (Krumm etal., 1995; Fliegmann etal., 2003;
Pluskota etal., 2007), However, none of these compounds were
studied at the molecular level and nothing is known about their
modes-of-action.

CONCLUSIONS AND PERSPECTIVES

In this review article we have provided an overview of the discovery
and functional characteristics of synthetic elicitors as well as their
potential for basic research and crop protection. In our opinion,
three major observations stand out.

(1) The vast majority of known synthetic elicitors belongs to the
large group of functional SA analogs and mimics roles of this
messenger molecule in defense induction. Many of these com-
pounds are structurally related to SA. This strong trend may
be partially due to a bias in the used compound screening
strategies, most of which were based on the use of known
SA-triggered immune responses as an indicator of defense
induction. However, the dominance of functional SA analogs
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among known synthetic elicitors may also reflect that the SA-
response pathway is particularly enriched for drug-able targets
(which often have natural ligand binding pockets) and may
involve more than just one type of SA receptor. This is con-
sistent with the fact that responses triggered by different SA
analogs do often not fully overlap and are partly unique. Thus,
many functional SA analogs may constitute selective SA ago-
nists, each of which interferes in a distinct manner with natural
SA targets.

(2) Synthetic elicitors can be successfully applied in crop protec-
tion. Several examples illustrate the utility of plant immune-
stimulants or -inducers in agriculture. Most likely more
examples will follow, providing attractive alternatives to
conventional biocidal agrochemicals.

(3) Synthetic elicitors can also serve as potent tools in basic
research approaches expanding our knowledge of plant immu-
nity. A particularly prominent example highlighting their
potency in this respect is the role of INA in the discovery
of NPRI as a central regulator of SA-dependent immune
responses.

While additional screens for synthetic elicitors that are more
potent and possibly distinct from those that are known are
desirable, a rich arsenal of interesting plant defense-inducing com-
pounds is already at hand. What is missing at this point, is a
comprehensive systematic comparison of their functional charac-
teristics in a single plant system, such as Arabidopsis. We anticipate
specific interactions of many of these compounds with the plant
immune system to define distinct “points of reference,” that can
be probed and further examined with each compound. A next
critical step will be the identification of direct synthetic elicitor
targets and their roles in plant defense. This may lead to the
discovery of so far unknown components of the plant immune
system and reveal novel regulatory interactions controlling plant
defense reactions. Furthermore, innovative screening designs are
needed to complement the set of available compounds. A greater
diversity of synthetic elicitors will not only be beneficial for basic
research, but may also be necessary for the design of innovative
multifunctional crop protectants that stimulate multiple aspects
of the plant defense system and can provide resistance against a
broader spectrum of plant pathogens.
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